최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nanophotonics, v.11 no.11, 2022년, pp.2737 - 2762
Cho, Donghwi , Chen, Haomin , Shin, Jonghwa , Jeon, Seokwoo
AbstractSmart chromatic materials with optical transmittances that can be modified by light scattering upon external stimuli are attracting extensive interest because of their appealing applications in smart windows, privacy protection, electronic displays, etc. However, the development of these sca...
[1] H. C. van de Hulst, Light Scattering by Small Particles , New York, Dover Publications, 1981. Hulst H. C. van de Light Scattering by Small Particles New York Dover Publications 1981
[2] B.-K. Hsiung, M. D. Shawkey, and T. A. Blackledge, “Color production mechanisms in spiders,” J. Arachnol. , vol. 47, pp. 165-180, 2019, https://doi.org/10.1636/joa-s-18-022 . Hsiung B.-K. Shawkey M. D. Blackledge T. A. Color production mechanisms in spiders J. Arachnol. 47 165 180 2019 https://doi.org/10.1636/joa-s-18-022
[3] S. Tadepalli, J. M. Slocik, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Bio-optics and bio-inspired optical materials,” Chem. Rev. , vol. 117, pp. 12705-12763, 2017, https://doi.org/10.1021/acs.chemrev.7b00153 . Tadepalli S. Slocik J. M. Gupta M. K. Naik R. R. Singamaneni S. Bio-optics and bio-inspired optical materials Chem. Rev. 117 12705 12763 2017 https://doi.org/10.1021/acs.chemrev.7b00153
[4] M. Yang, W. Zou, J. Guo, et al.., “Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling,” ACS Appl. Mater. Interfaces , vol. 12, pp. 25286-25293, 2020, https://doi.org/10.1021/acsami.0c03897 . Yang M. Zou W. Guo J. Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling ACS Appl. Mater. Interfaces 12 25286 25293 2020 https://doi.org/10.1021/acsami.0c03897
[5] S. Johnsen, “Hidden in plain sight: the ecology and physiology of organismal transparency,” Biol. Bull. , vol. 201, pp. 301-318, 2001, https://doi.org/10.2307/1543609 . Johnsen S. Hidden in plain sight: the ecology and physiology of organismal transparency Biol. Bull. 201 301 318 2001 https://doi.org/10.2307/1543609
[6] R. L. Morrison, W. C. Sherbrooke, and S. K. Frost-Mason, “Temperature-sensitive, physiologically active iridophores in the lizard Urosaurus ornatus: an ultrastructural analysis of color change,” Copeia , vol. 1996, pp. 804-812, 1996, https://doi.org/10.2307/1447641 . Morrison R. L. Sherbrooke W. C. Frost-Mason S. K. Temperature-sensitive, physiologically active iridophores in the lizard Urosaurus ornatus: an ultrastructural analysis of color change Copeia 1996 804 812 1996 https://doi.org/10.2307/1447641
[7] G. S. Oxford and R. G. Gillespie, “Evolution and ecology of spider coloration,” Annu. Rev. Entomol. , vol. 43, pp. 619-643, 1998, https://doi.org/10.1146/annurev.ento.43.1.619 . Oxford G. S. Gillespie R. G. Evolution and ecology of spider coloration Annu. Rev. Entomol. 43 619 643 1998 https://doi.org/10.1146/annurev.ento.43.1.619
[8] Y. Ke, J. Chen, G. Lin, et al.., “Smart windows: electro‐, thermo‐, mechano‐, photochromics, and beyond,” Adv. Energy Mater. , vol. 9, p. 1902066, 2019, https://doi.org/10.1002/aenm.201902066 . Ke Y. Chen J. Lin G. Smart windows: electro‐, thermo‐, mechano‐, photochromics, and beyond Adv. Energy Mater. 9 1902066 2019 https://doi.org/10.1002/aenm.201902066
[9] A. Azam, J. Kim, J. Park, et al.., “Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices,” Nano Lett. , vol. 18, pp. 5646-5651, 2018, https://doi.org/10.1021/acs.nanolett.8b02150 . Azam A. Kim J. Park J. Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices Nano Lett. 18 5646 5651 2018 https://doi.org/10.1021/acs.nanolett.8b02150
[10] A. Azens and C. Granqvist, “Electrochromic smart windows: energy efficiency and device aspects,” J. Solid State Electrochem. , vol. 7, pp. 64-68, 2003, https://doi.org/10.1007/s10008-002-0313-4 . Azens A. Granqvist C. Electrochromic smart windows: energy efficiency and device aspects J. Solid State Electrochem. 7 64 68 2003 https://doi.org/10.1007/s10008-002-0313-4
[11] Y. Cui, Y. Ke, C. Liu, et al.., “Thermochromic VO2 for energy-efficient smart windows,” Joule , vol. 2, pp. 1707-1746, 2018, https://doi.org/10.1016/j.joule.2018.06.018 . Cui Y. Ke Y. Liu C. Thermochromic VO2 for energy-efficient smart windows Joule 2 1707 1746 2018 https://doi.org/10.1016/j.joule.2018.06.018
[12] S. Wang, M. Liu, L. Kong, Y. Long, X. Jiang, and A. Yu, “Recent progress in VO2 smart coatings: strategies to improve the thermochromic properties,” Prog. Mater. Sci. , vol. 81, pp. 1-54, 2016, https://doi.org/10.1016/j.pmatsci.2016.03.001 . Wang S. Liu M. Kong L. Long Y. Jiang X. Yu A. Recent progress in VO2 smart coatings: strategies to improve the thermochromic properties Prog. Mater. Sci. 81 1 54 2016 https://doi.org/10.1016/j.pmatsci.2016.03.001
[13] Y. Ke, C. Zhou, Y. Zhou, S. Wang, S. H. Chan, and Y. Long, “Emerging thermal‐responsive materials and integrated techniques targeting the energy‐efficient smart window application,” Adv. Funct. Mater. , vol. 28, p. 1800113, 2018, https://doi.org/10.1002/adfm.201800113 . Ke Y. Zhou C. Zhou Y. Wang S. Chan S. H. Long Y. Emerging thermal‐responsive materials and integrated techniques targeting the energy‐efficient smart window application Adv. Funct. Mater. 28 1800113 2018 https://doi.org/10.1002/adfm.201800113
[14] R. Pardo, M. Zayat, and D. Levy, “Photochromic organic-inorganic hybrid materials,” Chem. Soc. Rev. , vol. 40, pp. 672-687, 2011, https://doi.org/10.1039/c0cs00065e . Pardo R. Zayat M. Levy D. Photochromic organic-inorganic hybrid materials Chem. Soc. Rev. 40 672 687 2011 https://doi.org/10.1039/c0cs00065e
[15] V. I. Minkin, “Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds,” Chem. Rev. , vol. 104, pp. 2751-2776, 2004, https://doi.org/10.1021/cr020088u . Minkin V. I. Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds Chem. Rev. 104 2751 2776 2004 https://doi.org/10.1021/cr020088u
[16] H. Li, S. Pu, G. Liu, and B. Chen, “Photochromism of new diarylethene derivatives based on the hybrid photochromic skeleton of benzofuran and benzene moieties,” Dyes Pigments , vol. 101, pp. 15-24, 2014, https://doi.org/10.1016/j.dyepig.2013.09.026 . Li H. Pu S. Liu G. Chen B. Photochromism of new diarylethene derivatives based on the hybrid photochromic skeleton of benzofuran and benzene moieties Dyes Pigments 101 15 24 2014 https://doi.org/10.1016/j.dyepig.2013.09.026
[17] D. Cho, Y. S. Shim, J. W. Jung, et al.., “High‐contrast optical modulation from strain‐induced nanogaps at 3D heterogeneous interfaces,” Adv. Sci. , vol. 7, p. 1903708, 2020, https://doi.org/10.1002/advs.201903708 . Cho D. Shim Y. S. Jung J. W. High‐contrast optical modulation from strain‐induced nanogaps at 3D heterogeneous interfaces Adv. Sci. 7 1903708 2020 https://doi.org/10.1002/advs.201903708
[18] B. Jiang, L. Liu, Z. Gao, and W. Wang, “A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance,” Adv. Opt. Mater. , vol. 6, p. 1800195, 2018, https://doi.org/10.1002/adom.201800195 . Jiang B. Liu L. Gao Z. Wang W. A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance Adv. Opt. Mater. 6 1800195 2018 https://doi.org/10.1002/adom.201800195
[19] J. B. Pollack and J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. , vol. 37, pp. 868-881, 1980, https://doi.org/10.1175/1520-0469(1980)037<0868:sbnpos>2.0.co;2 . Pollack J. B. Cuzzi J. N. Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols J. Atmos. Sci. 37 868 881 1980 https://doi.org/10.1175/1520-0469(1980)037<0868:sbnpos>2.0.co;2
[20] E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles , New York, John Wiley and Sons, Inc., 1976. McCartney E. J. Optics of the Atmosphere: Scattering by Molecules and Particles New York John Wiley and Sons, Inc. 1976
[21] Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. , vol. 124, pp. 529-541, 1996, https://doi.org/10.1016/0030-4018(95)00753-9 . Harada Y. Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime Opt. Commun. 124 529 541 1996 https://doi.org/10.1016/0030-4018(95)00753-9
[22] W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. , vol. 19, pp. 1505-1509, 1980, https://doi.org/10.1364/ao.19.001505 . Wiscombe W. J. Improved Mie scattering algorithms Appl. Opt. 19 1505 1509 1980 https://doi.org/10.1364/ao.19.001505
[23] W. Mundy, J. Roux, and A. Smith, “Mie scattering by spheres in an absorbing medium,” JOSA , vol. 64, pp. 1593-1597, 1974, https://doi.org/10.1364/josa.64.001593 . Mundy W. Roux J. Smith A. Mie scattering by spheres in an absorbing medium JOSA 64 1593 1597 1974 https://doi.org/10.1364/josa.64.001593
[24] M. Retsch, M. Schmelzeisen, H.-J. R. Butt, and E. L. Thomas, “Visible Mie scattering in nonabsorbing hollow sphere powders,” Nano Lett. , vol. 11, pp. 1389-1394, 2011, https://doi.org/10.1021/nl2002445 . Retsch M. Schmelzeisen M. Butt H.-J. R. Thomas E. L. Visible Mie scattering in nonabsorbing hollow sphere powders Nano Lett. 11 1389 1394 2011 https://doi.org/10.1021/nl2002445
[25] I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem. , vol. 21, pp. 532-538, 2011, https://doi.org/10.1039/c0jm02606a . Yu I. G. Kim Y. J. Kim H. J. Lee C. Lee W. I. Size-dependent light-scattering effects of nanoporous TiO 2 spheres in dye-sensitized solar cells J. Mater. Chem. 21 532 538 2011 https://doi.org/10.1039/c0jm02606a
[26] S. Stuke, Characterizing Thin Clouds Using Aerosol Optical Depth Information , Innsbruck, University of Innsbruck, 2016. Stuke S. Characterizing Thin Clouds Using Aerosol Optical Depth Information Innsbruck University of Innsbruck 2016
[27] M. Casini, “Active dynamic windows for buildings: a review,” Renew. Energy , vol. 119, pp. 923-934, 2018, https://doi.org/10.1016/j.renene.2017.12.049 . Casini M. Active dynamic windows for buildings: a review Renew. Energy 119 923 934 2018 https://doi.org/10.1016/j.renene.2017.12.049
[28] H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared regulating smart window based on organic materials,” Adv. Energy Mater. , vol. 7, p. 1602209, 2017, https://doi.org/10.1002/aenm.201602209 . Khandelwal H. Schenning A. P. H. J. Debije M. G. Infrared regulating smart window based on organic materials Adv. Energy Mater. 7 1602209 2017 https://doi.org/10.1002/aenm.201602209
[29] G. Cai, J. Wang, and P. S. Lee, “Next-generation multifunctional electrochromic devices,” Acc. Chem. Res. , vol. 49, pp. 1469-1476, 2016, https://doi.org/10.1021/acs.accounts.6b00183 . Cai G. Wang J. Lee P. S. Next-generation multifunctional electrochromic devices Acc. Chem. Res. 49 1469 1476 2016 https://doi.org/10.1021/acs.accounts.6b00183
[30] H.-N. Kim and S. Yang, “Responsive smart windows from nanoparticle-polymer composites,” Adv. Funct. Mater. , vol. 30, p. 1902597, 2020, https://doi.org/10.1002/adfm.201902597 . Kim H.-N. Yang S. Responsive smart windows from nanoparticle-polymer composites Adv. Funct. Mater. 30 1902597 2020 https://doi.org/10.1002/adfm.201902597
[31] Y. Zhou, X. Dong, Y. Mi, et al.., “Hydrogel smart windows,” J. Mater. Chem. A , vol. 8, pp. 10007-10025, 2020, https://doi.org/10.1039/d0ta00849d . Zhou Y. Dong X. Mi Y. Hydrogel smart windows J. Mater. Chem. A 8 10007 10025 2020 https://doi.org/10.1039/d0ta00849d
[32] S. Zeng, D. Zhang, W. Huang, et al.., “Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds,” Nat. Commun. , vol. 7, p. 11802, 2016, https://doi.org/10.1038/ncomms11802 . Zeng S. Zhang D. Huang W. Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds Nat. Commun. 7 11802 2016 https://doi.org/10.1038/ncomms11802
[33] S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. , vol. 22, pp. 5013-5017, 2010, https://doi.org/10.1002/adma.201002320 . Lee S. G. Lee D. Y. Lim H. S. Lee D. H. Lee S. Cho K. Switchable transparency and wetting of elastomeric smart windows Adv. Mater. 22 5013 5017 2010 https://doi.org/10.1002/adma.201002320
[34] D. Cho, J.-S. Jang, S.-H. Nam, et al.., “Focused electric-field polymer writing: toward ultralarge, multistimuli-responsive membranes,” ACS Nano , vol. 14, pp. 12173-12183, 2020, https://doi.org/10.1021/acsnano.0c05843 . Cho D. Jang J.-S. Nam S.-H. Focused electric-field polymer writing: toward ultralarge, multistimuli-responsive membranes ACS Nano 14 12173 12183 2020 https://doi.org/10.1021/acsnano.0c05843
[35] C. M. Stafford, C. Harrison, A. Karim, and E. J. Amis, “Measuring modulus of gradient polymer films by strain-induced buckling instabilities,” Polym. Preprint. , vol. 43, 2002. Stafford C. M. Harrison C. Karim A. Amis E. J. Measuring modulus of gradient polymer films by strain-induced buckling instabilities Polym. Preprint. 43 2002
[36] W. Peng and H. Wu, “Flexible and stretchable photonic sensors based on modulation of light transmission,” Adv. Opt. Mater. , vol. 7, p. 1900329, 2019, https://doi.org/10.1002/adom.201900329 . Peng W. Wu H. Flexible and stretchable photonic sensors based on modulation of light transmission Adv. Opt. Mater. 7 1900329 2019 https://doi.org/10.1002/adom.201900329
[37] H. Zhang, D. Liu, J.-H. Lee, et al.., “Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors,” Nano-Micro Lett. , vol. 13, p. 122, 2021, https://doi.org/10.1007/s40820-021-00615-5 . Zhang H. Liu D. Lee J.-H. Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors Nano-Micro Lett. 13 122 2021 https://doi.org/10.1007/s40820-021-00615-5
[38] F. Zhang, P.-C. Ma, J. Wang, et al.., “Anisotropic conductive networks for multidimensional sensing,” Mater. Horiz. , vol. 8, pp. 2615-2653, 2021, https://doi.org/10.1039/D1MH00615K . Zhang F. Ma P.-C. Wang J. Anisotropic conductive networks for multidimensional sensing Mater. Horiz. 8 2615 2653 2021 https://doi.org/10.1039/D1MH00615K
[39] Q. Zheng, J.-H. Lee, X. Shen, X. Chen, and J.-K. Kim, “Graphene-based wearable piezoresistive physical sensors,” Mater. Today , vol. 36, pp. 158-179, 2020, https://doi.org/10.1016/j.mattod.2019.12.004 . Zheng Q. Lee J.-H. Shen X. Chen X. Kim J.-K. Graphene-based wearable piezoresistive physical sensors Mater. Today 36 158 179 2020 https://doi.org/10.1016/j.mattod.2019.12.004
[40] S. Yeom, H. Kim, K. Kim, et al.., “Surface wrinkle formation by liquid crystalline polymers for significant light extraction enhancement on quantum dot light-emitting diodes,” Opt. Express , vol. 28, pp. 26519-26530, 2020, https://doi.org/10.1364/oe.401328 . Yeom S. Kim H. Kim K. Surface wrinkle formation by liquid crystalline polymers for significant light extraction enhancement on quantum dot light-emitting diodes Opt. Express 28 26519 26530 2020 https://doi.org/10.1364/oe.401328
[41] F. Li, H. Hou, J. Yin, and X. Jiang, “Near-infrared light-responsive dynamic wrinkle patterns,” Sci. Adv. , vol. 4, p. eaar5762, 2018, https://doi.org/10.1126/sciadv.aar5762 . Li F. Hou H. Yin J. Jiang X. Near-infrared light-responsive dynamic wrinkle patterns Sci. Adv. 4 eaar5762 2018 https://doi.org/10.1126/sciadv.aar5762
[42] N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature , vol. 393, pp. 146-149, 1998, https://doi.org/10.1038/30193 . Bowden N. Brittain S. Evans A. G. Hutchinson J. W. Whitesides G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer Nature 393 146 149 1998 https://doi.org/10.1038/30193
[43] Y. J. Kim, Y. J. Yoo, M. H. Kang, et al.., “Mechanotunable optical filters based on stretchable silicon nanowire arrays,” Nanophotonics , vol. 9, pp. 3287-3293, 2020, https://doi.org/10.1515/nanoph-2020-0062 . Kim Y. J. Yoo Y. J. Kang M. H. Mechanotunable optical filters based on stretchable silicon nanowire arrays Nanophotonics 9 3287 3293 2020 https://doi.org/10.1515/nanoph-2020-0062
[44] M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. , vol. 17, pp. 6034-6039, 2017, https://doi.org/10.1021/acs.nanolett.7b02350 . Tseng M. L. Yang J. Semmlinger M. Zhang C. Nordlander P. Halas N. J. Two-Dimensional active tuning of an aluminum plasmonic array for full-spectrum response Nano Lett. 17 6034 6039 2017 https://doi.org/10.1021/acs.nanolett.7b02350
[45] W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching PDMS substrate,” Nanotechnology , vol. 28, 2017, Art no. 075301, https://doi.org/10.1088/1361-6528/aa5366 . Liu W. Shen Y. Xiao G. She X. Wang J. Jin C. Mechanically tunable sub-10 nm metal gap by stretching PDMS substrate Nanotechnology 28 2017 075301 https://doi.org/10.1088/1361-6528/aa5366
[46] C. Ding, Q. Li, Y. Lin, et al.., “Omnidirectionally stretchable electrodes based on wrinkled silver nanowires through the shrinkage of electrospun polymer fibers,” J. Mater. Chem. C , vol. 8, pp. 16798-16807, 2020, https://doi.org/10.1039/d0tc03052j . Ding C. Li Q. Lin Y. Omnidirectionally stretchable electrodes based on wrinkled silver nanowires through the shrinkage of electrospun polymer fibers J. Mater. Chem. C 8 16798 16807 2020 https://doi.org/10.1039/d0tc03052j
[47] X. He, H. Sin, B. Liang, et al.., “Controlling the selectivity of conjugated microporous polymer membrane for efficient organic solvent nanofiltration,” Adv. Funct. Mater. , vol. 29, p. 1900134, 2019, https://doi.org/10.1002/adfm.201900134 . He X. Sin H. Liang B. Controlling the selectivity of conjugated microporous polymer membrane for efficient organic solvent nanofiltration Adv. Funct. Mater. 29 1900134 2019 https://doi.org/10.1002/adfm.201900134
[48] A. Germaneau, P. Doumalin, and J. C. Dupré, “3D strain field measurement by correlation of volume images using scattered light: recording of images and choice of marks,” Strain , vol. 43, pp. 207-218, 2007, https://doi.org/10.1111/j.1475-1305.2007.00340.x . Germaneau A. Doumalin P. Dupré J. C. 3D strain field measurement by correlation of volume images using scattered light: recording of images and choice of marks Strain 43 207 218 2007 https://doi.org/10.1111/j.1475-1305.2007.00340.x
[49] C. M. Stafford, C. Harrison, K. L. Beers, et al.., “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. , vol. 3, pp. 545-550, 2004, https://doi.org/10.1038/nmat1175 . Stafford C. M. Harrison C. Beers K. L. A buckling-based metrology for measuring the elastic moduli of polymeric thin films Nat. Mater. 3 545 550 2004 https://doi.org/10.1038/nmat1175
[50] H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U. S. A. , vol. 104, pp. 15607-15612, 2007, https://doi.org/10.1073/pnas.0702927104 . Jiang H. Khang D.-Y. Song J. Sun Y. Huang Y. Rogers J. A. Finite deformation mechanics in buckled thin films on compliant supports Proc. Natl. Acad. Sci. U. S. A. 104 15607 15612 2007 https://doi.org/10.1073/pnas.0702927104
[51] J. Zang, S. Ryu, N. Pugno, et al.., “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. , vol. 12, pp. 321-325, 2013, https://doi.org/10.1038/nmat3542 . Zang J. Ryu S. Pugno N. Multifunctionality and control of the crumpling and unfolding of large-area graphene Nat. Mater. 12 321 325 2013 https://doi.org/10.1038/nmat3542
[52] C. Cao, H. F. Chan, J. Zang, K. W. Leong, and X. Zhao, “Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality,” Adv. Mater. , vol. 26, pp. 1763-1770, 2014, https://doi.org/10.1002/adma.201304589 . Cao C. Chan H. F. Zang J. Leong K. W. Zhao X. Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality Adv. Mater. 26 1763 1770 2014 https://doi.org/10.1002/adma.201304589
[53] W.-K. Lee, J. Kang, K.-S. Chen, et al.., “Multiscale, hierarchical patterning of graphene by conformal wrinkling,” Nano Lett. , vol. 16, pp. 7121-7127, 2016, https://doi.org/10.1021/acs.nanolett.6b03415 . Lee W.-K. Kang J. Chen K.-S. Multiscale, hierarchical patterning of graphene by conformal wrinkling Nano Lett. 16 7121 7127 2016 https://doi.org/10.1021/acs.nanolett.6b03415
[54] S. Zeng, K. Shen, S. Li, et al.., “Tailoring multistimuli responsive micropatterns activated by various mechanical modes,” Adv. Funct. Mater. , vol. 31, p. 2100612, 2021, https://doi.org/10.1002/adfm.202100612 . Zeng S. Shen K. Li S. Tailoring multistimuli responsive micropatterns activated by various mechanical modes Adv. Funct. Mater. 31 2100612 2021 https://doi.org/10.1002/adfm.202100612
[55] Y. Xu, S. Zeng, W. Xian, et al.., “Transparency change mechanochromism based on a robust PDMS-hydrogel bilayer structure,” Macromol. Rapid Commun. , vol. 42, p. 2000446, 2021, https://doi.org/10.1002/marc.202000446 . Xu Y. Zeng S. Xian W. Transparency change mechanochromism based on a robust PDMS-hydrogel bilayer structure Macromol. Rapid Commun. 42 2000446 2021 https://doi.org/10.1002/marc.202000446
[56] P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. , vol. 1, pp. 381-388, 2013, https://doi.org/10.1002/adom.201300034 . Kim P. Hu Y. Alvarenga J. Kolle M. Suo Z. Aizenberg J. Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns Adv. Opt. Mater. 1 381 388 2013 https://doi.org/10.1002/adom.201300034
[57] G. Lin, P. Chandrasekaran, C. Lv, et al.., “Self-similar hierarchical wrinkles as a potential multifunctional smart window with simultaneously tunable transparency, structural color, and droplet transport,” ACS Appl. Mater. Interfaces , vol. 9, pp. 26510-26517, 2017, https://doi.org/10.1021/acsami.7b05056 . Lin G. Chandrasekaran P. Lv C. Self-similar hierarchical wrinkles as a potential multifunctional smart window with simultaneously tunable transparency, structural color, and droplet transport ACS Appl. Mater. Interfaces 9 26510 26517 2017 https://doi.org/10.1021/acsami.7b05056
[58] S. Lin, E. K. Lee, N. Nguyen, and M. Khine, “Thermally-induced miniaturization for micro- and nanofabrication: progress and updates,” Lab Chip , vol. 14, pp. 3475-3488, 2014, https://doi.org/10.1039/c4lc00528g . Lin S. Lee E. K. Nguyen N. Khine M. Thermally-induced miniaturization for micro- and nanofabrication: progress and updates Lab Chip 14 3475 3488 2014 https://doi.org/10.1039/c4lc00528g
[59] S. Deng and V. Berry, “Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater,” Today , vol. 19, pp. 197-212, 2016, https://doi.org/10.1016/j.mattod.2015.10.002 . Deng S. Berry V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater Today 19 197 212 2016 https://doi.org/10.1016/j.mattod.2015.10.002
[60] Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. , vol. 5, p. 1700425, 2017, https://doi.org/10.1002/adom.201700425 . Li Z. Zhai Y. Wang Y. Wendland G. M. Yin X. Xiao J. Harnessing surface wrinkling-cracking patterns for tunable optical transmittance Adv. Opt. Mater. 5 1700425 2017 https://doi.org/10.1002/adom.201700425
[61] M. Shrestha, A. Asundi, and G.-K. Lau, “Smart window based on electric unfolding of microwrinkled TiO2 nanometric films,” ACS Photonics , vol. 5, pp. 3255-3262, 2018, https://doi.org/10.1021/acsphotonics.8b00486 . Shrestha M. Asundi A. Lau G.-K. Smart window based on electric unfolding of microwrinkled TiO 2 nanometric films ACS Photonics 5 3255 3262 2018 https://doi.org/10.1021/acsphotonics.8b00486
[62] C. Xu, M. Colorado Escobar, and A. A. Gorodetsky, “Stretchable cephalopod-inspired multimodal camouflage systems,” Adv. Mater. , vol. 32, p. 1905717, 2020, https://doi.org/10.1002/adma.201905717 . Xu C. Colorado Escobar M. Gorodetsky A. A. Stretchable cephalopod-inspired multimodal camouflage systems Adv. Mater. 32 1905717 2020 https://doi.org/10.1002/adma.201905717
[63] Y. W. Kwon, J. Park, T. Kim, et al.., “Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures,” ACS Nano , vol. 10, pp. 4609-4617, 2016, https://doi.org/10.1021/acsnano.6b00816 . Kwon Y. W. Park J. Kim T. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures ACS Nano 10 4609 4617 2016 https://doi.org/10.1021/acsnano.6b00816
[64] J. K. Hyun, J. Park, E. Kim, L. J. Lauhon, and S. Jeon, “Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning,” Adv. Opt. Mater. , vol. 2, pp. 1213-1220, 2014, https://doi.org/10.1002/adom.201400348 . Hyun J. K. Park J. Kim E. Lauhon L. J. Jeon S. Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning Adv. Opt. Mater. 2 1213 1220 2014 https://doi.org/10.1002/adom.201400348
[65] S. Jeon, J.-U. Park, R. Cirelli, et al.., “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U. S. A. , vol. 101, pp. 12428-12433, 2004, https://doi.org/10.1073/pnas.0403048101 . Jeon S. Park J.-U. Cirelli R. Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks Proc. Natl. Acad. Sci. U. S. A. 101 12428 12433 2004 https://doi.org/10.1073/pnas.0403048101
[66] C.-M. Chen, J. C. Reed, and S. Yang, “Guided wrinkling in swollen, pre-patterned photoresist thin films with a crosslinking gradient,” Soft Matter , vol. 9, pp. 11007-11013, 2013, https://doi.org/10.1039/c3sm51881g . Chen C.-M. Reed J. C. Yang S. Guided wrinkling in swollen, pre-patterned photoresist thin films with a crosslinking gradient Soft Matter 9 11007 11013 2013 https://doi.org/10.1039/c3sm51881g
[67] E. Lee, M. Zhang, Y. Cho, et al.., “Tilted pillars on wrinkled elastomers as a reversibly tunable optical window,” Adv. Mater. , vol. 26, pp. 4127-4133, 2014, https://doi.org/10.1002/adma.201400711 . Lee E. Zhang M. Cho Y. Tilted pillars on wrinkled elastomers as a reversibly tunable optical window Adv. Mater. 26 4127 4133 2014 https://doi.org/10.1002/adma.201400711
[68] X. Wang, M. Li, D. Wang, et al.., “Low-cost, robust pressure-responsive smart windows with dynamic switchable transmittance,” ACS Appl. Mater. Interfaces , vol. 12, pp. 15695-15702, 2020, https://doi.org/10.1021/acsami.0c00300 . Wang X. Li M. Wang D. Low-cost, robust pressure-responsive smart windows with dynamic switchable transmittance ACS Appl. Mater. Interfaces 12 15695 15702 2020 https://doi.org/10.1021/acsami.0c00300
[69] M. Shrestha and G.-K. Lau, “Tunable window device based on micro-wrinkling of nanometric zinc-oxide thin film on elastomer,” Opt. Lett. , vol. 41, pp. 4433-4436, 2016, https://doi.org/10.1364/ol.41.004433 . Shrestha M. Lau G.-K. Tunable window device based on micro-wrinkling of nanometric zinc-oxide thin film on elastomer Opt. Lett. 41 4433 4436 2016 https://doi.org/10.1364/ol.41.004433
[70] C. Harrison, C. M. Stafford, W. Zhang, and A. Karim, “Sinusoidal phase grating created by a tunably buckled surface,” Appl. Phys. Lett. , vol. 85, pp. 4016-4018, 2004, https://doi.org/10.1063/1.1809281 . Harrison C. Stafford C. M. Zhang W. Karim A. Sinusoidal phase grating created by a tunably buckled surface Appl. Phys. Lett. 85 4016 4018 2004 https://doi.org/10.1063/1.1809281
[71] A. V. Thomas, B. C. Andow, S. Suresh, et al.., “Controlled crumpling of graphene oxide films for tunable optical transmittance,” Adv. Mater. , vol. 27, pp. 3256-3265, 2015, https://doi.org/10.1002/adma.201405821 . Thomas A. V. Andow B. C. Suresh S. Controlled crumpling of graphene oxide films for tunable optical transmittance Adv. Mater. 27 3256 3265 2015 https://doi.org/10.1002/adma.201405821
[72] T. Ohzono, K. Suzuki, T. Yamaguchi, and N. Fukuda, “Tunable optical diffuser based on deformable wrinkles,” Adv. Opt. Mater. , vol. 1, pp. 374-380, 2013, https://doi.org/10.1002/adom.201300128 . Ohzono T. Suzuki K. Yamaguchi T. Fukuda N. Tunable optical diffuser based on deformable wrinkles Adv. Opt. Mater. 1 374 380 2013 https://doi.org/10.1002/adom.201300128
[73] C. Xie, L. Shi, H. Li, Z. Liu, T. Pu, and N. Gao, “Towards high-order diffraction suppression using two-dimensional quasi-periodic gratings,” in Optics, Photonics and Laser Technology 2017 , P. Ribeiro, D. L. Andrews, and M. Raposo, Eds., Cham, Springer International Publishing, 2019, pp. 31-53. Xie C. Shi L. Li H. Liu Z. Pu T. Gao N. Towards high-order diffraction suppression using two-dimensional quasi-periodic gratings Optics, Photonics and Laser Technology 2017 Ribeiro P. Andrews D. L. Raposo M. Cham Springer International Publishing 2019 31 53
[74] T. Sun, R. Song, N. Balar, P. Sen, R. J. Kline, and B. T. O’Connor, “Impact of substrate characteristics on stretchable polymer semiconductor behavior,” ACS Appl. Mater. Interfaces , vol. 11, pp. 3280-3289, 2019, https://doi.org/10.1021/acsami.8b16457 . Sun T. Song R. Balar N. Sen P. Kline R. J. O’Connor B. T. Impact of substrate characteristics on stretchable polymer semiconductor behavior ACS Appl. Mater. Interfaces 11 3280 3289 2019 https://doi.org/10.1021/acsami.8b16457
[75] R. Huang, “Kinetic wrinkling of an elastic film on a viscoelastic substrate,” J. Mech. Phys. Solid. , vol. 53, pp. 63-89, 2005, https://doi.org/10.1016/j.jmps.2004.06.007 . Huang R. Kinetic wrinkling of an elastic film on a viscoelastic substrate J. Mech. Phys. Solid. 53 63 89 2005 https://doi.org/10.1016/j.jmps.2004.06.007
[76] Y. Meng, X. Gong, Y. Huang, and L. Li, “Mechanically tunable opacity effect in transparent bilayer film: accurate interpretation and rational applications,” Appl. Mater. Today , vol. 16, pp. 474-481, 2019, https://doi.org/10.1016/j.apmt.2019.07.013 . Meng Y. Gong X. Huang Y. Li L. Mechanically tunable opacity effect in transparent bilayer film: accurate interpretation and rational applications Appl. Mater. Today 16 474 481 2019 https://doi.org/10.1016/j.apmt.2019.07.013
[77] Y. Meng, S. Zhang, K. Wu, J. Li, and L. Li, “Mechanically tunable bilayer composite grating for unique light manipulation and information storage,” Adv. Opt. Mater. , vol. 7, p. 1801017, 2019, https://doi.org/10.1002/adom.201801017 . Meng Y. Zhang S. Wu K. Li J. Li L. Mechanically tunable bilayer composite grating for unique light manipulation and information storage Adv. Opt. Mater. 7 1801017 2019 https://doi.org/10.1002/adom.201801017
[78] X. Dong, Y. Xiong, G. Chen, and S. Guo, “Effect of the morphology on the anisotropic light scattering of polycarbonate (PC)/poly(styrene-co-acrylonitrile) (SAN)(70/30) blend,” Appl. Opt. , vol. 54, pp. 608-614, 2015, https://doi.org/10.1364/ao.54.000608 . Dong X. Xiong Y. Chen G. Guo S. Effect of the morphology on the anisotropic light scattering of polycarbonate (PC)/poly(styrene-co-acrylonitrile) (SAN)(70/30) blend Appl. Opt. 54 608 614 2015 https://doi.org/10.1364/ao.54.000608
[79] E. Beaudoin, P. Davidson, B. Abecassis, T. Bizien, and D. Constantin, “Reversible strain alignment and reshuffling of nanoplatelet stacks confined in a lamellar block copolymer matrix,” Nanoscale , vol. 9, pp. 17371-17377, 2017, https://doi.org/10.1039/c7nr05723g . Beaudoin E. Davidson P. Abecassis B. Bizien T. Constantin D. Reversible strain alignment and reshuffling of nanoplatelet stacks confined in a lamellar block copolymer matrix Nanoscale 9 17371 17377 2017 https://doi.org/10.1039/c7nr05723g
[80] C. E. R. Edwards, D. J. Mai, S. Tang, and B. D. Olsen, “Molecular anisotropy and rearrangement as mechanisms of toughness and extensibility in entangled physical gels,” Phys. Rev. Mater. , vol. 4, 2020, Art no. 015602, https://doi.org/10.1103/physrevmaterials.4.015602 . Edwards C. E. R. Mai D. J. Tang S. Olsen B. D. Molecular anisotropy and rearrangement as mechanisms of toughness and extensibility in entangled physical gels Phys. Rev. Mater. 4 2020 015602 https://doi.org/10.1103/physrevmaterials.4.015602
[81] Y. H. Xin, K. M. Hu, X. Y. Li, E. Q. Tu, and W. M. Zhang, “ A flexible mechanical composite micro-grating tailored by one-dimensional ordered wrinkle patterns ,” in 2021 IEEE 16th International Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), 25-29 April 2021, Xiamen, IEEE, 2021, pp. 433-436. Xin Y. H. Hu K. M. Li X. Y. Tu E. Q. Zhang W. M. A flexible mechanical composite micro-grating tailored by one-dimensional ordered wrinkle patterns 2021 IEEE 16th International Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), 25-29 April 2021 , Xiamen IEEE 2021 433 436
[82] K. Wu, Y. Sun, H. Yuan, J. Zhang, G. Liu, and J. Sun, “Harnessing dynamic wrinkling surfaces for smart displays,” Nano Lett. , vol. 20, pp. 4129-4135, 2020, https://doi.org/10.1021/acs.nanolett.9b05279 . Wu K. Sun Y. Yuan H. Zhang J. Liu G. Sun J. Harnessing dynamic wrinkling surfaces for smart displays Nano Lett. 20 4129 4135 2020 https://doi.org/10.1021/acs.nanolett.9b05279
[83] D. Ge, E. Lee, L. Yang, et al.., “A robust smart window: reversibly switching from high transparency to angle‐independent structural color display,” Adv. Mater. , vol. 27, pp. 2489-2495, 2015, https://doi.org/10.1002/adma.201500281 . Ge D. Lee E. Yang L. A robust smart window: reversibly switching from high transparency to angle‐independent structural color display Adv. Mater. 27 2489 2495 2015 https://doi.org/10.1002/adma.201500281
[84] H. N. Kim, D. Ge, E. Lee, and S. Yang, “Multistate and on‐demand smart windows,” Adv. Mater. , vol. 30, p. 1803847, 2018, https://doi.org/10.1002/adma.201803847 . Kim H. N. Ge D. Lee E. Yang S. Multistate and on‐demand smart windows Adv. Mater. 30 1803847 2018 https://doi.org/10.1002/adma.201803847
[85] Y. Jiang, S. Zeng, Y. Yao, et al.., “Dynamic optics with transparency and color changes under ambient conditions,” Polymers , vol. 11, p. 103, 2019, https://doi.org/10.3390/polym11010103 . Jiang Y. Zeng S. Yao Y. Dynamic optics with transparency and color changes under ambient conditions Polymers 11 103 2019 https://doi.org/10.3390/polym11010103
[86] S.-H. Nam, G. Hyun, D. Cho, et al.., “Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication,” Nano Res. , vol. 14, pp. 1-16, 2021, https://doi.org/10.1007/s12274-021-3428-6 . Nam S.-H. Hyun G. Cho D. Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication Nano Res. 14 1 16 2021 https://doi.org/10.1007/s12274-021-3428-6
[87] C. Ahn, J. Park, D. Cho, et al.., “High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nano patterning,” Funct. Compos. Struct. , vol. 1, 2019, Art no. 032002, https://doi.org/10.1088/2631-6331/ab3692 . Ahn C. Park J. Cho D. High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nano patterning Funct. Compos. Struct. 1 2019 032002 https://doi.org/10.1088/2631-6331/ab3692
[88] S. Araki, Y. Ishikawa, X. Wang, et al.., “Fabrication of nanoshell-based 3D periodic structures by templating process using solution-derived Zno,” Nanoscale Res. Lett. , vol. 12, pp. 1-9, 2017, https://doi.org/10.1186/s11671-017-2186-6 . Araki S. Ishikawa Y. Wang X. Fabrication of nanoshell-based 3D periodic structures by templating process using solution-derived Zno Nanoscale Res. Lett. 12 1 9 2017 https://doi.org/10.1186/s11671-017-2186-6
[89] H. Chen, D. Cho, K. Ko, et al.., “Interdigitated three-dimensional heterogeneous nanocomposites for high-performance mechanochromic smart membranes,” ACS Nano , 2021, https://doi.org/10.1021/acsnano.1c06403 . Chen H. Cho D. Ko K. Interdigitated three-dimensional heterogeneous nanocomposites for high-performance mechanochromic smart membranes ACS Nano 2021 https://doi.org/10.1021/acsnano.1c06403
[90] J. Park, K. I. Kim, K. Kim, et al.., “Rapid, high‐resolution 3D interference printing of multilevel ultralong nanochannel arrays for high‐throughput nanofluidic transport,” Adv. Mater. , vol. 27, pp. 8000-8006, 2015, https://doi.org/10.1002/adma.201503746 . Park J. Kim K. I. Kim K. Rapid, high‐resolution 3D interference printing of multilevel ultralong nanochannel arrays for high‐throughput nanofluidic transport Adv. Mater. 27 8000 8006 2015 https://doi.org/10.1002/adma.201503746
[91] D. Cho, J. Park, T. Kim, and S. Jeon, “Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and their soft electronic applications,” J. Semiconduct. , vol. 40, p. 111605, 2019, https://doi.org/10.1088/1674-4926/40/11/111605 . Cho D. Park J. Kim T. Jeon S. Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and their soft electronic applications J. Semiconduct. 40 111605 2019 https://doi.org/10.1088/1674-4926/40/11/111605
[92] G. Hyun, J. T. Song, C. Ahn, et al.., “Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO2 reduction,” Proc. Natl. Acad. Sci. U. S. A. , vol. 117, pp. 5680-5685, 2020, https://doi.org/10.1073/pnas.1918837117 . Hyun G. Song J. T. Ahn C. Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO 2 reduction Proc. Natl. Acad. Sci. U. S. A. 117 5680 5685 2020 https://doi.org/10.1073/pnas.1918837117
[93] T. Kim, J. Park, J. Sohn, D. Cho, and S. Jeon, “Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes,” ACS Nano , vol. 10, pp. 4770-4778, 2016, https://doi.org/10.1021/acsnano.6b01355 . Kim T. Park J. Sohn J. Cho D. Jeon S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes ACS Nano 10 4770 4778 2016 https://doi.org/10.1021/acsnano.6b01355
[94] D. Cho, J. Park, J. Kim, et al.., “Three-dimensional continuous conductive nanostructure for highly sensitive and stretchable strain sensor,” ACS Appl. Mater. Interfaces , vol. 9, pp. 17369-17378, 2017, https://doi.org/10.1021/acsami.7b03052 . Cho D. Park J. Kim J. Three-dimensional continuous conductive nanostructure for highly sensitive and stretchable strain sensor ACS Appl. Mater. Interfaces 9 17369 17378 2017 https://doi.org/10.1021/acsami.7b03052
[95] D. Cho, R. Li, H. Jeong, et al.., “Bitter flavored, soft composites for wearables designed to reduce risks of choking in infants,” Adv. Mater. , vol. 33, p. 2103857, 2021, https://doi.org/10.1002/adma.202103857 . Cho D. Li R. Jeong H. Bitter flavored, soft composites for wearables designed to reduce risks of choking in infants Adv. Mater. 33 2103857 2021 https://doi.org/10.1002/adma.202103857
[96] J. M. Suh, D. Cho, S. Lee, et al.., “Rationally designed TiO2 nanostructures of continuous pore network for fast‐responding and highly sensitive acetone sensor,” Small Methods , p. 2100941, 2021, https://doi.org/10.1002/smtd.202100941 . Suh J. M. Cho D. Lee S. Rationally designed TiO 2 nanostructures of continuous pore network for fast‐responding and highly sensitive acetone sensor Small Methods 2100941 2021 https://doi.org/10.1002/smtd.202100941
[97] S. K. Park, S. Yun, G. Hwang, et al.., “Highly contrastive, real-time modulation of light intensity by reversible stress-whitening of spontaneously formed nanocomposites: application to wearable strain sensors,” J. Mater. Chem. C , vol. 9, pp. 8496-8505, 2021, https://doi.org/10.1039/d1tc00256b . Park S. K. Yun S. Hwang G. Highly contrastive, real-time modulation of light intensity by reversible stress-whitening of spontaneously formed nanocomposites: application to wearable strain sensors J. Mater. Chem. C 9 8496 8505 2021 https://doi.org/10.1039/d1tc00256b
[98] J. Li, X. Lu, Y. Zhang, et al.., “Highly sensitive mechanoresponsive smart windows driven by shear strain,” Adv. Funct. Mater. , vol. 31, p. 2102350, 2021, https://doi.org/10.1002/adfm.202102350 . Li J. Lu X. Zhang Y. Highly sensitive mechanoresponsive smart windows driven by shear strain Adv. Funct. Mater. 31 2102350 2021 https://doi.org/10.1002/adfm.202102350
[99] Y. Zhang, Z. Yan, K. Nan, et al.., “A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes,” Proc. Natl. Acad. Sci. U. S. A. , vol. 112, pp. 11757-11764, 2015, https://doi.org/10.1073/pnas.1515602112 . Zhang Y. Yan Z. Nan K. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes Proc. Natl. Acad. Sci. U. S. A. 112 11757 11764 2015 https://doi.org/10.1073/pnas.1515602112
[100] Y. K. Yi, J. Yin, and Y. Tang, “Developing an advanced daylight model for building energy tool to simulate dynamic shading device,” Sol. Energy , vol. 163, pp. 140-149, 2018, https://doi.org/10.1016/j.solener.2018.01.082 . Yi Y. K. Yin J. Tang Y. Developing an advanced daylight model for building energy tool to simulate dynamic shading device Sol. Energy 163 140 149 2018 https://doi.org/10.1016/j.solener.2018.01.082
[101] Y. Tang, G. Lin, S. Yang, Y. K. Yi, R. D. Kamien, and J. Yin, “Programmable kiri‐kirigami metamaterials,” Adv. Mater. , vol. 29, p. 1604262, 2017, https://doi.org/10.1002/adma.201604262 . Tang Y. Lin G. Yang S. Yi Y. K. Kamien R. D. Yin J. Programmable kiri‐kirigami metamaterials Adv. Mater. 29 1604262 2017 https://doi.org/10.1002/adma.201604262
[102] S. Zhang, S. Cao, T. Zhang, Q. Yao, A. Fisher, and J. Y. Lee, “Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance,” Mater. Horiz. , vol. 5, pp. 291-297, 2018, https://doi.org/10.1039/c7mh01128h . Zhang S. Cao S. Zhang T. Yao Q. Fisher A. Lee J. Y. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance Mater. Horiz. 5 291 297 2018 https://doi.org/10.1039/c7mh01128h
[103] L. Wang, H. K. Bisoyi, Z. Zheng, et al.., “Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene,” Mater. Today , vol. 20, pp. 230-237, 2017, https://doi.org/10.1016/j.mattod.2017.04.028 . Wang L. Bisoyi H. K. Zheng Z. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene Mater. Today 20 230 237 2017 https://doi.org/10.1016/j.mattod.2017.04.028
[104] G. K. Ong, C. A. Saez Cabezas, M. N. Dominguez, S. L. Skjærvø, S. Heo, and D. J. Milliron, “Electrochromic niobium oxide nanorods,” Chem. Mater. , vol. 32, pp. 468-475, 2020, https://doi.org/10.1021/acs.chemmater.9b04061 . Ong G. K. Saez Cabezas C. A. Dominguez M. N. Skjærvø S. L. Heo S. Milliron D. J. Electrochromic niobium oxide nanorods Chem. Mater. 32 468 475 2020 https://doi.org/10.1021/acs.chemmater.9b04061
[105] S. Ge, J. Li, J. Geng, S. Liu, H. Xu, and Z. Gu, “Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties,” Mater. Horiz. , vol. 8, pp. 1189-1198, 2021, https://doi.org/10.1039/d0mh01762k . Ge S. Li J. Geng J. Liu S. Xu H. Gu Z. Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties Mater. Horiz. 8 1189 1198 2021 https://doi.org/10.1039/d0mh01762k
[106] J. Lin, M. Lai, L. Dou, et al.., “Thermochromic halide perovskite solar cells,” Nat. Mater. , vol. 17, pp. 261-267, 2018, https://doi.org/10.1038/s41563-017-0006-0 . Lin J. Lai M. Dou L. Thermochromic halide perovskite solar cells Nat. Mater. 17 261 267 2018 https://doi.org/10.1038/s41563-017-0006-0
[107] Z. Wang, W. Fan, Q. He, Y. Wang, X. Liang, and S. Cai, “A simple and robust way towards reversible mechanochromism: using liquid crystal elastomer as a mask,” Extreme Mech. Lett. , vol. 11, pp. 42-48, 2017, https://doi.org/10.1016/j.eml.2016.11.015 . Wang Z. Fan W. He Q. Wang Y. Liang X. Cai S. A simple and robust way towards reversible mechanochromism: using liquid crystal elastomer as a mask Extreme Mech. Lett. 11 42 48 2017 https://doi.org/10.1016/j.eml.2016.11.015
[108] H. Cho, J. Kwon, I. Ha, et al.., “Mechano-thermo-chromic device with supersaturated salt hydrate crystal phase change,” Sci. Adv. , vol. 5, 2019, Art no. eaav4916, https://doi.org/10.1126/sciadv.aav4916 . Cho H. Kwon J. Ha I. Mechano-thermo-chromic device with supersaturated salt hydrate crystal phase change Sci. Adv. 5 2019 eaav4916 https://doi.org/10.1126/sciadv.aav4916
[109] W. F. Green, “The “melting-point” of hydrated sodium acetate: solubility curves,” J. Phys. Chem. , vol. 12, pp. 655-660, 1908, https://doi.org/10.1021/j150099a002 . Green W. F. The “melting-point” of hydrated sodium acetate: solubility curves J. Phys. Chem. 12 655 660 1908 https://doi.org/10.1021/j150099a002
[110] J. Gu, D. Kwon, J. Ahn, and I. Park, “Wearable strain sensors using light transmittance change of carbon nanotube-embedded elastomers with microcracks,” ACS Appl. Mater. Interfaces , vol. 12, pp. 10908-10917, 2020, https://doi.org/10.1021/acsami.9b18069 . Gu J. Kwon D. Ahn J. Park I. Wearable strain sensors using light transmittance change of carbon nanotube-embedded elastomers with microcracks ACS Appl. Mater. Interfaces 12 10908 10917 2020 https://doi.org/10.1021/acsami.9b18069
[111] S. Zeng, K. Shen, Y. Liu, et al.., “Dynamic thermal radiation modulators via mechanically tunable surface emissivity,” Mater. Today , vol. 45, pp. 44-53, 2021, https://doi.org/10.1016/j.mattod.2020.12.001 . Zeng S. Shen K. Liu Y. Dynamic thermal radiation modulators via mechanically tunable surface emissivity Mater. Today 45 44 53 2021 https://doi.org/10.1016/j.mattod.2020.12.001
[112] X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. , vol. 12, pp. 529-534, 2013, https://doi.org/10.1038/nmat3598 . Yao X. Hu Y. Grinthal A. Wong T.-S. Mahadevan L. Aizenberg J. Adaptive fluid-infused porous films with tunable transparency and wettability Nat. Mater. 12 529 534 2013 https://doi.org/10.1038/nmat3598
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
오픈액세스 학술지에 출판된 논문
※ AI-Helper는 부적절한 답변을 할 수 있습니다.