$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Mechanoresponsive scatterers for high-contrast optical modulation 원문보기

Nanophotonics, v.11 no.11, 2022년, pp.2737 - 2762  

Cho, Donghwi ,  Chen, Haomin ,  Shin, Jonghwa ,  Jeon, Seokwoo

Abstract AI-Helper 아이콘AI-Helper

AbstractSmart chromatic materials with optical transmittances that can be modified by light scattering upon external stimuli are attracting extensive interest because of their appealing applications in smart windows, privacy protection, electronic displays, etc. However, the development of these sca...

Keyword

참고문헌 (112)

  1. [1] H. C. van de Hulst, Light Scattering by Small Particles , New York, Dover Publications, 1981. Hulst H. C. van de Light Scattering by Small Particles New York Dover Publications 1981 

  2. [2] B.-K. Hsiung, M. D. Shawkey, and T. A. Blackledge, “Color production mechanisms in spiders,” J. Arachnol. , vol. 47, pp. 165-180, 2019, https://doi.org/10.1636/joa-s-18-022 . Hsiung B.-K. Shawkey M. D. Blackledge T. A. Color production mechanisms in spiders J. Arachnol. 47 165 180 2019 https://doi.org/10.1636/joa-s-18-022 

  3. [3] S. Tadepalli, J. M. Slocik, M. K. Gupta, R. R. Naik, and S. Singamaneni, “Bio-optics and bio-inspired optical materials,” Chem. Rev. , vol. 117, pp. 12705-12763, 2017, https://doi.org/10.1021/acs.chemrev.7b00153 . Tadepalli S. Slocik J. M. Gupta M. K. Naik R. R. Singamaneni S. Bio-optics and bio-inspired optical materials Chem. Rev. 117 12705 12763 2017 https://doi.org/10.1021/acs.chemrev.7b00153 

  4. [4] M. Yang, W. Zou, J. Guo, et al.., “Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling,” ACS Appl. Mater. Interfaces , vol. 12, pp. 25286-25293, 2020, https://doi.org/10.1021/acsami.0c03897 . Yang M. Zou W. Guo J. Bioinspired “skin” with cooperative thermo-optical effect for daytime radiative cooling ACS Appl. Mater. Interfaces 12 25286 25293 2020 https://doi.org/10.1021/acsami.0c03897 

  5. [5] S. Johnsen, “Hidden in plain sight: the ecology and physiology of organismal transparency,” Biol. Bull. , vol. 201, pp. 301-318, 2001, https://doi.org/10.2307/1543609 . Johnsen S. Hidden in plain sight: the ecology and physiology of organismal transparency Biol. Bull. 201 301 318 2001 https://doi.org/10.2307/1543609 

  6. [6] R. L. Morrison, W. C. Sherbrooke, and S. K. Frost-Mason, “Temperature-sensitive, physiologically active iridophores in the lizard Urosaurus ornatus: an ultrastructural analysis of color change,” Copeia , vol. 1996, pp. 804-812, 1996, https://doi.org/10.2307/1447641 . Morrison R. L. Sherbrooke W. C. Frost-Mason S. K. Temperature-sensitive, physiologically active iridophores in the lizard Urosaurus ornatus: an ultrastructural analysis of color change Copeia 1996 804 812 1996 https://doi.org/10.2307/1447641 

  7. [7] G. S. Oxford and R. G. Gillespie, “Evolution and ecology of spider coloration,” Annu. Rev. Entomol. , vol. 43, pp. 619-643, 1998, https://doi.org/10.1146/annurev.ento.43.1.619 . Oxford G. S. Gillespie R. G. Evolution and ecology of spider coloration Annu. Rev. Entomol. 43 619 643 1998 https://doi.org/10.1146/annurev.ento.43.1.619 

  8. [8] Y. Ke, J. Chen, G. Lin, et al.., “Smart windows: electro‐, thermo‐, mechano‐, photochromics, and beyond,” Adv. Energy Mater. , vol. 9, p. 1902066, 2019, https://doi.org/10.1002/aenm.201902066 . Ke Y. Chen J. Lin G. Smart windows: electro‐, thermo‐, mechano‐, photochromics, and beyond Adv. Energy Mater. 9 1902066 2019 https://doi.org/10.1002/aenm.201902066 

  9. [9] A. Azam, J. Kim, J. Park, et al.., “Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices,” Nano Lett. , vol. 18, pp. 5646-5651, 2018, https://doi.org/10.1021/acs.nanolett.8b02150 . Azam A. Kim J. Park J. Two-dimensional WO3 nanosheets chemically converted from layered WS2 for high-performance electrochromic devices Nano Lett. 18 5646 5651 2018 https://doi.org/10.1021/acs.nanolett.8b02150 

  10. [10] A. Azens and C. Granqvist, “Electrochromic smart windows: energy efficiency and device aspects,” J. Solid State Electrochem. , vol. 7, pp. 64-68, 2003, https://doi.org/10.1007/s10008-002-0313-4 . Azens A. Granqvist C. Electrochromic smart windows: energy efficiency and device aspects J. Solid State Electrochem. 7 64 68 2003 https://doi.org/10.1007/s10008-002-0313-4 

  11. [11] Y. Cui, Y. Ke, C. Liu, et al.., “Thermochromic VO2 for energy-efficient smart windows,” Joule , vol. 2, pp. 1707-1746, 2018, https://doi.org/10.1016/j.joule.2018.06.018 . Cui Y. Ke Y. Liu C. Thermochromic VO2 for energy-efficient smart windows Joule 2 1707 1746 2018 https://doi.org/10.1016/j.joule.2018.06.018 

  12. [12] S. Wang, M. Liu, L. Kong, Y. Long, X. Jiang, and A. Yu, “Recent progress in VO2 smart coatings: strategies to improve the thermochromic properties,” Prog. Mater. Sci. , vol. 81, pp. 1-54, 2016, https://doi.org/10.1016/j.pmatsci.2016.03.001 . Wang S. Liu M. Kong L. Long Y. Jiang X. Yu A. Recent progress in VO2 smart coatings: strategies to improve the thermochromic properties Prog. Mater. Sci. 81 1 54 2016 https://doi.org/10.1016/j.pmatsci.2016.03.001 

  13. [13] Y. Ke, C. Zhou, Y. Zhou, S. Wang, S. H. Chan, and Y. Long, “Emerging thermal‐responsive materials and integrated techniques targeting the energy‐efficient smart window application,” Adv. Funct. Mater. , vol. 28, p. 1800113, 2018, https://doi.org/10.1002/adfm.201800113 . Ke Y. Zhou C. Zhou Y. Wang S. Chan S. H. Long Y. Emerging thermal‐responsive materials and integrated techniques targeting the energy‐efficient smart window application Adv. Funct. Mater. 28 1800113 2018 https://doi.org/10.1002/adfm.201800113 

  14. [14] R. Pardo, M. Zayat, and D. Levy, “Photochromic organic-inorganic hybrid materials,” Chem. Soc. Rev. , vol. 40, pp. 672-687, 2011, https://doi.org/10.1039/c0cs00065e . Pardo R. Zayat M. Levy D. Photochromic organic-inorganic hybrid materials Chem. Soc. Rev. 40 672 687 2011 https://doi.org/10.1039/c0cs00065e 

  15. [15] V. I. Minkin, “Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds,” Chem. Rev. , vol. 104, pp. 2751-2776, 2004, https://doi.org/10.1021/cr020088u . Minkin V. I. Photo-, thermo-, solvato-, and electrochromic spiroheterocyclic compounds Chem. Rev. 104 2751 2776 2004 https://doi.org/10.1021/cr020088u 

  16. [16] H. Li, S. Pu, G. Liu, and B. Chen, “Photochromism of new diarylethene derivatives based on the hybrid photochromic skeleton of benzofuran and benzene moieties,” Dyes Pigments , vol. 101, pp. 15-24, 2014, https://doi.org/10.1016/j.dyepig.2013.09.026 . Li H. Pu S. Liu G. Chen B. Photochromism of new diarylethene derivatives based on the hybrid photochromic skeleton of benzofuran and benzene moieties Dyes Pigments 101 15 24 2014 https://doi.org/10.1016/j.dyepig.2013.09.026 

  17. [17] D. Cho, Y. S. Shim, J. W. Jung, et al.., “High‐contrast optical modulation from strain‐induced nanogaps at 3D heterogeneous interfaces,” Adv. Sci. , vol. 7, p. 1903708, 2020, https://doi.org/10.1002/advs.201903708 . Cho D. Shim Y. S. Jung J. W. High‐contrast optical modulation from strain‐induced nanogaps at 3D heterogeneous interfaces Adv. Sci. 7 1903708 2020 https://doi.org/10.1002/advs.201903708 

  18. [18] B. Jiang, L. Liu, Z. Gao, and W. Wang, “A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance,” Adv. Opt. Mater. , vol. 6, p. 1800195, 2018, https://doi.org/10.1002/adom.201800195 . Jiang B. Liu L. Gao Z. Wang W. A general and robust strategy for fabricating mechanoresponsive surface wrinkles with dynamic switchable transmittance Adv. Opt. Mater. 6 1800195 2018 https://doi.org/10.1002/adom.201800195 

  19. [19] J. B. Pollack and J. N. Cuzzi, “Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols,” J. Atmos. Sci. , vol. 37, pp. 868-881, 1980, https://doi.org/10.1175/1520-0469(1980)037<0868:sbnpos>2.0.co;2 . Pollack J. B. Cuzzi J. N. Scattering by nonspherical particles of size comparable to a wavelength: a new semi-empirical theory and its application to tropospheric aerosols J. Atmos. Sci. 37 868 881 1980 https://doi.org/10.1175/1520-0469(1980)037<0868:sbnpos>2.0.co;2 

  20. [20] E. J. McCartney, Optics of the Atmosphere: Scattering by Molecules and Particles , New York, John Wiley and Sons, Inc., 1976. McCartney E. J. Optics of the Atmosphere: Scattering by Molecules and Particles New York John Wiley and Sons, Inc. 1976 

  21. [21] Y. Harada and T. Asakura, “Radiation forces on a dielectric sphere in the Rayleigh scattering regime,” Opt. Commun. , vol. 124, pp. 529-541, 1996, https://doi.org/10.1016/0030-4018(95)00753-9 . Harada Y. Asakura T. Radiation forces on a dielectric sphere in the Rayleigh scattering regime Opt. Commun. 124 529 541 1996 https://doi.org/10.1016/0030-4018(95)00753-9 

  22. [22] W. J. Wiscombe, “Improved Mie scattering algorithms,” Appl. Opt. , vol. 19, pp. 1505-1509, 1980, https://doi.org/10.1364/ao.19.001505 . Wiscombe W. J. Improved Mie scattering algorithms Appl. Opt. 19 1505 1509 1980 https://doi.org/10.1364/ao.19.001505 

  23. [23] W. Mundy, J. Roux, and A. Smith, “Mie scattering by spheres in an absorbing medium,” JOSA , vol. 64, pp. 1593-1597, 1974, https://doi.org/10.1364/josa.64.001593 . Mundy W. Roux J. Smith A. Mie scattering by spheres in an absorbing medium JOSA 64 1593 1597 1974 https://doi.org/10.1364/josa.64.001593 

  24. [24] M. Retsch, M. Schmelzeisen, H.-J. R. Butt, and E. L. Thomas, “Visible Mie scattering in nonabsorbing hollow sphere powders,” Nano Lett. , vol. 11, pp. 1389-1394, 2011, https://doi.org/10.1021/nl2002445 . Retsch M. Schmelzeisen M. Butt H.-J. R. Thomas E. L. Visible Mie scattering in nonabsorbing hollow sphere powders Nano Lett. 11 1389 1394 2011 https://doi.org/10.1021/nl2002445 

  25. [25] I. G. Yu, Y. J. Kim, H. J. Kim, C. Lee, and W. I. Lee, “Size-dependent light-scattering effects of nanoporous TiO2 spheres in dye-sensitized solar cells,” J. Mater. Chem. , vol. 21, pp. 532-538, 2011, https://doi.org/10.1039/c0jm02606a . Yu I. G. Kim Y. J. Kim H. J. Lee C. Lee W. I. Size-dependent light-scattering effects of nanoporous TiO 2 spheres in dye-sensitized solar cells J. Mater. Chem. 21 532 538 2011 https://doi.org/10.1039/c0jm02606a 

  26. [26] S. Stuke, Characterizing Thin Clouds Using Aerosol Optical Depth Information , Innsbruck, University of Innsbruck, 2016. Stuke S. Characterizing Thin Clouds Using Aerosol Optical Depth Information Innsbruck University of Innsbruck 2016 

  27. [27] M. Casini, “Active dynamic windows for buildings: a review,” Renew. Energy , vol. 119, pp. 923-934, 2018, https://doi.org/10.1016/j.renene.2017.12.049 . Casini M. Active dynamic windows for buildings: a review Renew. Energy 119 923 934 2018 https://doi.org/10.1016/j.renene.2017.12.049 

  28. [28] H. Khandelwal, A. P. H. J. Schenning, and M. G. Debije, “Infrared regulating smart window based on organic materials,” Adv. Energy Mater. , vol. 7, p. 1602209, 2017, https://doi.org/10.1002/aenm.201602209 . Khandelwal H. Schenning A. P. H. J. Debije M. G. Infrared regulating smart window based on organic materials Adv. Energy Mater. 7 1602209 2017 https://doi.org/10.1002/aenm.201602209 

  29. [29] G. Cai, J. Wang, and P. S. Lee, “Next-generation multifunctional electrochromic devices,” Acc. Chem. Res. , vol. 49, pp. 1469-1476, 2016, https://doi.org/10.1021/acs.accounts.6b00183 . Cai G. Wang J. Lee P. S. Next-generation multifunctional electrochromic devices Acc. Chem. Res. 49 1469 1476 2016 https://doi.org/10.1021/acs.accounts.6b00183 

  30. [30] H.-N. Kim and S. Yang, “Responsive smart windows from nanoparticle-polymer composites,” Adv. Funct. Mater. , vol. 30, p. 1902597, 2020, https://doi.org/10.1002/adfm.201902597 . Kim H.-N. Yang S. Responsive smart windows from nanoparticle-polymer composites Adv. Funct. Mater. 30 1902597 2020 https://doi.org/10.1002/adfm.201902597 

  31. [31] Y. Zhou, X. Dong, Y. Mi, et al.., “Hydrogel smart windows,” J. Mater. Chem. A , vol. 8, pp. 10007-10025, 2020, https://doi.org/10.1039/d0ta00849d . Zhou Y. Dong X. Mi Y. Hydrogel smart windows J. Mater. Chem. A 8 10007 10025 2020 https://doi.org/10.1039/d0ta00849d 

  32. [32] S. Zeng, D. Zhang, W. Huang, et al.., “Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds,” Nat. Commun. , vol. 7, p. 11802, 2016, https://doi.org/10.1038/ncomms11802 . Zeng S. Zhang D. Huang W. Bio-inspired sensitive and reversible mechanochromisms via strain-dependent cracks and folds Nat. Commun. 7 11802 2016 https://doi.org/10.1038/ncomms11802 

  33. [33] S. G. Lee, D. Y. Lee, H. S. Lim, D. H. Lee, S. Lee, and K. Cho, “Switchable transparency and wetting of elastomeric smart windows,” Adv. Mater. , vol. 22, pp. 5013-5017, 2010, https://doi.org/10.1002/adma.201002320 . Lee S. G. Lee D. Y. Lim H. S. Lee D. H. Lee S. Cho K. Switchable transparency and wetting of elastomeric smart windows Adv. Mater. 22 5013 5017 2010 https://doi.org/10.1002/adma.201002320 

  34. [34] D. Cho, J.-S. Jang, S.-H. Nam, et al.., “Focused electric-field polymer writing: toward ultralarge, multistimuli-responsive membranes,” ACS Nano , vol. 14, pp. 12173-12183, 2020, https://doi.org/10.1021/acsnano.0c05843 . Cho D. Jang J.-S. Nam S.-H. Focused electric-field polymer writing: toward ultralarge, multistimuli-responsive membranes ACS Nano 14 12173 12183 2020 https://doi.org/10.1021/acsnano.0c05843 

  35. [35] C. M. Stafford, C. Harrison, A. Karim, and E. J. Amis, “Measuring modulus of gradient polymer films by strain-induced buckling instabilities,” Polym. Preprint. , vol. 43, 2002. Stafford C. M. Harrison C. Karim A. Amis E. J. Measuring modulus of gradient polymer films by strain-induced buckling instabilities Polym. Preprint. 43 2002 

  36. [36] W. Peng and H. Wu, “Flexible and stretchable photonic sensors based on modulation of light transmission,” Adv. Opt. Mater. , vol. 7, p. 1900329, 2019, https://doi.org/10.1002/adom.201900329 . Peng W. Wu H. Flexible and stretchable photonic sensors based on modulation of light transmission Adv. Opt. Mater. 7 1900329 2019 https://doi.org/10.1002/adom.201900329 

  37. [37] H. Zhang, D. Liu, J.-H. Lee, et al.., “Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors,” Nano-Micro Lett. , vol. 13, p. 122, 2021, https://doi.org/10.1007/s40820-021-00615-5 . Zhang H. Liu D. Lee J.-H. Anisotropic, wrinkled, and crack-bridging structure for ultrasensitive, highly selective multidirectional strain sensors Nano-Micro Lett. 13 122 2021 https://doi.org/10.1007/s40820-021-00615-5 

  38. [38] F. Zhang, P.-C. Ma, J. Wang, et al.., “Anisotropic conductive networks for multidimensional sensing,” Mater. Horiz. , vol. 8, pp. 2615-2653, 2021, https://doi.org/10.1039/D1MH00615K . Zhang F. Ma P.-C. Wang J. Anisotropic conductive networks for multidimensional sensing Mater. Horiz. 8 2615 2653 2021 https://doi.org/10.1039/D1MH00615K 

  39. [39] Q. Zheng, J.-H. Lee, X. Shen, X. Chen, and J.-K. Kim, “Graphene-based wearable piezoresistive physical sensors,” Mater. Today , vol. 36, pp. 158-179, 2020, https://doi.org/10.1016/j.mattod.2019.12.004 . Zheng Q. Lee J.-H. Shen X. Chen X. Kim J.-K. Graphene-based wearable piezoresistive physical sensors Mater. Today 36 158 179 2020 https://doi.org/10.1016/j.mattod.2019.12.004 

  40. [40] S. Yeom, H. Kim, K. Kim, et al.., “Surface wrinkle formation by liquid crystalline polymers for significant light extraction enhancement on quantum dot light-emitting diodes,” Opt. Express , vol. 28, pp. 26519-26530, 2020, https://doi.org/10.1364/oe.401328 . Yeom S. Kim H. Kim K. Surface wrinkle formation by liquid crystalline polymers for significant light extraction enhancement on quantum dot light-emitting diodes Opt. Express 28 26519 26530 2020 https://doi.org/10.1364/oe.401328 

  41. [41] F. Li, H. Hou, J. Yin, and X. Jiang, “Near-infrared light-responsive dynamic wrinkle patterns,” Sci. Adv. , vol. 4, p. eaar5762, 2018, https://doi.org/10.1126/sciadv.aar5762 . Li F. Hou H. Yin J. Jiang X. Near-infrared light-responsive dynamic wrinkle patterns Sci. Adv. 4 eaar5762 2018 https://doi.org/10.1126/sciadv.aar5762 

  42. [42] N. Bowden, S. Brittain, A. G. Evans, J. W. Hutchinson, and G. M. Whitesides, “Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer,” Nature , vol. 393, pp. 146-149, 1998, https://doi.org/10.1038/30193 . Bowden N. Brittain S. Evans A. G. Hutchinson J. W. Whitesides G. M. Spontaneous formation of ordered structures in thin films of metals supported on an elastomeric polymer Nature 393 146 149 1998 https://doi.org/10.1038/30193 

  43. [43] Y. J. Kim, Y. J. Yoo, M. H. Kang, et al.., “Mechanotunable optical filters based on stretchable silicon nanowire arrays,” Nanophotonics , vol. 9, pp. 3287-3293, 2020, https://doi.org/10.1515/nanoph-2020-0062 . Kim Y. J. Yoo Y. J. Kang M. H. Mechanotunable optical filters based on stretchable silicon nanowire arrays Nanophotonics 9 3287 3293 2020 https://doi.org/10.1515/nanoph-2020-0062 

  44. [44] M. L. Tseng, J. Yang, M. Semmlinger, C. Zhang, P. Nordlander, and N. J. Halas, “Two-Dimensional active tuning of an aluminum plasmonic array for full-spectrum response,” Nano Lett. , vol. 17, pp. 6034-6039, 2017, https://doi.org/10.1021/acs.nanolett.7b02350 . Tseng M. L. Yang J. Semmlinger M. Zhang C. Nordlander P. Halas N. J. Two-Dimensional active tuning of an aluminum plasmonic array for full-spectrum response Nano Lett. 17 6034 6039 2017 https://doi.org/10.1021/acs.nanolett.7b02350 

  45. [45] W. Liu, Y. Shen, G. Xiao, X. She, J. Wang, and C. Jin, “Mechanically tunable sub-10 nm metal gap by stretching PDMS substrate,” Nanotechnology , vol. 28, 2017, Art no. 075301, https://doi.org/10.1088/1361-6528/aa5366 . Liu W. Shen Y. Xiao G. She X. Wang J. Jin C. Mechanically tunable sub-10 nm metal gap by stretching PDMS substrate Nanotechnology 28 2017 075301 https://doi.org/10.1088/1361-6528/aa5366 

  46. [46] C. Ding, Q. Li, Y. Lin, et al.., “Omnidirectionally stretchable electrodes based on wrinkled silver nanowires through the shrinkage of electrospun polymer fibers,” J. Mater. Chem. C , vol. 8, pp. 16798-16807, 2020, https://doi.org/10.1039/d0tc03052j . Ding C. Li Q. Lin Y. Omnidirectionally stretchable electrodes based on wrinkled silver nanowires through the shrinkage of electrospun polymer fibers J. Mater. Chem. C 8 16798 16807 2020 https://doi.org/10.1039/d0tc03052j 

  47. [47] X. He, H. Sin, B. Liang, et al.., “Controlling the selectivity of conjugated microporous polymer membrane for efficient organic solvent nanofiltration,” Adv. Funct. Mater. , vol. 29, p. 1900134, 2019, https://doi.org/10.1002/adfm.201900134 . He X. Sin H. Liang B. Controlling the selectivity of conjugated microporous polymer membrane for efficient organic solvent nanofiltration Adv. Funct. Mater. 29 1900134 2019 https://doi.org/10.1002/adfm.201900134 

  48. [48] A. Germaneau, P. Doumalin, and J. C. Dupré, “3D strain field measurement by correlation of volume images using scattered light: recording of images and choice of marks,” Strain , vol. 43, pp. 207-218, 2007, https://doi.org/10.1111/j.1475-1305.2007.00340.x . Germaneau A. Doumalin P. Dupré J. C. 3D strain field measurement by correlation of volume images using scattered light: recording of images and choice of marks Strain 43 207 218 2007 https://doi.org/10.1111/j.1475-1305.2007.00340.x 

  49. [49] C. M. Stafford, C. Harrison, K. L. Beers, et al.., “A buckling-based metrology for measuring the elastic moduli of polymeric thin films,” Nat. Mater. , vol. 3, pp. 545-550, 2004, https://doi.org/10.1038/nmat1175 . Stafford C. M. Harrison C. Beers K. L. A buckling-based metrology for measuring the elastic moduli of polymeric thin films Nat. Mater. 3 545 550 2004 https://doi.org/10.1038/nmat1175 

  50. [50] H. Jiang, D.-Y. Khang, J. Song, Y. Sun, Y. Huang, and J. A. Rogers, “Finite deformation mechanics in buckled thin films on compliant supports,” Proc. Natl. Acad. Sci. U. S. A. , vol. 104, pp. 15607-15612, 2007, https://doi.org/10.1073/pnas.0702927104 . Jiang H. Khang D.-Y. Song J. Sun Y. Huang Y. Rogers J. A. Finite deformation mechanics in buckled thin films on compliant supports Proc. Natl. Acad. Sci. U. S. A. 104 15607 15612 2007 https://doi.org/10.1073/pnas.0702927104 

  51. [51] J. Zang, S. Ryu, N. Pugno, et al.., “Multifunctionality and control of the crumpling and unfolding of large-area graphene,” Nat. Mater. , vol. 12, pp. 321-325, 2013, https://doi.org/10.1038/nmat3542 . Zang J. Ryu S. Pugno N. Multifunctionality and control of the crumpling and unfolding of large-area graphene Nat. Mater. 12 321 325 2013 https://doi.org/10.1038/nmat3542 

  52. [52] C. Cao, H. F. Chan, J. Zang, K. W. Leong, and X. Zhao, “Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality,” Adv. Mater. , vol. 26, pp. 1763-1770, 2014, https://doi.org/10.1002/adma.201304589 . Cao C. Chan H. F. Zang J. Leong K. W. Zhao X. Harnessing localized ridges for high-aspect-ratio hierarchical patterns with dynamic tunability and multifunctionality Adv. Mater. 26 1763 1770 2014 https://doi.org/10.1002/adma.201304589 

  53. [53] W.-K. Lee, J. Kang, K.-S. Chen, et al.., “Multiscale, hierarchical patterning of graphene by conformal wrinkling,” Nano Lett. , vol. 16, pp. 7121-7127, 2016, https://doi.org/10.1021/acs.nanolett.6b03415 . Lee W.-K. Kang J. Chen K.-S. Multiscale, hierarchical patterning of graphene by conformal wrinkling Nano Lett. 16 7121 7127 2016 https://doi.org/10.1021/acs.nanolett.6b03415 

  54. [54] S. Zeng, K. Shen, S. Li, et al.., “Tailoring multistimuli responsive micropatterns activated by various mechanical modes,” Adv. Funct. Mater. , vol. 31, p. 2100612, 2021, https://doi.org/10.1002/adfm.202100612 . Zeng S. Shen K. Li S. Tailoring multistimuli responsive micropatterns activated by various mechanical modes Adv. Funct. Mater. 31 2100612 2021 https://doi.org/10.1002/adfm.202100612 

  55. [55] Y. Xu, S. Zeng, W. Xian, et al.., “Transparency change mechanochromism based on a robust PDMS-hydrogel bilayer structure,” Macromol. Rapid Commun. , vol. 42, p. 2000446, 2021, https://doi.org/10.1002/marc.202000446 . Xu Y. Zeng S. Xian W. Transparency change mechanochromism based on a robust PDMS-hydrogel bilayer structure Macromol. Rapid Commun. 42 2000446 2021 https://doi.org/10.1002/marc.202000446 

  56. [56] P. Kim, Y. Hu, J. Alvarenga, M. Kolle, Z. Suo, and J. Aizenberg, “Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns,” Adv. Opt. Mater. , vol. 1, pp. 381-388, 2013, https://doi.org/10.1002/adom.201300034 . Kim P. Hu Y. Alvarenga J. Kolle M. Suo Z. Aizenberg J. Rational design of mechano-responsive optical materials by fine tuning the evolution of strain-dependent wrinkling patterns Adv. Opt. Mater. 1 381 388 2013 https://doi.org/10.1002/adom.201300034 

  57. [57] G. Lin, P. Chandrasekaran, C. Lv, et al.., “Self-similar hierarchical wrinkles as a potential multifunctional smart window with simultaneously tunable transparency, structural color, and droplet transport,” ACS Appl. Mater. Interfaces , vol. 9, pp. 26510-26517, 2017, https://doi.org/10.1021/acsami.7b05056 . Lin G. Chandrasekaran P. Lv C. Self-similar hierarchical wrinkles as a potential multifunctional smart window with simultaneously tunable transparency, structural color, and droplet transport ACS Appl. Mater. Interfaces 9 26510 26517 2017 https://doi.org/10.1021/acsami.7b05056 

  58. [58] S. Lin, E. K. Lee, N. Nguyen, and M. Khine, “Thermally-induced miniaturization for micro- and nanofabrication: progress and updates,” Lab Chip , vol. 14, pp. 3475-3488, 2014, https://doi.org/10.1039/c4lc00528g . Lin S. Lee E. K. Nguyen N. Khine M. Thermally-induced miniaturization for micro- and nanofabrication: progress and updates Lab Chip 14 3475 3488 2014 https://doi.org/10.1039/c4lc00528g 

  59. [59] S. Deng and V. Berry, “Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater,” Today , vol. 19, pp. 197-212, 2016, https://doi.org/10.1016/j.mattod.2015.10.002 . Deng S. Berry V. Wrinkled, rippled and crumpled graphene: an overview of formation mechanism, electronic properties, and applications. Mater Today 19 197 212 2016 https://doi.org/10.1016/j.mattod.2015.10.002 

  60. [60] Z. Li, Y. Zhai, Y. Wang, G. M. Wendland, X. Yin, and J. Xiao, “Harnessing surface wrinkling-cracking patterns for tunable optical transmittance,” Adv. Opt. Mater. , vol. 5, p. 1700425, 2017, https://doi.org/10.1002/adom.201700425 . Li Z. Zhai Y. Wang Y. Wendland G. M. Yin X. Xiao J. Harnessing surface wrinkling-cracking patterns for tunable optical transmittance Adv. Opt. Mater. 5 1700425 2017 https://doi.org/10.1002/adom.201700425 

  61. [61] M. Shrestha, A. Asundi, and G.-K. Lau, “Smart window based on electric unfolding of microwrinkled TiO2 nanometric films,” ACS Photonics , vol. 5, pp. 3255-3262, 2018, https://doi.org/10.1021/acsphotonics.8b00486 . Shrestha M. Asundi A. Lau G.-K. Smart window based on electric unfolding of microwrinkled TiO 2 nanometric films ACS Photonics 5 3255 3262 2018 https://doi.org/10.1021/acsphotonics.8b00486 

  62. [62] C. Xu, M. Colorado Escobar, and A. A. Gorodetsky, “Stretchable cephalopod-inspired multimodal camouflage systems,” Adv. Mater. , vol. 32, p. 1905717, 2020, https://doi.org/10.1002/adma.201905717 . Xu C. Colorado Escobar M. Gorodetsky A. A. Stretchable cephalopod-inspired multimodal camouflage systems Adv. Mater. 32 1905717 2020 https://doi.org/10.1002/adma.201905717 

  63. [63] Y. W. Kwon, J. Park, T. Kim, et al.., “Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures,” ACS Nano , vol. 10, pp. 4609-4617, 2016, https://doi.org/10.1021/acsnano.6b00816 . Kwon Y. W. Park J. Kim T. Flexible near-field nanopatterning with ultrathin, conformal phase masks on nonplanar substrates for biomimetic hierarchical photonic structures ACS Nano 10 4609 4617 2016 https://doi.org/10.1021/acsnano.6b00816 

  64. [64] J. K. Hyun, J. Park, E. Kim, L. J. Lauhon, and S. Jeon, “Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning,” Adv. Opt. Mater. , vol. 2, pp. 1213-1220, 2014, https://doi.org/10.1002/adom.201400348 . Hyun J. K. Park J. Kim E. Lauhon L. J. Jeon S. Rational control of diffraction and interference from conformal phase gratings: toward high-resolution 3D nanopatterning Adv. Opt. Mater. 2 1213 1220 2014 https://doi.org/10.1002/adom.201400348 

  65. [65] S. Jeon, J.-U. Park, R. Cirelli, et al.., “Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks,” Proc. Natl. Acad. Sci. U. S. A. , vol. 101, pp. 12428-12433, 2004, https://doi.org/10.1073/pnas.0403048101 . Jeon S. Park J.-U. Cirelli R. Fabricating complex three-dimensional nanostructures with high-resolution conformable phase masks Proc. Natl. Acad. Sci. U. S. A. 101 12428 12433 2004 https://doi.org/10.1073/pnas.0403048101 

  66. [66] C.-M. Chen, J. C. Reed, and S. Yang, “Guided wrinkling in swollen, pre-patterned photoresist thin films with a crosslinking gradient,” Soft Matter , vol. 9, pp. 11007-11013, 2013, https://doi.org/10.1039/c3sm51881g . Chen C.-M. Reed J. C. Yang S. Guided wrinkling in swollen, pre-patterned photoresist thin films with a crosslinking gradient Soft Matter 9 11007 11013 2013 https://doi.org/10.1039/c3sm51881g 

  67. [67] E. Lee, M. Zhang, Y. Cho, et al.., “Tilted pillars on wrinkled elastomers as a reversibly tunable optical window,” Adv. Mater. , vol. 26, pp. 4127-4133, 2014, https://doi.org/10.1002/adma.201400711 . Lee E. Zhang M. Cho Y. Tilted pillars on wrinkled elastomers as a reversibly tunable optical window Adv. Mater. 26 4127 4133 2014 https://doi.org/10.1002/adma.201400711 

  68. [68] X. Wang, M. Li, D. Wang, et al.., “Low-cost, robust pressure-responsive smart windows with dynamic switchable transmittance,” ACS Appl. Mater. Interfaces , vol. 12, pp. 15695-15702, 2020, https://doi.org/10.1021/acsami.0c00300 . Wang X. Li M. Wang D. Low-cost, robust pressure-responsive smart windows with dynamic switchable transmittance ACS Appl. Mater. Interfaces 12 15695 15702 2020 https://doi.org/10.1021/acsami.0c00300 

  69. [69] M. Shrestha and G.-K. Lau, “Tunable window device based on micro-wrinkling of nanometric zinc-oxide thin film on elastomer,” Opt. Lett. , vol. 41, pp. 4433-4436, 2016, https://doi.org/10.1364/ol.41.004433 . Shrestha M. Lau G.-K. Tunable window device based on micro-wrinkling of nanometric zinc-oxide thin film on elastomer Opt. Lett. 41 4433 4436 2016 https://doi.org/10.1364/ol.41.004433 

  70. [70] C. Harrison, C. M. Stafford, W. Zhang, and A. Karim, “Sinusoidal phase grating created by a tunably buckled surface,” Appl. Phys. Lett. , vol. 85, pp. 4016-4018, 2004, https://doi.org/10.1063/1.1809281 . Harrison C. Stafford C. M. Zhang W. Karim A. Sinusoidal phase grating created by a tunably buckled surface Appl. Phys. Lett. 85 4016 4018 2004 https://doi.org/10.1063/1.1809281 

  71. [71] A. V. Thomas, B. C. Andow, S. Suresh, et al.., “Controlled crumpling of graphene oxide films for tunable optical transmittance,” Adv. Mater. , vol. 27, pp. 3256-3265, 2015, https://doi.org/10.1002/adma.201405821 . Thomas A. V. Andow B. C. Suresh S. Controlled crumpling of graphene oxide films for tunable optical transmittance Adv. Mater. 27 3256 3265 2015 https://doi.org/10.1002/adma.201405821 

  72. [72] T. Ohzono, K. Suzuki, T. Yamaguchi, and N. Fukuda, “Tunable optical diffuser based on deformable wrinkles,” Adv. Opt. Mater. , vol. 1, pp. 374-380, 2013, https://doi.org/10.1002/adom.201300128 . Ohzono T. Suzuki K. Yamaguchi T. Fukuda N. Tunable optical diffuser based on deformable wrinkles Adv. Opt. Mater. 1 374 380 2013 https://doi.org/10.1002/adom.201300128 

  73. [73] C. Xie, L. Shi, H. Li, Z. Liu, T. Pu, and N. Gao, “Towards high-order diffraction suppression using two-dimensional quasi-periodic gratings,” in Optics, Photonics and Laser Technology 2017 , P. Ribeiro, D. L. Andrews, and M. Raposo, Eds., Cham, Springer International Publishing, 2019, pp. 31-53. Xie C. Shi L. Li H. Liu Z. Pu T. Gao N. Towards high-order diffraction suppression using two-dimensional quasi-periodic gratings Optics, Photonics and Laser Technology 2017 Ribeiro P. Andrews D. L. Raposo M. Cham Springer International Publishing 2019 31 53 

  74. [74] T. Sun, R. Song, N. Balar, P. Sen, R. J. Kline, and B. T. O’Connor, “Impact of substrate characteristics on stretchable polymer semiconductor behavior,” ACS Appl. Mater. Interfaces , vol. 11, pp. 3280-3289, 2019, https://doi.org/10.1021/acsami.8b16457 . Sun T. Song R. Balar N. Sen P. Kline R. J. O’Connor B. T. Impact of substrate characteristics on stretchable polymer semiconductor behavior ACS Appl. Mater. Interfaces 11 3280 3289 2019 https://doi.org/10.1021/acsami.8b16457 

  75. [75] R. Huang, “Kinetic wrinkling of an elastic film on a viscoelastic substrate,” J. Mech. Phys. Solid. , vol. 53, pp. 63-89, 2005, https://doi.org/10.1016/j.jmps.2004.06.007 . Huang R. Kinetic wrinkling of an elastic film on a viscoelastic substrate J. Mech. Phys. Solid. 53 63 89 2005 https://doi.org/10.1016/j.jmps.2004.06.007 

  76. [76] Y. Meng, X. Gong, Y. Huang, and L. Li, “Mechanically tunable opacity effect in transparent bilayer film: accurate interpretation and rational applications,” Appl. Mater. Today , vol. 16, pp. 474-481, 2019, https://doi.org/10.1016/j.apmt.2019.07.013 . Meng Y. Gong X. Huang Y. Li L. Mechanically tunable opacity effect in transparent bilayer film: accurate interpretation and rational applications Appl. Mater. Today 16 474 481 2019 https://doi.org/10.1016/j.apmt.2019.07.013 

  77. [77] Y. Meng, S. Zhang, K. Wu, J. Li, and L. Li, “Mechanically tunable bilayer composite grating for unique light manipulation and information storage,” Adv. Opt. Mater. , vol. 7, p. 1801017, 2019, https://doi.org/10.1002/adom.201801017 . Meng Y. Zhang S. Wu K. Li J. Li L. Mechanically tunable bilayer composite grating for unique light manipulation and information storage Adv. Opt. Mater. 7 1801017 2019 https://doi.org/10.1002/adom.201801017 

  78. [78] X. Dong, Y. Xiong, G. Chen, and S. Guo, “Effect of the morphology on the anisotropic light scattering of polycarbonate (PC)/poly(styrene-co-acrylonitrile) (SAN)(70/30) blend,” Appl. Opt. , vol. 54, pp. 608-614, 2015, https://doi.org/10.1364/ao.54.000608 . Dong X. Xiong Y. Chen G. Guo S. Effect of the morphology on the anisotropic light scattering of polycarbonate (PC)/poly(styrene-co-acrylonitrile) (SAN)(70/30) blend Appl. Opt. 54 608 614 2015 https://doi.org/10.1364/ao.54.000608 

  79. [79] E. Beaudoin, P. Davidson, B. Abecassis, T. Bizien, and D. Constantin, “Reversible strain alignment and reshuffling of nanoplatelet stacks confined in a lamellar block copolymer matrix,” Nanoscale , vol. 9, pp. 17371-17377, 2017, https://doi.org/10.1039/c7nr05723g . Beaudoin E. Davidson P. Abecassis B. Bizien T. Constantin D. Reversible strain alignment and reshuffling of nanoplatelet stacks confined in a lamellar block copolymer matrix Nanoscale 9 17371 17377 2017 https://doi.org/10.1039/c7nr05723g 

  80. [80] C. E. R. Edwards, D. J. Mai, S. Tang, and B. D. Olsen, “Molecular anisotropy and rearrangement as mechanisms of toughness and extensibility in entangled physical gels,” Phys. Rev. Mater. , vol. 4, 2020, Art no. 015602, https://doi.org/10.1103/physrevmaterials.4.015602 . Edwards C. E. R. Mai D. J. Tang S. Olsen B. D. Molecular anisotropy and rearrangement as mechanisms of toughness and extensibility in entangled physical gels Phys. Rev. Mater. 4 2020 015602 https://doi.org/10.1103/physrevmaterials.4.015602 

  81. [81] Y. H. Xin, K. M. Hu, X. Y. Li, E. Q. Tu, and W. M. Zhang, “ A flexible mechanical composite micro-grating tailored by one-dimensional ordered wrinkle patterns ,” in 2021 IEEE 16th International Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), 25-29 April 2021, Xiamen, IEEE, 2021, pp. 433-436. Xin Y. H. Hu K. M. Li X. Y. Tu E. Q. Zhang W. M. A flexible mechanical composite micro-grating tailored by one-dimensional ordered wrinkle patterns 2021 IEEE 16th International Conf. on Nano/Micro Engineered and Molecular Systems (NEMS), 25-29 April 2021 , Xiamen IEEE 2021 433 436 

  82. [82] K. Wu, Y. Sun, H. Yuan, J. Zhang, G. Liu, and J. Sun, “Harnessing dynamic wrinkling surfaces for smart displays,” Nano Lett. , vol. 20, pp. 4129-4135, 2020, https://doi.org/10.1021/acs.nanolett.9b05279 . Wu K. Sun Y. Yuan H. Zhang J. Liu G. Sun J. Harnessing dynamic wrinkling surfaces for smart displays Nano Lett. 20 4129 4135 2020 https://doi.org/10.1021/acs.nanolett.9b05279 

  83. [83] D. Ge, E. Lee, L. Yang, et al.., “A robust smart window: reversibly switching from high transparency to angle‐independent structural color display,” Adv. Mater. , vol. 27, pp. 2489-2495, 2015, https://doi.org/10.1002/adma.201500281 . Ge D. Lee E. Yang L. A robust smart window: reversibly switching from high transparency to angle‐independent structural color display Adv. Mater. 27 2489 2495 2015 https://doi.org/10.1002/adma.201500281 

  84. [84] H. N. Kim, D. Ge, E. Lee, and S. Yang, “Multistate and on‐demand smart windows,” Adv. Mater. , vol. 30, p. 1803847, 2018, https://doi.org/10.1002/adma.201803847 . Kim H. N. Ge D. Lee E. Yang S. Multistate and on‐demand smart windows Adv. Mater. 30 1803847 2018 https://doi.org/10.1002/adma.201803847 

  85. [85] Y. Jiang, S. Zeng, Y. Yao, et al.., “Dynamic optics with transparency and color changes under ambient conditions,” Polymers , vol. 11, p. 103, 2019, https://doi.org/10.3390/polym11010103 . Jiang Y. Zeng S. Yao Y. Dynamic optics with transparency and color changes under ambient conditions Polymers 11 103 2019 https://doi.org/10.3390/polym11010103 

  86. [86] S.-H. Nam, G. Hyun, D. Cho, et al.., “Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication,” Nano Res. , vol. 14, pp. 1-16, 2021, https://doi.org/10.1007/s12274-021-3428-6 . Nam S.-H. Hyun G. Cho D. Fundamental principles and development of proximity-field nanopatterning toward advanced 3D nanofabrication Nano Res. 14 1 16 2021 https://doi.org/10.1007/s12274-021-3428-6 

  87. [87] C. Ahn, J. Park, D. Cho, et al.., “High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nano patterning,” Funct. Compos. Struct. , vol. 1, 2019, Art no. 032002, https://doi.org/10.1088/2631-6331/ab3692 . Ahn C. Park J. Cho D. High-performance functional nanocomposites using 3D ordered and continuous nanostructures generated from proximity-field nano patterning Funct. Compos. Struct. 1 2019 032002 https://doi.org/10.1088/2631-6331/ab3692 

  88. [88] S. Araki, Y. Ishikawa, X. Wang, et al.., “Fabrication of nanoshell-based 3D periodic structures by templating process using solution-derived Zno,” Nanoscale Res. Lett. , vol. 12, pp. 1-9, 2017, https://doi.org/10.1186/s11671-017-2186-6 . Araki S. Ishikawa Y. Wang X. Fabrication of nanoshell-based 3D periodic structures by templating process using solution-derived Zno Nanoscale Res. Lett. 12 1 9 2017 https://doi.org/10.1186/s11671-017-2186-6 

  89. [89] H. Chen, D. Cho, K. Ko, et al.., “Interdigitated three-dimensional heterogeneous nanocomposites for high-performance mechanochromic smart membranes,” ACS Nano , 2021, https://doi.org/10.1021/acsnano.1c06403 . Chen H. Cho D. Ko K. Interdigitated three-dimensional heterogeneous nanocomposites for high-performance mechanochromic smart membranes ACS Nano 2021 https://doi.org/10.1021/acsnano.1c06403 

  90. [90] J. Park, K. I. Kim, K. Kim, et al.., “Rapid, high‐resolution 3D interference printing of multilevel ultralong nanochannel arrays for high‐throughput nanofluidic transport,” Adv. Mater. , vol. 27, pp. 8000-8006, 2015, https://doi.org/10.1002/adma.201503746 . Park J. Kim K. I. Kim K. Rapid, high‐resolution 3D interference printing of multilevel ultralong nanochannel arrays for high‐throughput nanofluidic transport Adv. Mater. 27 8000 8006 2015 https://doi.org/10.1002/adma.201503746 

  91. [91] D. Cho, J. Park, T. Kim, and S. Jeon, “Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and their soft electronic applications,” J. Semiconduct. , vol. 40, p. 111605, 2019, https://doi.org/10.1088/1674-4926/40/11/111605 . Cho D. Park J. Kim T. Jeon S. Recent advances in lithographic fabrication of micro-/nanostructured polydimethylsiloxanes and their soft electronic applications J. Semiconduct. 40 111605 2019 https://doi.org/10.1088/1674-4926/40/11/111605 

  92. [92] G. Hyun, J. T. Song, C. Ahn, et al.., “Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO2 reduction,” Proc. Natl. Acad. Sci. U. S. A. , vol. 117, pp. 5680-5685, 2020, https://doi.org/10.1073/pnas.1918837117 . Hyun G. Song J. T. Ahn C. Hierarchically porous Au nanostructures with interconnected channels for efficient mass transport in electrocatalytic CO 2 reduction Proc. Natl. Acad. Sci. U. S. A. 117 5680 5685 2020 https://doi.org/10.1073/pnas.1918837117 

  93. [93] T. Kim, J. Park, J. Sohn, D. Cho, and S. Jeon, “Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes,” ACS Nano , vol. 10, pp. 4770-4778, 2016, https://doi.org/10.1021/acsnano.6b01355 . Kim T. Park J. Sohn J. Cho D. Jeon S. Bioinspired, highly stretchable, and conductive dry adhesives based on 1D-2D hybrid carbon nanocomposites for all-in-one ECG electrodes ACS Nano 10 4770 4778 2016 https://doi.org/10.1021/acsnano.6b01355 

  94. [94] D. Cho, J. Park, J. Kim, et al.., “Three-dimensional continuous conductive nanostructure for highly sensitive and stretchable strain sensor,” ACS Appl. Mater. Interfaces , vol. 9, pp. 17369-17378, 2017, https://doi.org/10.1021/acsami.7b03052 . Cho D. Park J. Kim J. Three-dimensional continuous conductive nanostructure for highly sensitive and stretchable strain sensor ACS Appl. Mater. Interfaces 9 17369 17378 2017 https://doi.org/10.1021/acsami.7b03052 

  95. [95] D. Cho, R. Li, H. Jeong, et al.., “Bitter flavored, soft composites for wearables designed to reduce risks of choking in infants,” Adv. Mater. , vol. 33, p. 2103857, 2021, https://doi.org/10.1002/adma.202103857 . Cho D. Li R. Jeong H. Bitter flavored, soft composites for wearables designed to reduce risks of choking in infants Adv. Mater. 33 2103857 2021 https://doi.org/10.1002/adma.202103857 

  96. [96] J. M. Suh, D. Cho, S. Lee, et al.., “Rationally designed TiO2 nanostructures of continuous pore network for fast‐responding and highly sensitive acetone sensor,” Small Methods , p. 2100941, 2021, https://doi.org/10.1002/smtd.202100941 . Suh J. M. Cho D. Lee S. Rationally designed TiO 2 nanostructures of continuous pore network for fast‐responding and highly sensitive acetone sensor Small Methods 2100941 2021 https://doi.org/10.1002/smtd.202100941 

  97. [97] S. K. Park, S. Yun, G. Hwang, et al.., “Highly contrastive, real-time modulation of light intensity by reversible stress-whitening of spontaneously formed nanocomposites: application to wearable strain sensors,” J. Mater. Chem. C , vol. 9, pp. 8496-8505, 2021, https://doi.org/10.1039/d1tc00256b . Park S. K. Yun S. Hwang G. Highly contrastive, real-time modulation of light intensity by reversible stress-whitening of spontaneously formed nanocomposites: application to wearable strain sensors J. Mater. Chem. C 9 8496 8505 2021 https://doi.org/10.1039/d1tc00256b 

  98. [98] J. Li, X. Lu, Y. Zhang, et al.., “Highly sensitive mechanoresponsive smart windows driven by shear strain,” Adv. Funct. Mater. , vol. 31, p. 2102350, 2021, https://doi.org/10.1002/adfm.202102350 . Li J. Lu X. Zhang Y. Highly sensitive mechanoresponsive smart windows driven by shear strain Adv. Funct. Mater. 31 2102350 2021 https://doi.org/10.1002/adfm.202102350 

  99. [99] Y. Zhang, Z. Yan, K. Nan, et al.., “A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes,” Proc. Natl. Acad. Sci. U. S. A. , vol. 112, pp. 11757-11764, 2015, https://doi.org/10.1073/pnas.1515602112 . Zhang Y. Yan Z. Nan K. A mechanically driven form of Kirigami as a route to 3D mesostructures in micro/nanomembranes Proc. Natl. Acad. Sci. U. S. A. 112 11757 11764 2015 https://doi.org/10.1073/pnas.1515602112 

  100. [100] Y. K. Yi, J. Yin, and Y. Tang, “Developing an advanced daylight model for building energy tool to simulate dynamic shading device,” Sol. Energy , vol. 163, pp. 140-149, 2018, https://doi.org/10.1016/j.solener.2018.01.082 . Yi Y. K. Yin J. Tang Y. Developing an advanced daylight model for building energy tool to simulate dynamic shading device Sol. Energy 163 140 149 2018 https://doi.org/10.1016/j.solener.2018.01.082 

  101. [101] Y. Tang, G. Lin, S. Yang, Y. K. Yi, R. D. Kamien, and J. Yin, “Programmable kiri‐kirigami metamaterials,” Adv. Mater. , vol. 29, p. 1604262, 2017, https://doi.org/10.1002/adma.201604262 . Tang Y. Lin G. Yang S. Yi Y. K. Kamien R. D. Yin J. Programmable kiri‐kirigami metamaterials Adv. Mater. 29 1604262 2017 https://doi.org/10.1002/adma.201604262 

  102. [102] S. Zhang, S. Cao, T. Zhang, Q. Yao, A. Fisher, and J. Y. Lee, “Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance,” Mater. Horiz. , vol. 5, pp. 291-297, 2018, https://doi.org/10.1039/c7mh01128h . Zhang S. Cao S. Zhang T. Yao Q. Fisher A. Lee J. Y. Monoclinic oxygen-deficient tungsten oxide nanowires for dynamic and independent control of near-infrared and visible light transmittance Mater. Horiz. 5 291 297 2018 https://doi.org/10.1039/c7mh01128h 

  103. [103] L. Wang, H. K. Bisoyi, Z. Zheng, et al.., “Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene,” Mater. Today , vol. 20, pp. 230-237, 2017, https://doi.org/10.1016/j.mattod.2017.04.028 . Wang L. Bisoyi H. K. Zheng Z. Stimuli-directed self-organized chiral superstructures for adaptive windows enabled by mesogen-functionalized graphene Mater. Today 20 230 237 2017 https://doi.org/10.1016/j.mattod.2017.04.028 

  104. [104] G. K. Ong, C. A. Saez Cabezas, M. N. Dominguez, S. L. Skjærvø, S. Heo, and D. J. Milliron, “Electrochromic niobium oxide nanorods,” Chem. Mater. , vol. 32, pp. 468-475, 2020, https://doi.org/10.1021/acs.chemmater.9b04061 . Ong G. K. Saez Cabezas C. A. Dominguez M. N. Skjærvø S. L. Heo S. Milliron D. J. Electrochromic niobium oxide nanorods Chem. Mater. 32 468 475 2020 https://doi.org/10.1021/acs.chemmater.9b04061 

  105. [105] S. Ge, J. Li, J. Geng, S. Liu, H. Xu, and Z. Gu, “Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties,” Mater. Horiz. , vol. 8, pp. 1189-1198, 2021, https://doi.org/10.1039/d0mh01762k . Ge S. Li J. Geng J. Liu S. Xu H. Gu Z. Adjustable dual temperature-sensitive hydrogel based on a self-assembly cross-linking strategy with highly stretchable and healable properties Mater. Horiz. 8 1189 1198 2021 https://doi.org/10.1039/d0mh01762k 

  106. [106] J. Lin, M. Lai, L. Dou, et al.., “Thermochromic halide perovskite solar cells,” Nat. Mater. , vol. 17, pp. 261-267, 2018, https://doi.org/10.1038/s41563-017-0006-0 . Lin J. Lai M. Dou L. Thermochromic halide perovskite solar cells Nat. Mater. 17 261 267 2018 https://doi.org/10.1038/s41563-017-0006-0 

  107. [107] Z. Wang, W. Fan, Q. He, Y. Wang, X. Liang, and S. Cai, “A simple and robust way towards reversible mechanochromism: using liquid crystal elastomer as a mask,” Extreme Mech. Lett. , vol. 11, pp. 42-48, 2017, https://doi.org/10.1016/j.eml.2016.11.015 . Wang Z. Fan W. He Q. Wang Y. Liang X. Cai S. A simple and robust way towards reversible mechanochromism: using liquid crystal elastomer as a mask Extreme Mech. Lett. 11 42 48 2017 https://doi.org/10.1016/j.eml.2016.11.015 

  108. [108] H. Cho, J. Kwon, I. Ha, et al.., “Mechano-thermo-chromic device with supersaturated salt hydrate crystal phase change,” Sci. Adv. , vol. 5, 2019, Art no. eaav4916, https://doi.org/10.1126/sciadv.aav4916 . Cho H. Kwon J. Ha I. Mechano-thermo-chromic device with supersaturated salt hydrate crystal phase change Sci. Adv. 5 2019 eaav4916 https://doi.org/10.1126/sciadv.aav4916 

  109. [109] W. F. Green, “The “melting-point” of hydrated sodium acetate: solubility curves,” J. Phys. Chem. , vol. 12, pp. 655-660, 1908, https://doi.org/10.1021/j150099a002 . Green W. F. The “melting-point” of hydrated sodium acetate: solubility curves J. Phys. Chem. 12 655 660 1908 https://doi.org/10.1021/j150099a002 

  110. [110] J. Gu, D. Kwon, J. Ahn, and I. Park, “Wearable strain sensors using light transmittance change of carbon nanotube-embedded elastomers with microcracks,” ACS Appl. Mater. Interfaces , vol. 12, pp. 10908-10917, 2020, https://doi.org/10.1021/acsami.9b18069 . Gu J. Kwon D. Ahn J. Park I. Wearable strain sensors using light transmittance change of carbon nanotube-embedded elastomers with microcracks ACS Appl. Mater. Interfaces 12 10908 10917 2020 https://doi.org/10.1021/acsami.9b18069 

  111. [111] S. Zeng, K. Shen, Y. Liu, et al.., “Dynamic thermal radiation modulators via mechanically tunable surface emissivity,” Mater. Today , vol. 45, pp. 44-53, 2021, https://doi.org/10.1016/j.mattod.2020.12.001 . Zeng S. Shen K. Liu Y. Dynamic thermal radiation modulators via mechanically tunable surface emissivity Mater. Today 45 44 53 2021 https://doi.org/10.1016/j.mattod.2020.12.001 

  112. [112] X. Yao, Y. Hu, A. Grinthal, T.-S. Wong, L. Mahadevan, and J. Aizenberg, “Adaptive fluid-infused porous films with tunable transparency and wettability,” Nat. Mater. , vol. 12, pp. 529-534, 2013, https://doi.org/10.1038/nmat3598 . Yao X. Hu Y. Grinthal A. Wong T.-S. Mahadevan L. Aizenberg J. Adaptive fluid-infused porous films with tunable transparency and wettability Nat. Mater. 12 529 534 2013 https://doi.org/10.1038/nmat3598 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로