$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Wearable aptamer-field-effect transistor sensing system for noninvasive cortisol monitoring 원문보기

Science advances, v.8 no.1, 2022년, pp.eabk0967 -   

Wang, Bo (Interconnected and Integrated Bioelectronics Lab (I BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.) ,  Zhao, Chuanzhen (Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.) ,  Wang, Zhaoqing (Interconnected and Integrated Bioelectronics Lab (I BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.) ,  Yang, Kyung-Ae (Division of Experimental Therapeutics, Department of Medicine, Columbia University, New York, NY 10032, USA.) ,  Cheng, Xuanbing (Interconnected and Integrated Bioelectronics Lab (I BL), Department of Electrical and Computer Engineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.) ,  Liu, Wenfei (Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA.) ,  Yu, Wenzhuo (Interconnected and Integrated Bioelectronics Lab (I BL), Department of Electrical and Computer Engineering, University of California, Lo) ,  Lin, Shuyu ,  Zhao, Yichao ,  Cheung, Kevin M. ,  Lin, Haisong ,  Hojaiji, Hannaneh ,  Weiss, Paul S. ,  Stojanović, Milan N. ,  Tomiyama, A. Janet ,  Andrews, Anne M. ,  Emaminejad, Sam

Abstract AI-Helper 아이콘AI-Helper

A smartwatch was developed for noninvasive stress biomarker data acquisition that provides real-time feedback to the wearer.Wearable technologies for personalized monitoring require sensors that track biomarkers often present at low levels. Cortisol—a key stress biomarker—is present in...

참고문헌 (83)

  1. 1 J. Heikenfeld , A. Jajack , B. Feldman , S. W. Granger , S. Gaitonde , G. Begtrup , B. A. Katchman , Accessing analytes in biofluids for peripheral biochemical monitoring . Nat. Biotechnol. 37 , 407 – 419 ( 2019 ). 30804536 

  2. 2 T. R. Ray , J. Choi , A. J. Bandodkar , S. Krishnan , P. Gutruf , L. Tian , R. Ghaffari , J. A. Rogers , Bio-integrated wearable systems: A comprehensive review . Chem. Rev. 119 , 5461 – 5533 ( 2019 ). 30689360 

  3. 3 X. Cheng , B. Wang , Y. Zhao , H. Hojaiji , S. Lin , R. Shih , H. Lin , S. Tamayosa , B. Ham , P. Stout , K. Salahi , Z. Wang , C. Zhao , J. Tan , S. Emaminejad , A mediator-free electroenzymatic sensing methodology to mitigate ionic and electroactive interferents' effects for reliable wearable metabolite and nutrient monitoring . Adv. Funct. Mater. 30 , 1908507 ( 2020 ). 

  4. 4 W. Gao , S. Emaminejad , H. Y. Y. Nyein , S. Challa , K. Chen , A. Peck , H. M. Fahad , H. Ota , H. Shiraki , D. Kiriya , D.-H. Lien , G. A. Brooks , R. W. Davis , A. Javey , Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis . Nature 529 , 509 – 514 ( 2016 ). 26819044 

  5. 5 J. Kim , A. S. Campbell , B. E.-F. de Ávila , J. Wang , Wearable biosensors for healthcare monitoring . Nat. Biotechnol. 37 , 389 – 406 ( 2019 ). 30804534 

  6. 6 Y. Zhao , B. Wang , H. Hojaiji , Z. Wang , S. Lin , C. Yeung , H. Lin , P. Nguyen , K. Chiu , K. Salahi , X. Cheng , J. Tan , B. A. Cerrillos , S. Emaminejad , A wearable freestanding electrochemical sensing system . Sci. Adv. 6 , eaaz0007 ( 2020 ). 32219164 

  7. 7 A. Clow , F. Hucklebridge , T. Stalder , P. Evans , L. Thorn , The cortisol awakening response: More than a measure of HPA axis function . Neurosci. Biobehav. Rev. 35 , 97 – 103 ( 2010 ). 20026350 

  8. 8 E. K. Adam , S. Vrshek-Schallhorn , A. D. Kendall , S. Mineka , R. E. Zinbarg , M. G. Craske , Prospective associations between the cortisol awakening response and first onsets of anxiety disorders over a six-year follow-up–2013 Curt Richter Award Winner . Psychoneuroendocrinology 44 , 47 – 59 ( 2014 ). 24767619 

  9. 9 P. Restituto , J. Galofré , M. Gil , C. Mugueta , S. Santos , J. Monreal , N. Varo , Advantage of salivary cortisol measurements in the diagnosis of glucocorticoid related disorders . Clin. Biochem. 41 , 688 – 692 ( 2008 ). 18280810 

  10. 10 R. Yehuda , M. H. Teicher , R. L. Trestman , R. A. Levengood , L. J. Siever , Cortisol regulation in posttraumatic stress disorder and major depression: A chronobiological analysis . Biol. Psychiatry 40 , 79 – 88 ( 1996 ). 8793040 

  11. 11 A. C. Incollingo Rodriguez , E. S. Epel , M. L. White , E. C. Standen , J. R. Seckl , A. J. Tomiyama , Hypothalamic-pituitary-adrenal axis dysregulation and cortisol activity in obesity: A systematic review . Psychoneuroendocrinology 62 , 301 – 318 ( 2015 ). 26356039 

  12. 12 M. Akinola , E. Page-Gould , P. H. Mehta , J. G. Lu , Collective hormonal profiles predict group performance . Proc. Natl. Acad. Sci. U.S.A. 113 , 9774 – 9779 ( 2016 ). 27528679 

  13. 13 S. Hart , L. M. Boylan , B. Border , S. R. Carroll , D. McGunegle , R. M. Lampe , Breast milk levels of cortisol and secretory immunoglobulin A (SIgA) differ with maternal mood and infant neuro-behavioral functioning . Infant Behav. Dev. 27 , 101 – 106 ( 2004 ). 

  14. 14 U. Teruhisa , H. Ryoji , I. Taisuke , S. Tatsuya , M. Fumihiro , S. Tatsuo , Use of saliva for monitoring unbound free cortisol levels in serum . Clin. Chim. Acta 110 , 245 – 253 ( 1981 ). 6261989 

  15. 15 R. F. Vining , R. A. McGinley , J. J. Maksvytis , K. Y. Ho , Salivary cortisol: A better measure of adrenal cortical function than serum cortisol . Ann. Clin. Biochem. 20 , 329 – 335 ( 1983 ). 6316831 

  16. 16 J. Heikenfeld , Non-invasive analyte access and sensing through eccrine sweat: Challenges and outlook circa 2016 . Electroanalysis 28 , 1242 – 1249 ( 2016 ). 

  17. 17 O. Parlak , S. T. Keene , A. Marais , V. F. Curto , A. Salleo , Molecularly selective nanoporous membrane-based wearable organic electrochemical device for noninvasive cortisol sensing . Sci. Adv. 4 , eaar2904 ( 2018 ). 30035216 

  18. 18 S. Kim , B. Lee , J. T. Reeder , S. H. Seo , S.-U. Lee , A. Hourlier-Fargette , J. Shin , Y. Sekine , H. Jeong , Y. S. Oh , A. J. Aranyosi , S. P. Lee , J. B. Model , G. Lee , M.-H. Seo , S. S. Kwak , S. Jo , G. Park , S. Han , I. Park , H.-I. Jung , R. Ghaffari , J. Koo , P. V. Braun , J. A. Rogers , Soft, skin-interfaced microfluidic systems with integrated immunoassays, fluorometric sensors, and impedance measurement capabilities . Proc. Natl. Acad. Sci. U.S.A. 117 , 27906 – 27915 ( 2020 ). 33106394 

  19. 19 R. M. Torrente-Rodríguez , J. Tu , Y. Yang , J. Min , M. Wang , Y. Song , Y. Yu , C. Xu , C. Ye , W. W. IsHak , W. Gao , Investigation of cortisol dynamics in human sweat using a graphene-based wireless mHealth system . Matter 2 , 921 – 937 ( 2020 ). 32266329 

  20. 20 A. Ganguly , K. C. Lin , S. Muthukumar , S. Prasad , Autonomous, real-time monitoring electrochemical aptasensor for circadian tracking of cortisol hormone in sub-microliter volumes of passively eluted human sweat . ACS Sens. 6 , 63 – 72 ( 2021 ). 33382251 

  21. 21 W. Tang , L. Yin , J. R. Sempionatto , J. M. Moon , H. Teymourian , J. Wang , Touch-based stressless cortisol sensing . Adv. Mater. 33 , 2008465 ( 2021 ). 

  22. 22 H.-B. Lee , M. Meeseepong , T. Q. Trung , B.-Y. Kim , N.-E. Lee , A wearable lab-on-a-patch platform with stretchable nanostructured biosensor for non-invasive immunodetection of biomarker in sweat . Biosens. Bioelectron. 156 , 112133 ( 2020 ). 32174559 

  23. 23 C. Cheng , X. Li , G. Xu , Y. Lu , S. S. Low , G. Liu , L. Zhu , C. Li , Q. Liu , Battery-free, wireless, and flexible electrochemical patch for in situ analysis of sweat cortisol via near field communication . Biosens. Bioelectron. 172 , 112782 ( 2021 ). 33157409 

  24. 24 P. Rice , S. Upasham , B. Jagannath , R. Manuel , M. Pali , S. Prasad , CortiWatch: Watch-based cortisol tracker . Future Sci. OA 5 , FSO416 ( 2019 ). 31608155 

  25. 25 Y. Xiao , A. A. Lubin , A. J. Heeger , K. W. Plaxco , Label-free electronic detection of thrombin in blood serum by using an aptamer-based sensor . Angew. Chem. Int. Ed. 117 , 5592 – 5595 ( 2005 ). 

  26. 26 H. Li , P. Dauphin-Ducharme , G. Ortega , K. W. Plaxco , Calibration-free electrochemical biosensors supporting accurate molecular measurements directly in undiluted whole blood . J. Am. Chem. Soc. 139 , 11207 – 11213 ( 2017 ). 28712286 

  27. 27 K. M. Cheung , K.-A. Yang , N. Nakatsuka , C. Zhao , M. Ye , M. E. Jung , H. Yang , P. S. Weiss , M. N. Stojanović , A. M. Andrews , Phenylalanine monitoring via aptamer-field-effect transistor sensors . ACS Sens. 4 , 3308 – 3317 ( 2019 ). 31631652 

  28. 28 N. Nakatsuka , K.-A. Yang , J. M. Abendroth , K. M. Cheung , X. Xu , H. Yang , C. Zhao , B. Zhu , Y. S. Rim , Y. Yang , P. S. Weiss , M. N. Stojanović , A. M. Andrews , Aptamer-field-effect transistors overcome Debye length limitations for small-molecule sensing . Science 362 , 319 – 324 ( 2018 ). 30190311 

  29. 29 C. Zhao , Q. Liu , K. M. Cheung , W. Liu , Q. Yang , X. Xu , T. Man , P. S. Weiss , C. Zhou , A. M. Andrews , Narrower nanoribbon biosensors fabricated by chemical lift-off lithography show higher sensitivity . ACS Nano 15 , 904 – 915 ( 2021 ). 33337135 

  30. 30 Q. Liu , C. Zhao , M. Chen , Y. Liu , Z. Zhao , F. Wu , Z. Li , P. S. Weiss , A. M. Andrews , C. Zhou , Flexible multiplexed In 2 O 3 nanoribbon aptamer-field-effect transistors for biosensing . iScience 23 , 101469 ( 2020 ). 33083757 

  31. 31 C. Zhao , K. M. Cheung , I.-W. Huang , H. Yang , N. Nakatsuka , W. Liu , Y. Cao , T. Man , P. S. Weiss , H. G. Monbouquette , A. M. Andrews , Implantable aptamer–field-effect transistor neuroprobes for in vivo neurotransmitter monitoring . Sci. Adv. 7 , eabj7422 ( 2021 ). 34818033 

  32. 32 Y. S. Rim , S.-H. Bae , H. Chen , J. L. Yang , J. Kim , A. M. Andrews , P. S. Weiss , Y. Yang , H.-R. Tseng , Printable ultrathin metal oxide semiconductor-based conformal biosensors . ACS Nano 9 , 12174 – 12181 ( 2015 ). 26498319 

  33. 33 F. N. Ishikawa , M. Curreli , H.-K. Chang , P.-C. Chen , R. Zhang , R. J. Cote , M. E. Thompson , C. Zhou , A calibration method for nanowire biosensors to suppress device-to-device variation . ACS Nano 3 , 3969 – 3976 ( 2009 ). 19921812 

  34. 34 H.-J. Jang , T. Lee , J. Song , L. Russell , H. Li , J. Dailey , P. C. Searson , H. E. Katz , Electronic cortisol detection using an antibody-embedded polymer coupled to a field-effect transistor . ACS Appl. Mater. Interfaces 10 , 16233 – 16237 ( 2018 ). 29701946 

  35. 35 M. Pali , B. Jagannath , K.-C. Lin , S. Upasham , D. Sankhalab , S. Upashama , S. Muthukumar , S. Prasad , CATCH (Cortisol Apta WATCH): ‘Bio-mimic alarm’ to track anxiety, stress, immunity in human sweat . Electrochim. Acta 390 , 138834 ( 2021 ). 

  36. 36 J. Kim , Y. S. Rim , H. Chen , H. H. Cao , N. Nakatsuka , H. L. Hinton , C. Zhao , A. M. Andrews , Y. Yang , P. S. Weiss , Fabrication of high-performance ultrathin In 2 O 3 film field-effect transistors and biosensors using chemical lift-off lithography . ACS Nano 9 , 4572 – 4582 ( 2015 ). 25798751 

  37. 37 H. Chen , Y. S. Rim , I. C. Wang , C. Li , B. Zhu , M. Sun , M. S. Goorsky , X. He , Y. Yang , Quasi-two-dimensional metal oxide semiconductors based ultrasensitive potentiometric biosensors . ACS Nano 11 , 4710 – 4718 ( 2017 ). 28430412 

  38. 38 Y. S. Rim , H. Chen , T.-B. Song , S.-H. Bae , Y. Yang , Hexaaqua metal complexes for low-temperature formation of fully metal oxide thin-film transistors . Chem. Mater. 27 , 5808 – 5812 ( 2015 ). 

  39. 39 P. S. Weiss , P. L. Trevor , M. J. Cardillo , Gas–surface interactions on InP monitored by changes in substrate electronic properties . J. Chem. Phys. 90 , 5146 – 5153 ( 1989 ). 

  40. 40 A. Many, Y. Goldstein, N. B. Grover, Semiconductor Surfaces (North-Holland Publishing Co., Amsterdam, 1965). 

  41. 41 K.-A. Yang , H. Chun , Y. Zhang , S. Pecic , N. Nakatsuka , A. M. Andrews , T. S. Worgall , M. N. Stojanović , High-affinity nucleic-acid-based receptors for steroids . ACS Chem. Biol. 12 , 3103 – 3112 ( 2017 ). 29083858 

  42. 42 K.-A. Yang , R. Pei , M. N. Stojanović , In vitro selection and amplification protocols for isolation of aptameric sensors for small molecules . Methods 106 , 58 – 65 ( 2016 ). 27155227 

  43. 43 N. Nakatsuka , J. M. Abendroth , K. A. Yang , A. M. Andrews , Divalent cation dependence enhances dopamine aptamer biosensing . ACS Appl. Mater. Interfaces 13 , 9425 – 9435 ( 2021 ). 33410656 

  44. 44 J. Kypr , I. Kejnovská , D. Renčiuk , M. Vorlíčková , Circular dichroism and conformational polymorphism of DNA . Nucleic Acids Res. 37 , 1713 – 1725 ( 2009 ). 19190094 

  45. 45 O. Neumann , D. Zhang , F. Tam , S. Lal , P. Wittung-Stafshede , N. J. Halas , Direct optical detection of aptamer conformational changes induced by target molecules . Anal. Chem. 81 , 10002 – 10006 ( 2009 ). 19928834 

  46. 46 V. B. Juska , M. E. Pemble , A critical review of electrochemical glucose sensing: Evolution of biosensor platforms based on advanced nanosystems . Sensors 20 , 6013 ( 2020 ). 33113948 

  47. 47 M. Trilck , J. Flitsch , D. Lüdecke , R. Jung , S. Petersenn , Salivary cortisol measurement-a reliable method for the diagnosis of Cushing's syndrome . Exp. Clin. Endocrinol. Diabetes 113 , 225 – 230 ( 2005 ). 15891959 

  48. 48 R. Miller , F. Plessow , M. Rauh , M. Gröschl , C. Kirschbaum , Comparison of salivary cortisol as measured by different immunoassays and tandem mass spectrometry . Psychoneuroendocrinology 38 , 50 – 57 ( 2013 ). 22641005 

  49. 49 M. Jia , W. M. Chew , Y. Feinstein , P. Skeath , E. M. Sternberg , Quantification of cortisol in human eccrine sweat by liquid chromatography–tandem mass spectrometry . Analyst 141 , 2053 – 2060 ( 2016 ). 26858998 

  50. 50 C. Muir , K. Treasurywala , S. McAllister , J. Sutherland , L. Dukas , R. Berger , A. Khan , D. DeCatanzaro , Enzyme immunoassay of testosterone, 17β-estradiol, and progesterone in perspiration and urine of preadolescents and young adults: Exceptional levels in men's axillary perspiration . Horm. Metab. Res. 40 , 819 – 826 ( 2008 ). 18711693 

  51. 51 K. Ngamchuea , K. Chaisiwamongkhol , C. Batchelor-McAuley , R. G. Compton , Chemical analysis in saliva and the search for salivary biomarkers–A tutorial review . Analyst 143 , 81 – 99 ( 2017 ). 29149225 

  52. 52 Z.-L. Tan , A.-M. Bao , M. Tao , Y.-J. Liu , J.-N. Zhou , Circadian rhythm of salivary serotonin in patients with major depressive disorder . Neuroendocrinol. Lett. 28 , 395 – 400 ( 2007 ). 17693970 

  53. 53 S. S. Dickerson , M. E. Kemeny , Acute stressors and cortisol responses: A theoretical integration and synthesis of laboratory research . Psychol. Bull. 130 , 355 – 391 ( 2004 ). 15122924 

  54. 54 A. Papadimitriou , K. N. Priftis , Regulation of the hypothalamic-pituitary-adrenal axis . Neuroimmunomodulation 16 , 265 – 271 ( 2009 ). 19571587 

  55. 55 C. A. Elverson , M. E. Wilson , Cortisol: Circadian rhythm and response to a stressor . Newborn Infant Nurs Rev 5 , 159 – 169 ( 2005 ). 

  56. 56 M. A. Birkett , The Trier Social Stress Test protocol for inducing psychological stress . J. Vis. Exp. 56 , e3238 ( 2011 ). 

  57. 57 U. Knutsson , J. Dahlgren , C. Marcus , S. Rosberg , M. Brönnegård , P. Stierna , K. Albertsson-Wikland , Circadian cortisol rhythms in healthy boys and girls: Relationship with age, growth, body composition, and pubertal development . J. Clin. Endocrinol. Metab. 82 , 536 – 540 ( 1997 ). 9024250 

  58. 58 J. M. Smyth , M. C. Ockenfels , A. A. Gorin , D. Catley , L. S. Porter , C. Kirschbaum , D. H. Hellhammer , A. A. Stone , Individual differences in the diurnal cycle of cortisol . Psychoneuroendocrinology 22 , 89 – 105 ( 1997 ). 9149331 

  59. 59 E. Kaufman , I. B. Lamster , The diagnostic applications of saliva—A review . Crit. Rev. Oral Biol. Med. 13 , 197 – 212 ( 2002 ). 12097361 

  60. 60 J. M. Yoshizawa , C. A. Schafer , J. J. Schafer , J. J. Farrell , B. J. Paster , D. T. Wong , Salivary biomarkers: Toward future clinical and diagnostic utilities . Clin. Microbiol. Rev. 26 , 781 – 791 ( 2013 ). 24092855 

  61. 61 H. Pontzer , J. H. Holloway , D. A. Raichlen , D. E. Lieberman , Control and function of arm swing in human walking and running . J. Exp. Biol. 212 , 523 – 534 ( 2009 ). 19181900 

  62. 62 Q. Liu , N. Aroonyadet , Y. Song , X. Wang , X. Cao , Y. Liu , S. Cong , F. Wu , M. E. Thompson , C. Zhou , Highly sensitive and quick detection of acute myocardial infarction biomarkers using In 2 O 3 nanoribbon biosensors fabricated using shadow masks . ACS Nano 10 , 10117 – 10125 ( 2016 ). 27934084 

  63. 63 N. Aroonyadet , X. Wang , Y. Song , H. Chen , R. J. Cote , M. E. Thompson , R. H. Datar , C. Zhou , Highly scalable, uniform, and sensitive biosensors based on top-down indium oxide nanoribbons and electronic enzyme-linked immunosorbent assay . Nano Lett. 15 , 1943 – 1951 ( 2015 ). 25636984 

  64. 64 S. Emaminejad , W. Gao , E. Wu , Z. A. Davies , H. Y. Y. Nyein , S. Challa , S. P. Ryan , H. M. Fahad , K. Chen , Z. Shahpar , S. Talebi , C. Milla , A. Javey , R. W. Davis , Autonomous sweat extraction and analysis applied to cystic fibrosis and glucose monitoring using a fully integrated wearable platform . Proc. Natl. Acad. Sci. U.S.A. 114 , 4625 – 4630 ( 2017 ). 28416667 

  65. 65 H. Lin , J. Tan , J. Zhu , S. Lin , Y. Zhao , W. Yu , H. Hojaiji , B. Wang , S. Yang , X. Cheng , Z. Wang , E. Tang , C. Yeung , S. Emaminejad , A programmable epidermal microfluidic valving system for wearable biofluid management and contextual biomarker analysis . Nat. Commun. 11 , 4405 ( 2020 ). 32879320 

  66. 66 H. Hojaiji , Y. Zhao , M. C. Gong , M. Mallajosyula , J. Tan , H. Lin , A. M. Hojaiji , S. Lin , C. Milla , A. M. Madni , S. Emaminejad , An autonomous wearable system for diurnal sweat biomarker data acquisition . Lab Chip 20 , 4582 – 4591 ( 2020 ). 33052990 

  67. 67 B. R. Baker , R. Y. Lai , M. S. Wood , E. H. Doctor , A. J. Heeger , K. W. Plaxco , An electronic, aptamer-based small-molecule sensor for the rapid, label-free detection of cocaine in adulterated samples and biological fluids . J. Am. Chem. Soc. 128 , 3138 – 3139 ( 2006 ). 16522082 

  68. 68 Y. Xiao , R. Y. Lai , K. W. Plaxco , Preparation of electrode-immobilized, redox-modified oligonucleotides for electrochemical DNA and aptamer-based sensing . Nat. Protoc. 2 , 2875 – 2880 ( 2007 ). 18007622 

  69. 69 S. Lin , W. Yu , B. Wang , Y. Zhao , K. En , J. Zhu , X. Cheng , C. Zhou , H. Lin , Z. Wang , H. Hojaiji , C. Yeung , C. Milla , R. W. Davis , S. Emaminejad , Noninvasive wearable electroactive pharmaceutical monitoring for personalized therapeutics . Proc. Natl. Acad. Sci. U.S.A. 117 , 19017 – 19025 ( 2020 ). 32719130 

  70. 70 P. Blanck , S. Perleth , T. Heidenreich , P. Kröger , B. Ditzen , H. Bents , J. Mander , Effects of mindfulness exercises as stand-alone intervention on symptoms of anxiety and depression: Systematic review and meta-analysis . Behav. Res. Ther. 102 , 25 – 35 ( 2018 ). 29291584 

  71. 71 A. Maijala , H. Kinnunen , H. Koskimäki , T. Jämsä , M. Kangas , Nocturnal finger skin temperature in menstrual cycle tracking: Ambulatory pilot study using a wearable Oura ring . BMC Womens Health 19 , 150 ( 2019 ). 31783840 

  72. 72 J. Hu , C. J. Easley , A simple and rapid approach for measurement of dissociation constants of DNA aptamers against proteins and small molecules via automated microchip electrophoresis . Analyst 136 , 3461 – 3468 ( 2011 ). 21293790 

  73. 73 A. Renaud de la Faverie , A. Guedin , A. Bedrat , L. A. Yatsunyk , J.-L. Mergny , Thioflavin T as a fluorescence light-up probe for G4 formation . Nucleic Acids Res. 42 , e65 ( 2014 ). 24510097 

  74. 74 M. S. Salahudeen , P. S. Nishtala , An overview of pharmacodynamic modelling, ligand-binding approach and its application in clinical practice . Saudi Pharm. J. 25 , 165 – 175 ( 2017 ). 28344466 

  75. 75 E. C. Hulme , M. A. Trevethick , Ligand binding assays at equilibrium: Validation and interpretation . Br. J. Pharmacol. 161 , 1219 – 1237 ( 2010 ). 20132208 

  76. 76 M. M. Van Eck , N. A. Nicolson , Perceived stress and salivary cortisol in daily life . Ann. Behav. Med. 16 , 221 – 227 ( 1994 ). 

  77. 77 Y. S. Shin , J. N. Liu , J.-H. Kim , Y.-H. Nam , G. S. Choi , H.-S. Park ; Premier Researchers Aiming New Era in Asthma and Allergic Diseases (PRANA) Study Group , The impact of asthma control on salivary cortisol level in adult asthmatics . Allergy Asthma Immunol. Res. 6 , 463 – 466 ( 2014 ). 25229005 

  78. 78 S. L. King , K. M. Hegadoren , Stress hormones: How do they measure up? Biol. Res. Nurs. 4 , 92 – 103 ( 2002 ). 12408215 

  79. 79 F. Elio , G. Antonelli , A. Benetazzo , M. Prearo , R. Gatti , Human saliva cortisone and cortisol simultaneous analysis using reverse phase HPLC technique . Clin. Chim. Acta 405 , 60 – 65 ( 2009 ). 19393639 

  80. 80 M. Moriarty , A. Lee , B. O’Connell , A. Kelleher , H. Keeley , A. Furey , Development of an LC-MS/MS method for the analysis of serotonin and related compounds in urine and the identification of a potential biomarker for attention deficit hyperactivity/hyperkinetic disorder . Anal. Bioanal. Chem. 401 , 2481 – 2493 ( 2011 ). 21866401 

  81. 81 R. Zhang , Y. Jia , A disposable printed liquid gate graphene field effect transistor for a salivary cortisol test . ACS Sens. 6 , 3024 – 3031 ( 2021 ). 34344148 

  82. 82 M. Ku , J. Kim , J.-E. Won , W. Kang , Y.-G. Park , J. Park , J.-H. Lee , J. Cheon , H. H. Lee , J.-U. Park , Smart, soft contact lens for wireless immunosensing of cortisol . Sci. Adv. 6 , eabb2891 ( 2020 ). 32923592 

  83. 83 N. K. Singh , S. Chung , M. Sveiven , D. A. Hall , Cortisol detection in undiluted human serum using a sensitive electrochemical structure-switching aptamer over an antifouling nanocomposite layer . ACS Omega 6 , 27888 – 27897 ( 2021 ). 34722988 

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로