$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Synthetic pharmaceutical peptides characterization by chromatography principles and method development

Journal of separation science, v.45 no.13, 2022년, pp.2200 - 2216  

Sharma, Nitish (The National Institute of Pharmaceutical Education and Research‐) ,  Kukreja, Divya (Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), Opposite Air force Station, Gandhinagar, India) ,  Giri, Tushar (The National Institute of Pharmaceutical Education and Research‐) ,  Kumar, Sumit (Ahmedabad (Ministry of Chemicals and Fertilizers, Government of India), Opposite Air force Station, Gandhinagar, India) ,  Shah, Ravi P (The National Institute of Pharmaceutical Education and Research‐)

Abstract AI-Helper 아이콘AI-Helper

As per the United States Food and Drug Administration, any polymer/chain composed of 40 or fewer amino acids is called a peptide, where more than 40 amino acids are considered proteins. On many occasions, there is a change in the source of manufacturing of the peptide active pharmaceutical ingredien...

주제어

참고문헌 (66)

  1. Muttenthaler M , King GF , Adams DJ , Alewood PF . Trends in peptide drug discovery . Nat Rev Drug Discov . 2021 ; 20 : 309 – 25 . 

  2. Fosgerau K , Hoffmann T . Peptide therapeutics: current status and future directions . Drug Discov Today . 2015 ; 20 : 122 – 8 . 

  3. Lau JL , Dunn MK . Therapeutic peptides: Historical perspectives, current development trends, and future directions . Bioorg Med . 2018 ; 26 : 2700 – 7 . 

  4. Uhlig T , Kyprianou T , Martinelli FG , Oppici CA , Heiligers D , Hills D , Calvo XR , Verhaert P . The emergence of peptides in the pharmaceutical business: From exploration to exploitation . EuPA Open Proteom . 2014 ; 4 : 58 – 69 . 

  5. Kaspar AA , Reichert JM . Future directions for peptide therapeutics development . Drug Discov Today . 2013 ; 18 : 807 – 17 . 

  6. https://www.fda.gov/media/107622/download. Accessed October 12, 2021 

  7. Kristensen K , Henriksen JR , Andresen TL . Adsorption of cationic peptides to solid surfaces of glass and plastic . PLoS One . 2015 ; 10 : e0122419 . 

  8. Goebel‐Stengel M , Stengel A , Taché Y , Reeve Jr , JR . The importance of using the optimal plasticware and glassware in studies involving peptides . Anal Biochem . 2011 ; 414 : 38 – 46 . 

  9. Kraut A , Marcellin M , Adrait A , Kuhn L , Louwagie M , Kieffer‐Jaquinod S , Lebert D , Masselon CD , Dupuis A , Bruley C . Peptide storage: are you getting the best return on your investment? Defining optimal storage conditions for proteomics samples . J Proteome Res . 2009 ; 8 : 3778 – 85 . 

  10. Audain E , Ramos Y , Hermjakob H , Flower DR , Perez‐Riverol Y . Accurate estimation of isoelectric point of protein and peptide based on amino acid sequences . Bioinformatics 2016 ; 32 : 821 – 7 . 

  11. Sikora K , Jaśkiewicz M , Neubauer D , Migoń D , Kamysz W . The role of counter‐ions in peptides—an overview . Pharmaceuticals 2020 ; 13 : 442 . 

  12. Mant CT , Chen Y , Yan Z , Popa TV , Kovacs JM , Mills JB , Tripet BP , Hodges RS . Peptide characterization and application protocols . Totowa, NJ : Humana Press ; 2007 . 

  13. Smith JB . Peptide sequencing by Edman degradation . e LS . 2001 . 

  14. Hunkapiller M , Hewick R , Drewer W , Hood L . Peptide sequencing by Edman degradation . Meth Enzymol . 1983 ; 91 : 15 . 

  15. Strack R . Solving the primary structure of peptides . Nat Methods . 2015 ; 12 : https://doi.org/10.1038/nmeth.3524. 

  16. Pauling L , Corey RB , Branson HR . The structure of proteins: two hydrogen‐bonded helical configurations of the polypeptide chain . Proc Natl Acad Sci USA . 1951 ; 37 : 205 – 11 . 

  17. Bolotina I , VIu L . Determination of the secondary structure of proteins from circular dichroism spectra. IV. Contribution of aromatic amino acid residues into circular dichroism spectra of proteins in the peptide region . Mol Biol . 1985 ; 19 : 1409 – 21 . 

  18. Greenfield NJ . Using circular dichroism spectra to estimate protein secondary structure . Nat Protoc . 2006 ; 1 : 2876 – 90 . 

  19. Kelly SM , Price NC . The use of circular dichroism in the investigation of protein structure and function . Curr Protein Pept Sci . 2000 ; 1 : 349 – 84 . 

  20. Den Engelsman J , Garidel P , Smulders R , Koll H , Smith B , Bassarab S , Seidl A , Hainzl O , Jiskoot W . Strategies for the assessment of protein aggregates in pharmaceutical biotech product development . Pharm Res . 2011 ; 28 : 920 – 33 . 

  21. Pignataro MF , Herrera MG , Dodero VI . Evaluation of peptide/protein self‐assembly and aggregation by spectroscopic methods . Molecules 2020 ; 25 : 4854 . 

  22. Manning MC , Chou DK , Murphy BM , Payne RW , Katayama DS . Stability of protein pharmaceuticals: an update . Pharm Res . 2010 ; 27 : 544 – 75 . 

  23. Bhatt NP , Patel K , Borchardt RT . Chemical pathways of peptide degradation. I. Deamidation of adrenocorticotropic hormone . Pharm Res . 1990 ; 7 : 593 – 9 . 

  24. Wang W . Instability, stabilization, and formulation of liquid protein pharmaceuticals . Int J Pharm . 1999 ; 185 : 129 – 88 . 

  25. Joshi AB , Kirsch LE . The relative rates of glutamine and asparagine deamidation in glucagon fragment 22–29 under acidic conditions . J Pharm Sci . 2002 ; 91 : 2332 – 45 . 

  26. Zapadka KL , Becher FJ , Gomes dos Santos A , Jackson SE . Factors affecting the physical stability (aggregation) of peptide therapeutics . Interf Focus . 2017 ; 7 : 20170030 . 

  27. Geiger T , Clarke S . Deamidation, isomerization, and racemization at asparaginyl and aspartyl residues in peptides. Succinimide‐linked reactions that contribute to protein degradation . J Biol Chem . 1987 ; 262 : 785 – 94 . 

  28. Torosantucci R , Schöneich C , Jiskoot W . Oxidation of therapeutic proteins and peptides: structural and biological consequences . Pharm Res . 2014 ; 31 : 541 – 53 . 

  29. Ji JA , Zhang B , Cheng W , Wang YJ . Methionine, tryptophan, and histidine oxidation in a model protein, PTH: mechanisms and stabilization . J Pharm Sci . 2009 ; 98 : 4485 – 500 . 

  30. D'Hondt M , Bracke N , Taevernier L , Gevaert B , Verbeke F , Wynendaele E , De Spiegeleer B . Related impurities in peptide medicines . J Pharm Biomed Anal . 2014 ; 101 : 2 – 30 . 

  31. Cromwell ME , Hilario E , Jacobson F . Protein aggregation and bioprocessing . AAPS J . 2006 ; 8 : E572 – 9 . 

  32. Liu S , Zhou L , Chen L , Dastidar SG , Verma C , Li J , Tan D , Beuerman R . Effect of structural parameters of peptides on dimer formation and highly oxidized side products in the oxidation of thiols of linear analogues of human β‐defensin 3 by DMSO . J Pept Sci . 2009 ; 15 : 95 – 106 . 

  33. Ohtake S , Kita Y , Arakawa T . Interactions of formulation excipients with proteins in solution and in the dried state . Adv Drug Deliv Rev . 2011 ; 63 : 1053 – 73 . 

  34. Narang AS , Desai D , Badawy S . Impact of excipient interactions on solid dosage form stability . Pharm Res . 2012 ; 29 : 2660 – 83 . 

  35. Byrn SR , Xu W , Newman AW . Chemical reactivity in solid‐state pharmaceuticals: formulation implications . Adv Drug Deliv Rev . 2001 ; 48 : 115 – 36 . 

  36. Kamerzell TJ , Esfandiary R , Joshi SB , Middaugh CR , Volkin DB . Protein–excipient interactions: Mechanisms and biophysical characterization applied to protein formulation development . Adv Drug Deliv Rev . 2011 ; 63 : 1118 – 59 . 

  37. Wu LC , Chen F , Lee SL , Raw A , Lawrence XY . Building parity between brand and generic peptide products: regulatory and scientific considerations for quality of synthetic peptides . Int J Pharm . 2017 ; 518 : 320 – 34 . 

  38. Carr D . A guide to the analysis and purification of proteins and peptides by reversed‐phase HPLC . Adv Chromatogr Technol . 2016: 2 – 63 . 

  39. https://www2.chem.wisc.edu/deptfiles/genchem/netorial/modules/biomolecules/modules/protein1/prot13.htm. Accessed October 12, 2021. 

  40. https://proteinstructures.com/structure/amino‐acids. Accessed October 14, 2021. 

  41. Hou Y , Yin Y , Wu G . Dietary essentiality of “nutritionally non‐essential amino acids” for animals and humans . Exp Biol Med . 2015 ; 240 : 997 – 1007 . 

  42. Moldoveanu SC , David V . Selection of the HPLC method in chemical analysis . Amsterdam, NL : Elsevier ; 2017 . 

  43. https://www.waters.com/waters/en_US/PracticalApproachestoPeptideIsolationMethodDevelopmentConsiderations/nav.htm?cid=134929200&locale=en_US. Accessed October 21, 2021. 

  44. McCalley DV . Choice of buffer for the analysis of basic peptides in reversed‐phase HPLC . LC GC NAM . 2005 ; 23 : 162 – 81 . 

  45. McCalley DV . Effect of buffer on peak shape of peptides in reversed‐phase high performance liquid chromatography . J Chromatogr A . 2004 ; 1038 : 77 – 84 . 

  46. Shibue M , Mant C , Hodges R . Effect of anionic ion‐pairing reagent concentration (1–60 mM) on reversed‐phase liquid chromatography elution behaviour of peptides . J Chromatogr A . 2005 ; 1080 : 58 – 67 . 

  47. Verbeke F , Bracke N , Debunne N , Wynendaele E , De Spiegeleer B . LC–MS compatible antiadsorption diluent for peptide analysis . Anal Chem . 2019 ; 92 : 1712 – 9 . 

  48. Prasad S , Mandal I , Singh S , Paul A , Mandal B , Venkatramani R , Swaminathan R . Near UV‐visible electronic absorption originating from charged amino acids in a monomeric protein . Chem Sci . 2017 ; 8 : 5416 – 33 . 

  49. Mant CT , Cepeniene D , Hodges RS . Reversed‐phase HPLC of peptides: Assessing column and solvent selectivity on standard, polar‐embedded and polar endcapped columns . J Sep Sci . 2010 ; 33 : 3005 – 21 . 

  50. https://www.waters.com/webassets/cms/library/docs/720002975en.pdf Accessed November 2, 2021. 

  51. Stoll DR , Carr PW . Two‐dimensional liquid chromatography: a state of the art tutorial . Anal Chem . 2017 ; 89 : 519 – 31 . 

  52. Wang X , Buckenmaier S , Stoll D . The growing role of two‐dimensional LC in the biopharmaceutical industry . J Appl Bioanal . 2017 ; 3 : 120 . 

  53. https://www.agilent.com/cs/library/primers/public/5991‐2359EN.pdf. Accessed November 2, 2021. 

  54. Tognarelli D , Tsukamoto A , Caldwell J , Caldwell W . Rapid peptide separation by supercritical fluid chromatography . Bioanalysis 2010 ; 2 : 5 – 7 . 

  55. Molineau J , Hamel Y , Hideux M , Hennig P , Bertin S , Mauge F , Lesellier E , West C . Analysis of short‐chain bioactive peptides by unified chromatography‐electrospray ionization mass spectrometry. Part I. Method development . J Chromatogr A . 2021 ; 1658 : 462631 . 

  56. Molineau J , Hideux M , Hennig P , Bertin S , Mauge F , Lesellier E , West C . Analysis of short‐chain bioactive peptides by unified chromatography‐electrospray ionization mass spectrometry. Part II. Comparison to reversed‐phase ultra‐high performance liquid chromatography . J Chromatogr A . 2022 ; 1663 : 462771 . 

  57. Fekete S , Beck A , Veuthey J‐L , Guillarme D . Theory and practice of size exclusion chromatography for the analysis of protein aggregates . J Pharm Biomed Anal . 2014 ; 101 : 161 – 73 . 

  58. Oliva A , Llabrés Ma , Fariña JB . Comparative study of protein molecular weights by size‐exclusion chromatography and laser‐light scattering . J Pharm Biomed Anal . 2001 ; 25 : 833 – 41 . 

  59. Hong P , Koza S , Bouvier ES . A review size‐exclusion chromatography for the analysis of protein biotherapeutics and their aggregates . J Liq Chromatogr Relat Technol. 2012 ; 35 : 2923 – 50 . 

  60. Wen J , Arakawa T , Philo JS . Size‐exclusion chromatography with on‐line light‐scattering, absorbance, and refractive index detectors for studying proteins and their interactions . Anal Biochem . 1996 ; 240 : 155 – 66 . 

  61. https://www.bio‐rad.com/en‐in/applications‐technologies/ion‐exchange‐chromatography Accessed November 4, 2021. 

  62. Ó’Fágáin C , Cummins PM , O'Connor BF . Protein chromatography . New York, NY : Springer Science + Business Media ; 2017 . 

  63. Yamamoto S , Nakanishi K , Matsuno R . Ion‐exchange chromatography of proteins . Boca Raton, FL : CRC Press , 1988 . 

  64. Jungbauer A , Hahn R . Ion‐exchange chromatography . Meth Enzymol . 2009 ; 463 : 349 – 71 . 

  65. Fekete S , Beck A , Veuthey J‐L , Guillarme D . Ion‐exchange chromatography for the characterization of biopharmaceuticals . J Pharm Biomed Anal . 2015 ; 113 : 43 – 55 . 

  66. Torrado A , Valiente M . The effect of resin particle size on the rate of ion release: interactions in mixed bed systems . Anal Bioanal Chem . 2004 ; 378 : 205 – 13 . 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로