$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Evaluation of LoRa technology in 433-MHz and 868-MHz for underground to aboveground data transmission 원문보기

Computers and electronics in agriculture, v.194, 2022년, pp.106770 -   

Moiroux-Arvis, Laure (Corresponding author.) ,  Cariou, Christophe ,  Chanet, Jean-Pierre

Abstract AI-Helper 아이콘AI-Helper

Abstract The development of Wireless Underground Sensor Networks (WUSNs) is currently receiving significant attention to collect data underground all along the year without impacting aboveground activities. Although the opportunities are promising for sectors as agriculture and environment monitori...

주제어

참고문헌 (29)

  1. Ad Hoc Netw. Akyildiz 4 669 2006 10.1016/j.adhoc.2006.04.003 Wireless underground sensor networks: Research challenges 

  2. Sensors Augustin 16 1466 2016 10.3390/s16091466 A study of LoRa: long range and low power networks for the Internet of Things 

  3. Vadose Zone J. Bogena 8 3 755 2009 10.2136/vzj2008.0138 Hybrid wireless underground sensor networks: quantification of signal attenuation in soil 

  4. 10.1007/978-3-642-40066-7_12 Da Silva, A.R., Moghaddam, M., Liu, M., 2014. The future of wireless underground sensing networks considering physical layer aspects. In: The Art of Wireless Sensor Networks, Signals and Communication Technology, https://doi.org/10.1007/978-3-642-40066-7-12. 

  5. IEEE Trans. Instrum. Meas. Di Renzone 2021 10.1109/TIM.2021.3061820 LoRaWAN underground to aboveground data transmission performances for different soil compositions 

  6. IEEE Access. Ebi 2019 10.1109/ACCESS.2019.2913985 Synchronous LoRa mesh network to monitor processes in underground infrastructure 

  7. 10.5753/webmedia_estendido.2019.8142 Ferreira, C.B.M., Peixoto, V.F., de Brito, J.A.G., de Monteiro, A.F.A., de Assis, L.S., Henriques, F.R., 2019. UnderApp: a system for remote monitoring of landslides based on wireless underground sensor networks. In: WTIC, Rio de Janeiro, Brasil. 

  8. Foth, H.D., 1990. Fundamentals of soil science, 8th edition. Chapter 3, soil physiscal properties, Wiley, ISBN 0-471-52279-1. 

  9. Gineprini, M., Parrino, S., Peruzzi, G., Pozzebon, A., 2020. IEEE International Instrumentation and Measurement Technology Conference (I2MTC), 25-28 May, Dubrovnik, Croatia. 

  10. Sensors, MDPI Hardie 19 4232 2019 10.3390/s19194232 Underground wireless data transmission using 433MHz LoRa for agriculture 

  11. 10.3390/s20092580 Huang, H., Shi, J., Wang, F., Zhang, D., 2020. Theoretical and experimental studies on the signal propagation in soil for wireless underground sensor network. Sensors, MDPI. 

  12. 10.1109/LCN44214.2019.8990756 Lin, K., Hao, T., Yu, Z., Zheng, W., He, W., 2019. A preliminary study of UG2AG link quality in LoRa-based wireless underground sensor networks. In: IEEE 44th Conference on Local Computer Networks (LCN), pp. 51-59. 

  13. 10.1109/GLOCOM.2018.8647469 Li, S., Raza, U., Khan, A., 2018. How agile is the adaptive data rate mechanism of LoRaWAN? In: IEEE Conference and Exhibition on Global Telecommunications, United Arab Emirates. 

  14. LoRa Alliance, 2018. LoRaWAN 1.0.3 Specification. pp. 1-72. 

  15. IEEE Commun. Surv. Tutorials Saeed 21 4 2019 10.1109/COMST.2019.2934365 Towards the Internet of Underground Things: a systematic survey 

  16. 10.1007/978-3-030-50861-6 Salam, A., Raza, U., 2020. Current advances in Internet of Underground Things. Signals in the soil, Springer Nature Switzerland AG, Chapter 10. 

  17. IEEE Trans. Antennas Propag. Salam 67 6 2019 10.1109/TAP.2019.2902646 A theoretical model of underground dipole antennas for communications in internet of underground things 

  18. IEEE Sens. J. Sambo 2020 Wireless underground sensor networks path loss model for precision agriculture 

  19. Staniec 2018 Wireless Communications and Mobile Computing LoRa performance under variable interference and heavy multipath conditions 

  20. Int. J. Performab. Eng. Sardar 15 11 3042 2019 10.23940/ijpe.19.11.p24.30423051 Wireless underground sensor networks 

  21. 10.1145/1795194.1795206 Silva, A.R., Vuran, M.C., 2010. (CPS)2: integration of center pivot systems with wireless underground sensor networks for autonomous precision agriculture. In: ICCPS, Stockholm, Sweden, pp. 10-13. 

  22. Silva, A.R., Moghaddam, M., Liu, M., 2014. The future of wireless underground sensing networks considering physical layer aspects. In: The Art of Wireless Sensor Networks, Signals and Communication Technology, doi: https://doi.org/10.1007/978-3-642-40066-7-12. 

  23. IEEE Trans. Ind. Informat. Silva 11 5 2015 10.1109/TII.2015.2471263 Experimental link quality characterization of wireless sensor networks for underground monitoring 

  24. Precision Agric. Tiusanen 10 372 2009 10.1007/s11119-008-9096-7 Wireless soil scout prototype radio signal reception compared to the attenuation model 

  25. Phys. Commun. Vuran 3 245 2010 10.1016/j.phycom.2010.07.001 Channel model and analysis for wireless underground sensor networks in soil medium 

  26. 10.1007/978-3-642-01341-6_12 Vuran, M.C., Silva, A.R., 2009. Communication through soil in wireless underground sensor networks, theory and practice. In: Sensor Networks, Signals and Communication Technology, https://doi.org/10.1007/978-3-642-01341-6-12. 

  27. 10.1109/SmartWorld-UIC-ATC-SCALCOM-IOP-SCI.2019.00123 Wu, S., Wang, K., Ivoghlian, A., Austin, A., Salcic, Z., Zhou, X., 2019. LWS: a LoRaWAN wireless underground sensor network simulator for agriculture. In: IEEE SmartWorld, Leicester, UK. 

  28. Zaman, I., Forster, A., 2018. Challenges and opportunities of wireless underground sensor networks. https://doi.org/10.13140/RG.2.2.20241.68968. 

  29. 10.1109/ICT.2018.8464901 Zorbas, D., Papadopoulos, G.Z., Maillet, P., Montavont, N., Douligeris, C., 2018. Improving LoRa network capacity using multiple spreading factor configurations. In: 25th International Conference on Telecommunication, Saint-Malo, France. 

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로