$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The Administration of Panax Ginseng Berry Extract Attenuates High-Fat-Diet-Induced Sarcopenic Obesity in C57BL/6 Mice 원문보기

Nutrients, v.14 no.9, 2022년, pp.1747 -   

Shin, Ji-Eun (Department of Life and Nanopharmaceutical Sciences, Graduate School, Kyung Hee University, Seoul 02447, Korea) ,  Jeon, So-Hyun (cindy@khu.ac.kr) ,  Lee, Sang-Jun (Department of Biomedical and Pharmaceutical Sciences, Graduate School, Kyung Hee University, 26, Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Korea) ,  Choung, Se-Young (yrs02223@daum.net)

Abstract AI-Helper 아이콘AI-Helper

Sarcopenia and obesity are serious health problems that are highly related to several metabolic diseases. Sarcopenic obesity, a combined state of sarcopenia and obesity, results in higher risks of metabolic diseases and even mortality than sarcopenia or obesity alone. Therefore, the development of t...

주제어

참고문헌 (44)

  1. 1. Kalinkovich A. Livshits G. Sarcopenic obesity or obese sarcopenia: A cross talk between age-associated adipose tissue and skeletal muscle inflammation as a main mechanism of the pathogenesis Ageing Res. Rev. 2017 35 200 221 10.1016/j.arr.2016.09.008 27702700 

  2. 2. Blüher M. Obesity: Global epidemiology and pathogenesis Nat. Rev. Endocrinol. 2019 15 288 298 10.1038/s41574-019-0176-8 30814686 

  3. 3. Wannamethee S.G. Atkins J.L. Muscle loss and obesity: The health implications of sarcopenia and sarcopenic obesity Proc. Nutr. Soc. 2015 74 405 412 10.1017/S002966511500169X 25913270 

  4. 4. Choi K.M. Sarcopenia and sarcopenic obesity Korean J. Intern. Med. 2016 31 1054 10.3904/kjim.2016.193 27809450 

  5. 5. Zamboni M. Rubele S. Rossi A.P. Sarcopenia and obesity Curr. Opin. Clin. Nutr. Metab. Care 2019 22 13 19 10.1097/MCO.0000000000000519 30461451 

  6. 6. Tumova J. Andel M. Trnka J. Excess of free fatty acids as a cause of metabolic dysfunction in skeletal muscle Physiol. Res. 2016 65 193 10.33549/physiolres.932993 26447514 

  7. 7. Kitessa S.M. Abeywardena M.Y. Lipid-induced insulin resistance in skeletal muscle: The chase for the culprit goes from total intramuscular fat to lipid intermediates, and finally to species of lipid intermediates Nutrients 2016 8 466 10.3390/nu8080466 

  8. 8. Schmitz-Peiffer C. Biden T.J. Protein kinase C function in muscle, liver, and β-cells and its therapeutic implications for type 2 diabetes Diabetes 2008 57 1774 1783 10.2337/db07-1769 18586909 

  9. 9. Morino K. Petersen K.F. Shulman G.I. Molecular mechanisms of insulin resistance in humans and their potential links with mitochondrial dysfunction Diabetes 2006 55 S9 S15 10.2337/db06-S002 17130651 

  10. 10. Lipina C. Hundal H.S. Lipid modulation of skeletal muscle mass and function J. Cachexia Sarcopenia Muscle 2017 8 190 201 10.1002/jcsm.12144 27897400 

  11. 11. Galadari S. Rahman A. Pallichankandy S. Galadari A. Thayyullathil F. Role of ceramide in diabetes mellitus: Evidence and mechanisms Lipids Health Dis. 2013 12 98 10.1186/1476-511X-12-98 23835113 

  12. 12. Glass D.J. Skeletal muscle hypertrophy and atrophy signaling pathways Int. J. Biochem. Cell Biol. 2005 37 1974 1984 10.1016/j.biocel.2005.04.018 16087388 

  13. 13. Vainshtein A. Sandri M. Signaling pathways that control muscle mass Int. J. Mol. Sci. 2020 21 4759 10.3390/ijms21134759 32635462 

  14. 14. Palomer X. Pizarro-Delgado J. Barroso E. Vázquez-Carrera M. Palmitic and oleic acid: The yin and yang of fatty acids in type 2 diabetes mellitus Trends Endocrinol. Metab. 2018 29 178 190 10.1016/j.tem.2017.11.009 29290500 

  15. 15. Shou J. Chen P.-J. Xiao W.-H. Mechanism of increased risk of insulin resistance in aging skeletal muscle Diabetol. Metab. Syndr. 2020 12 14 10.1186/s13098-020-0523-x 32082422 

  16. 16. Helms S. Cancer prevention and therapeutics: Panax ginseng Altern. Med. Rev. 2004 9 259 274 15387718 

  17. 17. Lee H.J. Lee Y.-H. Park S.K. Kang E.S. Kim H.-J. Lee Y.C. Choi C.S. Park S.E. Ahn C.W. Cha B.-S. Korean red ginseng ( Panax ginseng ) improves insulin sensitivity and attenuates the development of diabetes in Otsuka Long-Evans Tokushima fatty rats Metabolism 2009 58 1170 1177 10.1016/j.metabol.2009.03.015 19477471 

  18. 18. Kim D.Y. Yang W.M. Panax ginseng ameliorates airway inflammation in an ovalbumin-sensitized mouse allergic asthma model J. Ethnopharmacol. 2011 136 230 235 10.1016/j.jep.2011.04.048 21549818 

  19. 19. Li Z. Ji G.E. Ginseng and obesity J. Ginseng Res. 2018 42 1 8 10.1016/j.jgr.2016.12.005 29348715 

  20. 20. Sun S. Qi L.-W. Du G.-J. Mehendale S.R. Wang C.-Z. Yuan C.-S. Red notoginseng: Higher ginsenoside content and stronger anticancer potential than Asian and American ginseng Food Chem. 2011 125 1299 1305 10.1016/j.foodchem.2010.10.049 21344064 

  21. 21. Cho W.C. Chung W.-S. Lee S.K. Leung A.W. Cheng C.H. Yue K.K. Ginsenoside Re of Panax ginseng possesses significant antioxidant and antihyperlipidemic efficacies in streptozotocin-induced diabetic rats Eur. J. Pharmacol. 2006 550 173 179 10.1016/j.ejphar.2006.08.056 17027742 

  22. 22. Kim J.H. Yi Y.-S. Kim M.-Y. Cho J.Y. Role of ginsenosides, the main active components of Panax ginseng, in inflammatory responses and diseases J. Ginseng Res. 2017 41 435 443 10.1016/j.jgr.2016.08.004 29021688 

  23. 23. Kim C.-K. Cho D.H. Lee K.-S. Lee D.-K. Park C.-W. Kim W.G. Lee S.J. Ha K.-S. Taeg O.G. Kwon Y.-G. Ginseng berry extract prevents atherogenesis via anti-inflammatory action by upregulating phase II gene expression Evid.-Based Complementary Altern. Med. 2012 2012 490301 10.1155/2012/490301 

  24. 24. Kim Y.K. Yoo D.S. Xu H. Park N.I. Kim H.H. Choi J.E. Park S.U. Ginsenoside content of berries and roots of three typical Korean ginseng ( Panax ginseng ) cultivars Nat. Prod. Commun. 2009 4 1934578X0900400704 10.1177/1934578X0900400704 

  25. 25. Cho K.S. Park C.W. Kim C.-K. Jeon H.Y. Kim W.G. Lee S.J. Kim Y. Lee J. Choi Y. Effects of Korean ginseng berry extract (GB0710) on penile erection: Evidence from in vitro and in vivo studies Asian J. Androl. 2013 15 503 10.1038/aja.2013.49 23708462 

  26. 26. Xie J. Zhou Y.-P. Dey L. Attele A. Wu J. Gu M. Polonsky K. Yuan C.-S. Ginseng berry reduces blood glucose and body weight in db/db mice Phytomedicine 2002 9 254 258 10.1078/0944-7113-00106 12046868 

  27. 27. Attele A.S. Zhou Y.-P. Xie J.-T. Wu J.A. Zhang L. Dey L. Pugh W. Rue P.A. Polonsky K.S. Yuan C.-S. Antidiabetic effects of Panax ginseng berry extract and the identification of an effective component Diabetes 2002 51 1851 1858 10.2337/diabetes.51.6.1851 12031973 

  28. 28. Seo E. Kim S. Lee S.J. Oh B.-C. Jun H.-S. Ginseng berry extract supplementation improves age-related decline of insulin signaling in mice Nutrients 2015 7 3038 3053 10.3390/nu7043038 25912041 

  29. 29. Chae H.-S. You B.H. Choi J. Chin Y.-W. Kim H. Choi H.S. Choi Y.H. Ginseng berry extract enhances metformin efficacy against obesity and hepatic steatosis in mice fed high-fat diet through increase of metformin uptake in liver J. Funct. Foods 2019 62 103551 10.1016/j.jff.2019.103551 

  30. 30. Witteveen E. Hoogland I.C. Wieske L. Weber N.C. Verhamme C. Schultz M.J. Van Schaik I.N. Horn J. Assessment of intensive care unit-acquired weakness in young and old mice: An E. coli septic peritonitis model Muscle Nerve 2016 53 127 133 10.1002/mus.24711 26015329 

  31. 31. Lee M.R. Kim J.E. Choi J.Y. Park J.J. Kim H.R. Song B.R. Choi Y.W. Kim K.M. Song H. Hwang D.Y. Anti-obesity effect in high-fat-diet-induced obese C57BL/6 mice: Study of a novel extract from mulberry (Morus alba) leaves fermented with Cordyceps militaris Exp. Ther. Med. 2019 17 2185 2193 10.3892/etm.2019.7191 30867704 

  32. 32. Peng Y. Sun Q. Xu W. He Y. Jin W. Yuan L. Gao R. Vitexin ameliorates high fat diet-induced obesity in male C57BL/6J mice via the AMPKα-mediated pathway Food Funct. 2019 10 1940 1947 10.1039/C9FO00148D 30874277 

  33. 33. Tong T. Kim M. Park T. α-Ionone attenuates high-fat diet-induced skeletal muscle wasting in mice via activation of cAMP signaling Food Funct. 2019 10 1167 1178 10.1039/C8FO01992D 30734800 

  34. 34. Yoo A. Jang Y.J. Ahn J. Jung C.H. Seo H.D. Ha T.Y. Chrysanthemi Zawadskii var. Latilobum Attenuates Obesity-Induced Skeletal Muscle Atrophy via Regulation of PRMTs in Skeletal Muscle of Mice Int. J. Mol. Sci. 2020 21 2811 10.3390/ijms21082811 

  35. 35. Gheibi S. Kashfi K. Ghasemi A. A practical guide for induction of type-2 diabetes in rat: Incorporating a high-fat diet and streptozotocin Biomed. Pharmacother. 2017 95 605 613 10.1016/j.biopha.2017.08.098 28881291 

  36. 36. Han D.-H. Kim S.H. Higashida K. Jung S.-R. Polonsky K.S. Klein S. Holloszy J.O. Ginsenoside Re rapidly reverses insulin resistance in muscles of high-fat diet fed rats Metabolism 2012 61 1615 1621 10.1016/j.metabol.2012.04.008 22571876 

  37. 37. Li F. Li X. Peng X. Sun L. Jia S. Wang P. Ma S. Zhao H. Yu Q. Huo H. Ginsenoside Rg1 prevents starvation-induced muscle protein degradation via regulation of AKT/mTOR/FoxO signaling in C2C12 myotubes Exp. Ther. Med. 2017 14 1241 1247 10.3892/etm.2017.4615 28781621 

  38. 38. Kandarian S.C. Jackman R.W. Intracellular signaling during skeletal muscle atrophy Muscle Nerve 2006 33 155 165 10.1002/mus.20442 16228971 

  39. 39. Argadine H.M. Mantilla C.B. Zhan W.-Z. Sieck G.C. Intracellular signaling pathways regulating net protein balance following diaphragm muscle denervation Am. J. Physiol.-Cell Physiol. 2011 300 C318 C327 10.1152/ajpcell.00172.2010 21084642 

  40. 40. Schiaffino S. Mammucari C. Regulation of skeletal muscle growth by the IGF1-Akt/PKB pathway: Insights from genetic models Skelet. Muscle 2011 1 4 10.1186/2044-5040-1-4 21798082 

  41. 41. Kang S.-H. Lee H.-A. Kim M. Lee E. Sohn U.D. Kim I. Forkhead box O3 plays a role in skeletal muscle atrophy through expression of E3 ubiquitin ligases MuRF-1 and atrogin-1 in Cushing’s syndrome Am. J. Physiol.-Endocrinol. Metab. 2017 312 E495 E507 10.1152/ajpendo.00389.2016 28246104 

  42. 42. Zhu S. Tian Z. Torigoe D. Zhao J. Xie P. Sugizaki T. Sato M. Horiguchi H. Terada K. Kadomatsu T. Aging-and obesity-related peri-muscular adipose tissue accelerates muscle atrophy PLoS ONE 2019 14 0221366 10.1371/journal.pone.0221366 

  43. 43. Gregor M.F. Hotamisligil G.S. Inflammatory mechanisms in obesity Annu. Rev. Immunol. 2011 29 415 445 10.1146/annurev-immunol-031210-101322 21219177 

  44. 44. Pellegrinelli V. Rouault C. Rodriguez-Cuenca S. Albert V. Edom-Vovard F. Vidal-Puig A. Clément K. Butler-Browne G.S. Lacasa D. Human adipocytes induce inflammation and atrophy in muscle cells during obesity Diabetes 2015 64 3121 3134 10.2337/db14-0796 25695947 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로