$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

L-Unet: A Landslide Extraction Model Using Multi-Scale Feature Fusion and Attention Mechanism 원문보기

Remote sensing, v.14 no.11, 2022년, pp.2552 -   

Dong, Zhangyu (School of Computer and Information, Hefei University of Technology, Hefei 230601, China) ,  An, Sen (School of Computer and Information, Hefei University of Technology, Hefei 230601, China) ,  Zhang, Jin (School of Computer and Information, Hefei University of Technology, Hefei 230601, China) ,  Yu, Jinqiu (School of Computer and Information, Hefei University of Technology, Hefei 230601, China) ,  Li, Jinhui (School of Computer and Information, Hefei University of Technology, Hefei 230601, China) ,  Xu, Daoli (School of Computer and Information, Hefei University of Technology, Hefei 230601, China)

Abstract AI-Helper 아이콘AI-Helper

At present, it is challenging to extract landslides from high-resolution remote-sensing images using deep learning. Because landslides are very complex, the accuracy of traditional extraction methods is low. To improve the efficiency and accuracy of landslide extraction, a new model is proposed base...

참고문헌 (33)

  1. Wang Application of Bayesian Hyperparameter Optimized Random Forest and XGBoost Model for Landslide Susceptibility Mapping Front. Earth Sci. 2021 9 617 

  2. 10.3390/rs10101527 Tien Bui, D., Shahabi, H., Shirzadi, A., Chapi, K., Alizadeh, M., Chen, W., Mohammadi, A., Ahmad, B.B., Panahi, M., and Hong, H. (2018). Landslide detection and susceptibility mapping by airsar data using support vector machine and index of entropy models in cameron highlands, malaysia. Remote Sens., 10. 

  3. Hammad Integration of GIS and advanced remote sensing techniques for landslide hazard assessment: A case study of northwest Syria ISPRS Ann. Photogramm. Remote Sens. Spat. Inf. Sci. 2020 10.5194/isprs-annals-VI-3-W1-2020-27-2020 6 27 

  4. Uddin PCA-based feature reduction for hyperspectral remote sensing image classification IETE Tech. Rev. 2021 10.1080/02564602.2020.1740615 38 377 

  5. Fu Discussion on application of support vector machine technique in extraction of information on landslide hazard from remote sensing images Res. Soil Water Conserv. 2006 13 120 

  6. Xu Automatic extraction of earthquake-triggered landslides based on maximum likelihood method and its validation Chin. J. Geol. Hazard Control. 2013 24 19 

  7. Li Identification of forested landslides using LiDar data, object-based image analysis, and machine learning algorithms Remote Sens. 2015 10.3390/rs70809705 7 9705 

  8. Blaschke Object-based image analysis and digital terrain analysis for locating landslides in the Urmia Lake Basin, Iran IEEE J. Sel. Top. Appl. Earth Obs. Remote. Sens. 2014 10.1109/JSTARS.2014.2350036 7 4806 

  9. 10.1109/IAEAC50856.2021.9390673 Yang, Y., Xie, G., and Qu, Y. (2021, January 12-14). Real-time Detection of Aircraft Objects in Remote Sensing Images Based on Improved YOLOv4. Proceedings of the 2021 IEEE 5th Advanced Information Technology, Electronic and Automation Control Conference (IAEAC), Chongqing, China. 

  10. Niu Hybrid multiple attention network for semantic segmentation in aerial images IEEE Trans. Geosci. Remote Sens. 2021 60 1 

  11. Maggiori Convolutional neural networks for large-scale remote-sensing image classification IEEE Trans. Geosci. Remote Sens. 2016 10.1109/TGRS.2016.2612821 55 645 

  12. Sameen Landslide detection using residual networks and the fusion of spectral and topographic information IEEE Access 2019 10.1109/ACCESS.2019.2935761 7 114363 

  13. Wang Remote sensing landslide recognition based on convolutional neural network Math. Probl. Eng. 2019 2019 8389368 

  14. 10.3390/rs11020196 Ghorbanzadeh, O., Blaschke, T., Gholamnia, K., Meena, S.R., Tiede, D., and Aryal, J. (2019). Evaluation of different machine learning methods and deep-learning convolutional neural networks for landslide detection. Remote Sens., 11. 

  15. 10.3390/rs12233992 Zhang, P., Xu, C., Ma, S., Shao, X., Tian, Y., and Wen, B. (2020). Automatic Extraction of Seismic Landslides in Large Areas with Complex Environments Based on Deep Learning: An Example of the 2018 Iburi Earthquake, Japan. Remote Sens., 12. 

  16. 10.3390/rs12050752 Lu, H., Ma, L., Fu, X., Liu, C., Wang, Z., Tang, M., and Li, N. (2020). Landslides information extraction using object-oriented image analysis paradigm based on deep learning and transfer learning. Remote Sens., 12. 

  17. Ji Landslide detection from an open satellite imagery and digital elevation model dataset using attention boosted convolutional neural networks Landslides 2020 10.1007/s10346-020-01353-2 17 1337 

  18. 10.3390/ijgi10030168 Liu, P., Wei, Y., Wang, Q., Xie, J., Chen, Y., Li, Z., and Zhou, H. (2021). A research on landslides automatic extraction model based on the improved mask R-CNN. ISPRS Int. J. Geo-Inf., 10. 

  19. 10.1007/978-3-319-24574-4_28 Ronneberger, O., Fischer, P., and Brox, T. (2015, January 5-9). U-net: Convolutional networks for biomedical image segmentation. Proceedings of the 2015 International Conference on Medical Image Computing and Computer-Assisted Intervention, Munich, Germany. 

  20. Soares, L.P., Dias, H.C., and Grohmann, C.H. (2020). Landslide Segmentation with U-Net: Evaluating Different Sampling Methods and Patch Sizes. arXiv. 

  21. 10.3390/rs12050894 Liu, P., Wei, Y., Wang, Q., Chen, Y., and Xie, J. (2020). Research on post-earthquake landslide extraction algorithm based on improved U-Net model. Remote Sens., 12. 

  22. Ghorbanzadeh A comprehensive transferability evaluation of U-Net and ResU-Net for landslide detection from Sentinel-2 data (case study areas from Taiwan, China, and Japan) Sci. Rep. 2021 10.1038/s41598-021-94190-9 11 14629 

  23. Ghorbanzadeh Landslide detection using deep learning and object-based image analysis Landslides 2022 10.1007/s10346-021-01843-x 19 929 

  24. 10.1109/CVPR.2016.90 He, K., Zhang, X., Ren, S., and Sun, J. (2016, January 27-30). Deep residual learning for image recognition. Proceedings of the 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, USA. 

  25. 10.1109/CVPR46437.2021.01350 Hou, Q., Zhou, D., and Feng, J. (2021, January 20-25). Coordinate attention for efficient mobile network design. Proceedings of the 2021 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Nashville, TN, USA. 

  26. 10.1109/CVPR.2019.00324 Tian, Z., He, T., Shen, C., and Yan, Y. (2019, January 15-20). Decoders matter for semantic segmentation: Data-dependent decoding enables flexible feature aggregation. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA. 

  27. Shelhamer Fully convolutional networks for semantic segmentation IEEE Trans. Pattern Anal. Mach. Intell. 2016 10.1109/TPAMI.2016.2572683 39 640 

  28. Badrinarayanan Segnet: A deep convolutional encoder-decoder architecture for image segmentation IEEE Trans. Pattern Anal. Mach. Intell. 2017 10.1109/TPAMI.2016.2644615 39 2481 

  29. 10.1109/CVPR.2017.660 Zhao, H., Shi, J., Qi, X., Wang, X., and Jia, J. (2017, January 21-26). Pyramid scene parsing network. Proceedings of the 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, USA. 

  30. 10.1109/CVPR.2019.00584 Sun, K., Xiao, B., Liu, D., and Wang, J. (2019, January 15-20). Deep high-resolution representation learning for human pose estimation. Proceedings of the 2019 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), Long Beach, CA, USA. 

  31. 10.1007/978-3-030-01234-2_49 Chen, L.C., Zhu, Y., Papandreou, G., Schroff, F., and Adam, H. (2018, January 8-14). Encoder-decoder with atrous separable convolution for semantic image segmentation. Proceedings of the 2018 European Conference on Computer Vision (ECCV), Munich, Germany. 

  32. 10.1109/JURSE.2019.8809046 Liu, Q., Kampffmeyer, M., Jenssen, R., and Salberg, A. (2019, January 22-24). Dense Dilated Convolutions Merging Network for Semantic Mapping of Remote Sensing Images. Proceedings of the 2019 Joint Urban Remote Sensing Event (JURSE), Vannes, France. 

  33. Li MACU-Net for Semantic Segmentation of Fine-Resolution Remotely Sensed Images IEEE Geosci. Remote Sens. Lett. 2022 19 1 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로