$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Analysis of electromagnetic characteristics of the proposed composite four-rail electromagnetic launcher 원문보기

Science and engineering of composite materials, v.29 no.1, 2022년, pp.113 - 125  

Tengda, Li ,  Gang, Feng ,  Shaowei, Liu

Abstract AI-Helper 아이콘AI-Helper

AbstractIn the existing composite four-rail electromagnetic launcher (CFREL), the armature and rail contact surface produces significant heat and bears considerable wear, thereby reducing the potential amount of electromagnetic thrust to be generated. To eliminate the damage caused by the thermal ef...

주제어

참고문헌 (24)

  1. [1] Weiming M, Junyong L. Electromagnetic launch technology. J Natl Univ Def Technol. 2016;38(6):1-5. Weiming M Junyong L Electromagnetic launch technology J Natl Univ Def Technol 2016 38 6 1 5 

  2. [2] Vertelis V, Vincent G, Schneider M, Balevicius S, Stankevic V, Zurauskiene N. Magnetic field expulsion from a conducting projectile in a pulsed serial augmented railgun. IEEE Trans Plasma Sci. 2020;3(48):727-32. Vertelis V Vincent G Schneider M Balevicius S Stankevic V Zurauskiene N Magnetic field expulsion from a conducting projectile in a pulsed serial augmented railgun IEEE Trans Plasma Sci 2020 3 48 727 32 

  3. [3] McNab IR. Large-scale pulsed power opportunities and challenges. IEEE Trans Plasma Sci. 2014;42(5):1118-26. McNab IR Large-scale pulsed power opportunities and challenges IEEE Trans Plasma Sci 2014 42 5 1118 26 

  4. [4] Yingfu Z, Zhiguo X, Yulong H. On the development trends of aircraft carriers. Chin J Ship Res. 2016;11(1):1-7. Yingfu Z Zhiguo X Yulong H On the development trends of aircraft carriers Chin J Ship Res 2016 11 1 1 7 

  5. [5] Fair HD. Progress in electromagnetic launch science and technology. IEEE Trans Magnetics. 2006;43(1):93-8. Fair HD Progress in electromagnetic launch science and technology IEEE Trans Magnetics 2006 43 1 93 8 

  6. [6] Lin Q, Li B. Numerical simulation of interior ballistic process of railgun based on the multi-field coupled model. Def Technol. 2016;12(2):101-5. Lin Q Li B Numerical simulation of interior ballistic process of railgun based on the multi-field coupled model Def Technol 2016 12 2 101 5 

  7. [7] Zhang H, Fan B, Chen Z, Li H, Li B. Experimental research on the mechanism of lift amplification and vibration suppression of Lorentz force. Def Technol. 2013;9(2):85-90. Zhang H Fan B Chen Z Li H Li B Experimental research on the mechanism of lift amplification and vibration suppression of Lorentz force Def Technol 2013 9 2 85 90 

  8. [8] Fair HD. Guest editorial The past, present, and future of electromagnetic launch technology and the IEEE international EML symposia. IEEE Trans Plasma Sci. 2013;41(5):1112-6. Fair HD Guest editorial The past, present, and future of electromagnetic launch technology and the IEEE international EML symposia IEEE Trans Plasma Sci 2013 41 5 1112 6 

  9. [9] Jun Li Li, Shizhong Li Li, Peizhu Liu L, Yingchun Gui, Ning Su, Jiannian Dong, et al. Design and testing of a 10-MJ electromagnetic launch facility. IEEE Trans Plasma ence. 2011;39(4):1187-91. Jun Li Li Shizhong Li Li Peizhu Liu L Yingchun Gui Ning Su Jiannian Dong Design and testing of a 10-MJ electromagnetic launch facility IEEE Trans Plasma ence 2011 39 4 1187 91 

  10. [10] Keshtkar A, Rabiei A, Gharib L. Effect of armature and rails resistivity profile on rail’s electromagnetic force and armature velocity. IEEE Trans Plasma Sci. 2015;43(5):1. Keshtkar A Rabiei A Gharib L Effect of armature and rails resistivity profile on rail’s electromagnetic force and armature velocity IEEE Trans Plasma Sci 2015 43 5 1 

  11. [11] Schuppler C, Tumonis L, Kacianauskas R, Schneider M. Experimental and numerical investigations of vibrations at a railgun with discrete supports. IEEE Trans Plasma Sci. 2013;41(5 Part1):1508-13. Schuppler C Tumonis L Kacianauskas R Schneider M Experimental and numerical investigations of vibrations at a railgun with discrete supports IEEE Trans Plasma Sci 2013 41 5 Part1 1508 13 

  12. [12] Doerry N, Amy J, Krolick C. History and the status of electric ship propulsion, integrated power systems, and future trends in the U.S. Navy. Proc IEEE. 2015;103(12):2243-51. Doerry N Amy J Krolick C History and the status of electric ship propulsion, integrated power systems, and future trends in the U.S. Navy Proc IEEE 2015 103 12 2243 51 

  13. [13] Ma WM, Lu JY. Thinking and study of electromagnetic launch technology. IEEE Trans Plasma Sci. 2017;45(7):1071-7. Ma WM Lu JY Thinking and study of electromagnetic launch technology IEEE Trans Plasma Sci 2017 45 7 1071 7 

  14. [14] Gutierrez H, Meinke R, Fernando T, Kirk D. Non-contact DC electromagnetic propulsion by multipole transversal field: Numerical and experimental validation. IEEE Trans Magnetics. 2016;52(8):1-10. Gutierrez H Meinke R Fernando T Kirk D Non-contact DC electromagnetic propulsion by multipole transversal field: Numerical and experimental validation IEEE Trans Magnetics 2016 52 8 1 10 

  15. [15] Yang Z, Feng G, Xue X, Shu T. An electromagnetic rail launcher by quadrupole magnetic field for heavy intelligent projectiles. IEEE Trans Plasma Sci. 2017;45(7):1095-100. Yang Z Feng G Xue X Shu T An electromagnetic rail launcher by quadrupole magnetic field for heavy intelligent projectiles IEEE Trans Plasma Sci 2017 45 7 1095 100 

  16. [16] Xue XP, Shu T, Yang ZY, Feng G. A new electromagnetic launcher by sextupole rails: electromagnetic propulsion and shielding numerical validation. IEEE Trans Plasma Sci. 2017;45(9):2541-5. Xue XP Shu T Yang ZY Feng G A new electromagnetic launcher by sextupole rails: electromagnetic propulsion and shielding numerical validation IEEE Trans Plasma Sci 2017 45 9 2541 5 

  17. [17] Zhang ZY, Sun LX, Tao NR. Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy. J Mater Sci Technol. 2020;48(13):18-22. Zhang ZY Sun LX Tao NR Nanostructures and nanoprecipitates induce high strength and high electrical conductivity in a CuCrZr alloy J Mater Sci Technol 2020 48 13 18 22 

  18. [18] Zhang H, Li S, Gao X, Lu T, Liu F. Distribution characteristics of electromagnetic field and temperature field of different caliber electromagnetic railguns. IEEE Trans Plasma Sci. 2020;48(12):4342-9. Zhang H Li S Gao X Lu T Liu F Distribution characteristics of electromagnetic field and temperature field of different caliber electromagnetic railguns IEEE Trans Plasma Sci 2020 48 12 4342 9 

  19. [19] Chen LX, He J, Xiao Z, Pan Y. Study on the length of trailing arm of monolithic C-armature in a 20-mm caliber railgun. IEEE Trans Plasma Sci. 2011;39(1):417-21. Chen LX He J Xiao Z Pan Y Study on the length of trailing arm of monolithic C-armature in a 20-mm caliber railgun IEEE Trans Plasma Sci 2011 39 1 417 21 

  20. [20] Cao HY, Zhan ZJ. Experimental study on ablation characteristics of electromagnetic orbit of copper/diamond composite. J High Volt Phys. 2016;30(4):317-22. Cao HY Zhan ZJ Experimental study on ablation characteristics of electromagnetic orbit of copper/diamond composite J High Volt Phys 2016 30 4 317 22 

  21. [21] Huang W, Yang LM, Shi GN, Zhang YS, Tian KW, Liu K. Study on orbital damage behavior of CuCrZr alloy under electromagnetic emission conditions. J Military Eng. 2020;41(5):858-64. Huang W Yang LM Shi GN Zhang YS Tian KW Liu K Study on orbital damage behavior of CuCrZr alloy under electromagnetic emission conditions J Military Eng 2020 41 5 858 64 

  22. [22] Yin Q, Zhang H, Li HJ, Yang YX. Analysis of in-bore magnetic field in C-shaped armature railguns. Def Technol. 2019;15(1):83-8. Yin Q Zhang H Li HJ Yang YX Analysis of in-bore magnetic field in C-shaped armature railguns Def Technol 2019 15 1 83 8 

  23. [23] Xie H, Yang H, Yu J, Gao M, Shou J, Fang Y, et al. Research progress on advanced rail materials for electromagnetic railgun technology. Def Technol. 2021;17(2):429-39. Xie H Yang H Yu J Gao M Shou J Fang Y Research progress on advanced rail materials for electromagnetic railgun technology Def Technol 2021 17 2 429 39 

  24. [24] Tian ZG, An XY, Yang Y, Hao YJ. Coupling analysis of multiple physical fields of composite electromagnetic rail. J Gun Launch Control. 2017;38(3):1-6. Tian ZG An XY Yang Y Hao YJ Coupling analysis of multiple physical fields of composite electromagnetic rail J Gun Launch Control 2017 38 3 1 6 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로