$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

A Review of Electrochemical Cells with Geometrically Well-defined Interfaces for Solid Oxide Fuel Cell Anodes 원문보기

세라미스트 = Ceramist, v.24 no.4, 2021년, pp.344 - 355  

Choi, Yoonseok

Abstract AI-Helper 아이콘AI-Helper

A solid oxide fuel cell (SOFC) is a high-temperature (above 750℃) energy conversion device that generates electricity with high efficiency and low CO2 emission. It is essential to develop high-activity electrodes for its commercialization by lowering the operating temperature to below 700℃. Understa...

참고문헌 (44)

  1. 2004 

  2. Ceramic fuel-cells Minh 563 1993 

  3. Singhal 2003 

  4. Murray, E. Perry, Tsai, T., Barnett, S. A.. A direct-methane fuel cell with a ceria-based anode. Nature, vol.400, no.6745, 649-651.

  5. Park, Seungdoo, Vohs, John M., Gorte, Raymond J.. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, vol.404, no.6775, 265-267.

  6. McIntosh, S., Gorte, R. J.. Direct Hydrocarbon Solid Oxide Fuel Cells. Chemical reviews, vol.104, no.10, 4845-4866.

  7. Wachsman, Eric D., Lee, Kang Taek. Lowering the Temperature of Solid Oxide Fuel Cells. Science, vol.334, no.6058, 935-939.

  8. Van Gestel, Tim, Han, Feng, Sebold, Doris, Buchkremer, Hans Peter, Stöver, Detlev. Nano-structured solid oxide fuel cell design with superior power output at high and intermediate operation temperatures. Microsystem technologies : sensors, actuators, systems integration, vol.17, no.2, 233-242.

  9. Tailoring gadolinium-doped ceria-based solid oxide fuel cells to achieve 2Wcm-2 at 550 o C Lee 4045 2014 

  10. Lee, Kang Taek, Wachsman, Eric D.. Role of nanostructures on SOFC performance at reduced temperatures. MRS bulletin, vol.39, no.9, 783-791.

  11. Jung, WooChul, Tuller, Harry L.. A New Model Describing Solid Oxide Fuel Cell Cathode Kinetics: Model Thin Film SrTi1‐xFexO3‐δ Mixed Conducting Oxides-a Case Study. Advanced energy materials, vol.1, no.6, 1184-1191.

  12. Lai, Wei, Haile, Sossina M.. Impedance Spectroscopy as a Tool for Chemical and Electrochemical Analysis of Mixed Conductors: A Case Study of Ceria. Journal of the American Ceramic Society, vol.88, no.11, 2979-2997.

  13. Rossmeisl, J., Bessler, W.G.. Trends in catalytic activity for SOFC anode materials. Solid state ionics, vol.178, no.31, 1694-1700.

  14. Jacobson, Allan J.. Materials for Solid Oxide Fuel Cells. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.3, 660-674.

  15. Sun, Chunwen, Hui, Rob, Roller, Justin. Cathode materials for solid oxide fuel cells: a review. Journal of solid state electrochemistry : current research and development in science and technology, vol.14, no.7, 1125-1144.

  16. Chuang, Chih-Min, Wu, Ming-Chung, Huang, Yu-Ching, Cheng, Kuo-Chung, Lin, Ching-Fu, Chen, Yang-Fang, Su, Wei-Fang. Nanolithography made from water-based spin-coatable LSMO resist. Nanotechnology, vol.17, no.17, 4399-4404.

  17. Bessler, Wolfgang G., Vogler, Marcel, Störmer, Heike, Gerthsen, Dagmar, Utz, Annika, Weber, André, Ivers-Tiffée, Ellen. Model anodes and anode models for understanding the mechanism of hydrogen oxidation in solid oxide fuel cells. Physical chemistry chemical physics : PCCP, vol.12, no.42, 13888-13903.

  18. Yurkiv, V., Utz, A., Weber, A., Ivers-Tiffee, E., Volpp, H.R., Bessler, W.G.. Elementary kinetic modeling and experimental validation of electrochemical CO oxidation on Ni/YSZ pattern anodes. Electrochimica acta, vol.59, 573-580.

  19. Kinetic-studies of the reaction at the nickel pattern electrode on YSZ in H2-H2 O atmospheres Mizusaki 52 1994 

  20. Bieberle, A., Gauckler, L.J.. Reaction mechanism of Ni pattern anodes for solid oxide fuel cells. Solid state ionics, vol.135, no.1, 337-345.

  21. Bieberle, A., Meier, L. P., Gauckler, L. J.. The Electrochemistry of Ni Pattern Anodes Used as Solid Oxide Fuel Cell Model Electrodes. Journal of the Electrochemical Society : JES, vol.148, no.6, A646-.

  22. Vogler, Marcel, Bieberle-Hütter, Anja, Gauckler, Ludwig, Warnatz, Jürgen, Bessler, Wolfgang G.. Modelling Study of Surface Reactions, Diffusion, and Spillover at a Ni/YSZ Patterned Anode. Journal of the Electrochemical Society : JES, vol.156, no.5, B663-.

  23. Goodwin, David G., Zhu, Huayang, Colclasure, Andrew M., Kee, Robert J.. Modeling Electrochemical Oxidation of Hydrogen on Ni-YSZ Pattern Anodes. Journal of the Electrochemical Society : JES, vol.156, no.9, B1004-.

  24. Utz, A., Stormer, H., Gerthsen, D., Weber, A., Ivers-Tiffee, E.. Microstructure stability studies of Ni patterned anodes for SOFC. Solid state ionics, vol.192, no.1, 565-570.

  25. Yao, Weifang, Croiset, Eric. Stability and electrochemical performance of Ni/YSZ pattern anodes in H2/H2O atmosphere. The Canadian journal of chemical engineering, vol.93, no.12, 2157-2167.

  26. Liu, Z., Liu, B., Ding, D., Liu, M., Chen, F., Xia, C.. Fabrication and modification of solid oxide fuel cell anodes via wet impregnation/infiltration technique. Journal of power sources, vol.237, 243-259.

  27. Choi, Y., Brown, E.C., Haile, S.M., Jung, W.. Electrochemically modified, robust solid oxide fuel cell anode for direct-hydrocarbon utilization. Nano energy, vol.23, 161-171.

  28. Choi, Yoonseok, Kim, Jinwook, Seo, Han Gil, Tuller, Harry L., Jung, WooChul. Nucleation and growth kinetics of electrochemically deposited ceria nanostructures for high-temperature electrocatalysis. Electrochimica acta, vol.316, 273-282.

  29. Small polaron electron-transport in reduced CeO2 single-crystals Tuller 859 1977 

  30. Chueh, William C., Hao, Yong, Jung, WooChul, Haile, Sossina M.. High electrochemical activity of the oxide phase in model ceria??Pt and ceria??Ni composite anodes. Nature materials, vol.11, no.2, 155-161.

  31. Chen, Chi, Chen, Dengjie, Chueh, William C., Ciucci, Francesco. Modeling the impedance response of mixed-conducting thin film electrodes. Physical chemistry chemical physics : PCCP, vol.16, no.23, 11573-11583.

  32. Liu, Jiapeng, Ciucci, Francesco. Modeling the impedance spectra of mixed conducting thin films with exposed and embedded current collectors. Physical chemistry chemical physics : PCCP, vol.19, no.38, 26310-26321.

  33. Zhang, Chunjuan, Grass, Michael E., McDaniel, Anthony H., DeCaluwe, Steven C., Gabaly, Farid El, Liu, Zhi, McCarty, Kevin F., Farrow, Roger L., Linne, Mark A., Hussain, Zahid, Jackson, Gregory S., Bluhm, Hendrik, Eichhorn, Bryan W.. Measuring fundamental properties in operating solid oxide electrochemical cells by using in situ X-ray photoelectron spectroscopy. Nature materials, vol.9, no.11, 944-949.

  34. Feng, Zhuoluo A., El Gabaly, Farid, Ye, Xiaofei, Shen, Zhi-Xun, Chueh, William C.. Fast vacancy-mediated oxygen ion incorporation across the ceria–gas electrochemical interface. Nature communications, vol.5, 4374-.

  35. Feng, Zhuoluo A., Machala, Michael L., Chueh, William C.. Surface electrochemistry of CO2 reduction and CO oxidation on Sm-doped CeO2−x: coupling between Ce3+ and carbonate adsorbates. Physical chemistry chemical physics : PCCP, vol.17, no.18, 12273-12281.

  36. Choi, Yoonseok, Cha, Seung Keun, Ha, Hyunwoo, Lee, Siwon, Seo, Hyeon Kook, Lee, Jeong Yong, Kim, Hyun You, Kim, Sang Ouk, Jung, WooChul. Unravelling inherent electrocatalysis of mixed-conducting oxide activated by metal nanoparticle for fuel cell electrodes. Nature nanotechnology, vol.14, no.3, 245-251.

  37. Ge, Xiao‐Ming, Chan, Siew‐Hwa, Liu, Qing‐Lin, Sun, Qiang. Solid Oxide Fuel Cell Anode Materials for Direct Hydrocarbon Utilization. Advanced energy materials, vol.2, no.10, 1156-1181.

  38. Nenning, A., Opitz, A. K., Huber, T. M., Fleig, J.. A novel approach for analyzing electrochemical properties of mixed conducting solid oxide fuel cell anode materials by impedance spectroscopy. Physical chemistry chemical physics : PCCP, vol.16, no.40, 22321-22336.

  39. Nenning, Andreas, Volgger, Lukas, Miller, Elizabeth, Mogni, Liliana V., Barnett, Scott, Fleig, Jurgen. The Electrochemical Properties of Sr(Ti,Fe)O3-δ for Anodes in Solid Oxide Fuel Cells. Journal of the Electrochemical Society : JES, vol.164, no.4, F364-F371.

  40. In situ study of electrochemical activation and surface segregation of the SOFC electrode material La0.75 Sr0.25 Cr0.5 Mn0.5 O3-δ Huber 751 2012 

  41. Enhancing Electrochemical Water-Splitting Kinetics by Polarization-Driven Formation of Near-Surface Iron(0): An In Situ XPS Study on Perovskite-Type Electrodes Opitz 2628 2015 

  42. Ambient Pressure XPS Study of Mixed Conducting Perovskite-Type SOFC Cathode and Anode Materials under Well- Defined Electrochemical Polarization Nenning 1461 2016 

  43. Kim, Jun Kyu, Jo, Yong-Ryun, Kim, Seunghyun, Koo, Bonjae, Kim, Jun Hyuk, Kim, Bong-Joong, Jung, WooChul. Exceptional Tunability over Size and Density of Spontaneously Formed Nanoparticles via Nucleation Dynamics. ACS applied materials & interfaces, vol.12, no.21, 24039-24047.

  44. Kim, Jun Hyuk, Kim, Jun Kyu, Liu, Jiapeng, Curcio, Antonino, Jang, Ji-Soo, Kim, Il-Doo, Ciucci, Francesco, Jung, WooChul. Nanoparticle Ex-solution for Supported Catalysts: Materials Design, Mechanism and Future Perspectives. ACS nano, vol.15, no.1, 81-110.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로