$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Online monitoring of 3D printing of steel via optical emission spectroscopy

Materials testing : materials and components, technology and application, v.64 no.1, 2022년, pp.24 - 32  

Pignatelli, Giuseppe (BAM Federal Institute for Materials Research and Testing, Berlin, Germany) ,  Strasse, Anne (BAM Federal Institute for Materials Research and Testing, Berlin, Germany) ,  Gumenyuk, Andrey (BAM Federal Institute for Materials Research and Testing, Berlin, Germany) ,  Gornushkin, Igor

Abstract AI-Helper 아이콘AI-Helper

AbstractAdditive manufacturing by laser metal deposition (LMD) requires continuous online monitoring to ensure quality of printed parts. Optical emission spectroscopy (OES) is proposed for the online detection of printing defects by monitoring minute variations in the temperature of a printed spot d...

주제어

참고문헌 (18)

  1. [1] Additive manufacturing-general principles-terminology , ISO/ASTM Standard No. 52900, December 2015, Available: https://www.iso.org/standard/69669.html . Additive manufacturing-general principles-terminology ISO/ASTM Standard No. 52900 December 2015 Available: https://www.iso.org/standard/69669.html 

  2. [2] R. Kleer and F. T. Piller, “Local manufacturing and structural shifts in competition: market dynamics of additive manufacturing,” Int. J. Prod. Econ. , vol. 216, pp. 23-34, 2019, https://doi.org/10.1016/j.ijpe.2019.04.019 . Kleer R. Piller F. T. Local manufacturing and structural shifts in competition: market dynamics of additive manufacturing Int. J. Prod. Econ. 216 23 34 2019 https://doi.org/10.1016/j.ijpe.2019.04.019 

  3. [3] S. K. Everton, M. Hirsch, P. Stravroulakis, R. K. Leach, and A. T. Clare, “Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing,” Mater. Des. , vol. 95, pp. 431-445, 2016, https://doi.org/10.1016/j.matdes.2016.01.099 . Everton S. K. Hirsch M. Stravroulakis P. Leach R. K. Clare A. T. Review of in-situ process monitoring and in-situ metrology for metal additive manufacturing Mater. Des. 95 431 445 2016 https://doi.org/10.1016/j.matdes.2016.01.099 

  4. [4] A. Marko, J. Raute, D. Linaschke, B. Graf, and M. Rethmeier, “Porosity of LMD manufactured parts analyzed by Archimedes method and CT,” Mater. Test. , vol. 60, no. 11, pp. 1055-1060, 2018, https://doi.org/10.3139/120.111232 . Marko A. Raute J. Linaschke D. Graf B. Rethmeier M. Porosity of LMD manufactured parts analyzed by Archimedes method and CT Mater. Test. 60 11 1055 1060 2018 https://doi.org/10.3139/120.111232 

  5. [5] B. Dutton, W. Vesga, J. Waller, S. James, and M. Seifi, “Metal additive manufacturing defect formation and nondestructive evaluation detectability,” in Structural Integrity of Additive Manufactured Parts , N. Shamsaei, S. Daniewicz, N. Hrabe, S. Beretta, J. Waller, and M. Seifi, Eds., West Conshohocken, PA, ASTM International, 2020, pp. 1-50. Dutton B. Vesga W. Waller J. James S. Seifi M. Metal additive manufacturing defect formation and nondestructive evaluation detectability Structural Integrity of Additive Manufactured Parts Shamsaei N. Daniewicz S. Hrabe N. Beretta S. Waller J. Seifi M. West Conshohocken, PA ASTM International 2020 1 50 

  6. [6] T. Emel and O. O. Ojo, “Defects and post-manufacturing processes of additively manufactured steels: a review (part 2),” Mater. Test. , vol. 62, no. 8, pp. 835-848, 2020, https://doi.org/10.3139/120.111508 . Emel T. Ojo O. O. Defects and post-manufacturing processes of additively manufactured steels: a review (part 2) Mater. Test. 62 8 835 848 2020 https://doi.org/10.3139/120.111508 

  7. [7] N. Scheuschner, S. J. Altenburg, G. Pignatelli, et al.., “Comparison of the bead temperature measurements during additive manufacturing of metals via IR spectroscopy and thermography,” Tech. Mess. , vol. 88, no. 10, pp. 626-632, 2021 (in German), https://doi.org/10.1515/teme-2021-0056 . Scheuschner N. Altenburg S. J. Pignatelli G. Comparison of the bead temperature measurements during additive manufacturing of metals via IR spectroscopy and thermography Tech. Mess. 88 10 626 632 2021 (in German) https://doi.org/10.1515/teme-2021-0056 

  8. [8] T. Hua, C. Jing, L. Xin, Z. Fengying, and H. Weidong, “Research on molten pool temperature in the process of laser rapid forming,” J. Mater. Process. Technol. , vol. 198, nos. 1-3, pp. 454-462, 2008, https://doi.org/10.1016/j.jmatprotec.2007.06.090 . Hua T. Jing C. Xin L. Fengying Z. Weidong H. Research on molten pool temperature in the process of laser rapid forming J. Mater. Process. Technol. 198 1-3 454 462 2008 https://doi.org/10.1016/j.jmatprotec.2007.06.090 

  9. [9] M. L. Griffith, M. E. Schlienger, L. D. Harwell, et al.., “Understanding thermal behavior in the LENS process,” Mater. Des. , vol. 20, nos. 2-3, pp. 107-113, 1999, https://doi.org/10.1016/s0261-3069(99)00016-3 . Griffith M. L. Schlienger M. E. Harwell L. D. Understanding thermal behavior in the LENS process Mater. Des. 20 2-3 107 113 1999 https://doi.org/10.1016/s0261-3069(99)00016-3 

  10. [10] S. J. Altenburg, A. Straße, A. Gumenyuk, and C. Maierhofer, “In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography,” Quant. InfraRed Thermogr. J. , vol. 17, pp. 1-18, 2020, https://doi.org/10.1080/17686733.2020.1829889 . Altenburg S. J. Straße A. Gumenyuk A. Maierhofer C. In-situ monitoring of a laser metal deposition (LMD) process: comparison of MWIR, SWIR and high-speed NIR thermography Quant. InfraRed Thermogr. J. 17 1 18 2020 https://doi.org/10.1080/17686733.2020.1829889 

  11. [11] A. R. Nassar, T. J. Spurgeon, and E. W. Reutzel, “Sensing defects during directed-energy additive manufacturing of metal parts using optical emissions spectroscopy,” in 25th International Solid Freeform Fabrication Symposium , Austin, TX, USA, 2014. Nassar A. R. Spurgeon T. J. Reutzel E. W. Sensing defects during directed-energy additive manufacturing of metal parts using optical emissions spectroscopy 25th International Solid Freeform Fabrication Symposium Austin, TX, USA 2014 

  12. [12] L. Song, W. Huang, X. Han, and J. Mazumder, “Real-Time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing,” IEEE Trans. Ind. Electron. , vol. 64, no. 1, pp. 633-642, 2017, https://doi.org/10.1109/tie.2016.2608318 . Song L. Huang W. Han X. Mazumder J. Real-Time composition monitoring using support vector regression of laser-induced plasma for laser additive manufacturing IEEE Trans. Ind. Electron. 64 1 633 642 2017 https://doi.org/10.1109/tie.2016.2608318 

  13. [13] C. B. Stutzman, A. R. Nassar, and E. W. Reutzel, “Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality,” Addit. Manuf. , vol. 21, pp. 333-339, 2018, https://doi.org/10.1016/j.addma.2018.03.017 . Stutzman C. B. Nassar A. R. Reutzel E. W. Multi-sensor investigations of optical emissions and their relations to directed energy deposition processes and quality Addit. Manuf. 21 333 339 2018 https://doi.org/10.1016/j.addma.2018.03.017 

  14. [14] K. Bartkowiak, “Direct laser deposition process within spectrographic analysis in situ,” Phys. Proc. , vol. 5, pp. 623-629, 2010, https://doi.org/10.1016/j.phpro.2010.08.090 . Bartkowiak K. Direct laser deposition process within spectrographic analysis in situ Phys. Proc. 5 623 629 2010 https://doi.org/10.1016/j.phpro.2010.08.090 

  15. [15] A. Kisielewicz, E. Sadeghi, F. Sikstrom, A.-K. Christiansson, G. Palumbo, and A. Ancona, “In-process spectroscopic detection of chromium loss during directed energy deposition of alloy 718,” Mater. Des. , vol. 186, pp. 1-9, 2020, https://doi.org/10.1016/j.matdes.2019.108317 . Kisielewicz A. Sadeghi E. Sikstrom F. Christiansson A.-K. Palumbo G. Ancona A. In-process spectroscopic detection of chromium loss during directed energy deposition of alloy 718 Mater. Des. 186 1 9 2020 https://doi.org/10.1016/j.matdes.2019.108317 

  16. [16] W. Ren, Z. Zhang, Y. Lu, G. Wen, and J. Mazumder, “In-situ monitoring of laser additive manufacturing for al7075 alloy using emission spectroscopy and plume imaging,” IEEE Access , vol. 9, pp. 61671-61679, 2021, https://doi.org/10.1109/access.2021.3074703 . Ren W. Zhang Z. Lu Y. Wen G. Mazumder J. In-situ monitoring of laser additive manufacturing for al7075 alloy using emission spectroscopy and plume imaging IEEE Access 9 61671 61679 2021 https://doi.org/10.1109/access.2021.3074703 

  17. [17] J. R. Taylor, Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements , California, USA, University Science Books, Mill Valley, 1997. Taylor J. R. Introduction to Error Analysis: The Study of Uncertainties in Physical Measurements California, USA University Science Books, Mill Valley 1997 

  18. [18] I. Gornushkin, G. Pignatelli, and A. Straße, “Optical detection of defects during laser metal deposition: simulations and Experiment,” Appl. Surf. Sci. , vol. 570, pp. 151-214, 2021, https://doi.org/10.1016/j.apsusc.2021.151214 . Gornushkin I. Pignatelli G. Straße A. Optical detection of defects during laser metal deposition: simulations and Experiment Appl. Surf. Sci. 570 151 214 2021 https://doi.org/10.1016/j.apsusc.2021.151214 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로