최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Biomedicines, v.10 no.6, 2022년, pp.1388 -
Halperin-Sternfeld, Michal (Department of Oral Biology, The Maurice and Gabriela Goldschleger School of Dental Medicine, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 6997801, Israel) , Netanel Liberman, Gal (michal4@mail.tau.ac.il (M.H.-S.)) , Kannan, Raha (francescanetti1990@gmail.com (F.N.)) , Netti, Francesca (Avram and Stella Goldstein-Goren Department of Biotechnology Engineering, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel) , Ma, Peter X. (galnet@post.bgu.ac.il (G.N.L.)) , Arad, Shoshana Malis (arad@post.bgu.ac.il (S.M.A.)) , Adler-Abramovich, Lihi (Department of Biologic and Materials Sciences, University of Michigan, Ann Arbor, MI 48109, USA)
Sulfated polysaccharides of red marine microalgae have recently gained much attention for biomedical applications due to their anti-inflammatory and antioxidant properties. However, their low mechanical properties limit their use in tissue engineering. Herein, to enhance the mechanical properties of...
1. Vacanti J.P. Langer R. Tissue engineering: The design and fabrication of living replacement devices for surgical reconstruction and transplantation Lancet 1999 354 S32 S34 10.1016/S0140-6736(99)90247-7
2. Heslop J.A. Hammond T.G. Santeramo I. Tort Piella A. Hopp I. Zhou J. Baty R. Graziano E.I. Proto Marco B. Caron A. Concise review: Workshop review: Understanding and assessing the risks of stem cell-based therapies Stem Cells Transl. Med. 2015 4 389 400 10.5966/sctm.2014-0110 25722427
3. Chen F.M. Zhang M. Wu Z.F. Toward delivery of multiple growth factors in tissue engineering Biomaterials 2010 31 6279 6308 10.1016/j.biomaterials.2010.04.053 20493521
4. Rastogi P. Kandasubramanian B. Review of alginate-based hydrogel bioprinting for application in tissue engineering Biofabrication 2019 11 42001 10.1088/1758-5090/ab331e
5. Kumar A. Rao K.M. Han S.S. Application of xanthan gum as polysaccharide in tissue engineering: A review Carbohydr. Polym. 2018 180 128 144 10.1016/j.carbpol.2017.10.009 29103488
6. Kim C.H. Park S.J. Yang D.H. Chun H.J. Chitosan for Tissue Engineering Adv. Exp. Med. Biol. 2018 1077 475 485 30357704
8. Senni K. Pereira J. Gueniche F. Delbarre-Ladrat C. Sinquin C. Ratiskol J. Godeau G. Fischer A.-M. Helley D. Colliec-Jouault S. Marine Polysaccharides: A Source of Bioactive Molecules for Cell Therapy and Tissue Engineering Mar. Drugs 2011 9 1664 1681 10.3390/md9091664 22131964
9. Manlusoc J.K.T. Hsieh C.-L. Hsieh C.-Y. Salac E.S.N. Lee Y.-T. Tsai P.-W. Pharmacologic Application Potentials of Sulfated Polysaccharide from Marine Algae Polymers 2019 11 1163 10.3390/polym11071163
10. Raposo M.F.d.J. De Morais R.M.S.C. Bernardo de Morais A.M.M. Bioactivity and applications of sulphated polysaccharides from marine microalgae Mar. Drugs 2013 11 233 252 10.3390/md11010233 23344113
11. Matsui M.S. Muizzuddin N. Arad S. Marenus K. Sulfated polysaccharides from red microalgae have antiinflammatory properties in vitro and in vivo Appl. Biochem. Biotechnol. 2003 104 13 22 10.1385/ABAB:104:1:13 12495202
12. Geresh S. Arad Malis S. Levy-Ontman O. Zhang W. Tekoah Y. Glaser R. Isolation and characterization of poly- and oligosaccharides from the red microalga Porphyridium sp. Carbohydr. Res. 2009 344 343 349 10.1016/j.carres.2008.11.012 19131048
13. Geresh S. Arad S. The extracellular polysaccharides of the red microalgae: Chemistry and rheology Bioresour. Technol. 1991 38 195 201 10.1016/0960-8524(91)90154-C
14. Arad S.M. Rapoport L. Moshkovich A. van Moppes D. Karpasas M. Golan R. Golan Y. Superior biolubricant from a species of red microalga Langmuir 2006 22 7313 7317 10.1021/la060600x 16893231
15. Netanel Liberman G. Ochbaum G. Mejubovsky-Mikhelis M. Bitton R. Arad Malis S. Physico-chemical characteristics of the sulfated polysaccharides of the red microalgae Dixoniella grisea and Porphyridium aerugineum Int. J. Biol. Macromol. 2020 145 1171 1179 10.1016/j.ijbiomac.2019.09.205 31730985
16. Netanel Liberman G. Ochbaum G. Bitton R. Arad Malis S. Antimicrobial hydrogels composed of chitosan and sulfated polysaccharides of red microalgae Polymer 2021 215 123353 10.1016/j.polymer.2020.123353
17. Netanel Liberman G. Ochbaum G. Malis Arad S. Bitton R. The sulfated polysaccharide from a marine red microalga as a platform for the incorporation of zinc ions Carbohydr. Polym. 2016 152 658 664 10.1016/j.carbpol.2016.07.025 27516316
18. Eteshola E. Karpasas M. Arad S. Gottlieb M. Red microalga exopolysaccharides: 2. Study of the rheology, morphology and thermal gelation of aqueous preparations Acta Polym. 1998 49 549 556 10.1002/(SICI)1521-4044(199810)49:10/11<549::AID-APOL549>3.0.CO;2-T
19. Bernaerts T.M.M. Kyomugasho C. Van Looveren N. Gheysen L. Foubert I. Hendrickx M.E.G. Van Loey A.M. Molecular and rheological characterization of different cell wall fractions of Porphyridium cruentum Carbohydr. Polym. 2018 195 542 550 10.1016/j.carbpol.2018.05.001 29805010
20. Amani H. Arzaghi H. Bayandori M. Dezfuli A.S. Pazoki-Toroudi H. Shafiee A. Moradi L. Controlling Cell Behavior through the Design of Biomaterial Surfaces: A Focus on Surface Modification Techniques Adv. Mater. Interfaces 2019 6 1900572 10.1002/admi.201900572
21. Aviv M. Halperin-Sternfeld M. Grigoriants I. Buzhansky L. Mironi-Harpaz I. Seliktar D. Einav S. Nevo Z. Adler-Abramovich L. Improving the Mechanical Rigidity of Hyaluronic Acid by Integration of a Supramolecular Peptide Matrix ACS Appl. Mater. Interfaces 2018 10 41883 41891 10.1021/acsami.8b08423 30211538
22. Ghosh M. Halperin-Sternfeld M. Grinberg I. Adler-Abramovich L. Injectable Alginate-Peptide Composite Hydrogel as a Scaffold for Bone Tissue Regeneration Nanomaterials 2019 9 497 10.3390/nano9040497 30939729
23. Rachmiel D. Anconina I. Rudnick-Glick S. Halperin-Sternfeld M. Adler-Abramovich L. Sitt A. Hyaluronic Acid and a Short Peptide Improve the Performance of a PCL Electrospun Fibrous Scaffold Designed for Bone Tissue Engineering Applications Int. J. Mol. Sci. 2021 22 2425 10.3390/ijms22052425 33808946
24. Du X. Zhou J. Shi J. Xu B. Supramolecular Hydrogelators and Hydrogels: From Soft Matter to Molecular Biomaterials Chem. Rev. 2015 115 13165 13307 10.1021/acs.chemrev.5b00299 26646318
25. Çelik E. Bayram C. Akçapınar R. Türk M. Denkbaş E.B. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks Mater. Sci. Eng. C 2016 66 221 229 10.1016/j.msec.2016.04.084
26. Gong X. Branford-White C. Tao L. Li S. Quan J. Nie H. Zhu L. Preparation and characterization of a novel sodium alginate incorporated self-assembled Fmoc-FF composite hydrogel Mater. Sci. Eng. C 2016 58 478 486 10.1016/j.msec.2015.08.059
27. Cohen E. Arad Malis S. A closed system for outdoor cultivation of Porphyridium Biomass 1989 18 59 67 10.1016/0144-4565(89)90081-4
28. Yan C. Pochan D.J. Rheological properties of peptide-based hydrogels for biomedical and other applications Chem. Soc. Rev. 2010 39 3528 3540 10.1039/b919449p 20422104
29. Chakraborty P. Ghosh M. Schnaider L. Adadi N. Ji W. Bychenko D. Dvir T. Adler-Abramovich L. Gazit E. Composite of Peptide-Supramolecular Polymer and Covalent Polymer Comprises a New Multifunctional, Bio-Inspired Soft Material Macromol. Rapid Commun. 2019 40 1900175 10.1002/marc.201900175
30. Di Foggia M. Taddei P. Torreggiani A. Dettin M. Tinti A. Self-Assembling Peptides for Biomedical Applications: IR and Raman Spectroscopies for the Study of Secondary Structure Proteom. Res. J. 2011 2 231
31. Dragan E.S. Design and applications of interpenetrating polymer network hydrogels. A review Chem. Eng. J. 2014 243 572 590 10.1016/j.cej.2014.01.065
32. Myung D. Waters D. Wiseman M. Duhamel P.E. Noolandi J. Ta C.N. Frank C.W. Progress in the development of interpenetrating polymer network hydrogels Polym. Adv. Technol. 2008 19 647 657 10.1002/pat.1134 19763189
33. Ma P.X. Biomimetic materials for tissue engineering Adv. Drug Deliv. Rev. 2008 60 184 198 10.1016/j.addr.2007.08.041 18045729
34. Wang Y.L. Lin S.P. Nelli S.R. Zhan F.K. Cheng H. Lai T.S. Yeh M.Y. Lin H.C. Hung S.C. Self-Assembled Peptide-Based Hydrogels as Scaffolds for Proliferation and Multi-Differentiation of Mesenchymal Stem Cells Macromol. Biosci. 2017 17 1600192 10.1002/mabi.201600192
35. Alakpa E.V. Jayawarna V. Lampel A. Burgess K.V. West C.C. Bakker S.C.J. Roy S. Javid N. Fleming S. Lamprou D.A. Tunable Supramolecular Hydrogels for Selection of Lineage-Guiding Metabolites in Stem Cell Cultures Chem 2016 1 298 319 10.1016/j.chempr.2016.07.001
36. Engler A.J. Sen S. Sweeney H.L. Discher D.E. Matrix Elasticity Directs Stem Cell Lineage Specification Cell 2006 126 677 689 10.1016/j.cell.2006.06.044 16923388
37. Chakraborty P. Roy B. Bairi P. Nandi A.K. Improved mechanical and photophysical properties of chitosan incorporated folic acid gel possessing the characteristics of dye and metal ion absorption J. Mater. Chem. 2012 22 20291 20298 10.1039/c2jm33995a
38. Liu Y. Hsu S.-h. Synthesis and Biomedical Applications of Self-healing Hydrogels Front. Chem. 2018 6 449 10.3389/fchem.2018.00449 30333970
39. Phadke A. Zhang C. Arman B. Hsu C.-C. Mashelkar R.A. Lele A.K. Tauber M.J. Arya G. Varghese S. Rapid self-healing hydrogels Proc. Natl. Acad. Sci. USA 2012 109 4383 4388 10.1073/pnas.1201122109 22392977
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.