$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Upcycling of CO2 into sustainable hydrocarbon fuels via the integration of Fe-based Fischer-Tropsch synthesis and olefin oligomerization: A comparative case study

Fuel, v.325, 2022년, pp.124855 -   

Gao, Ruxing ,  Wang, Lei ,  Zhang, Leiyu ,  Zhang, Chundong ,  Jun, Ki-Won ,  Ki Kim, Seok ,  Park, Hae-Gu ,  Zhao, Tiansheng ,  Gao, Ying ,  Zhu, Yuezhao ,  Wan, Hui ,  Guan, Guofeng

초록이 없습니다.

참고문헌 (43)

  1. https://www.clientearth.org/latest/latest-updates/stories/fossil-fuels-and-climate-change-the-facts/. (accessed March 2022). 

  2. J Clean Prod Gao 272 2020 10.1016/j.jclepro.2020.122552 Sustainable production of methanol using landfill gas via carbon dioxide reforming and hydrogenation: Process development and techno-economic analysis 

  3. BP Statistical Review of World Energy. (2020). 

  4. https://www.eia.gov/outlooks/aeo/(accessed August 2021). 

  5. Energy Environ Sci Abanades 10 12 2491 2017 10.1039/C7EE02819A On the climate change mitigation potential of CO2 conversion to fuels 

  6. https://www.ipcc.ch/(accessed August 2021). 

  7. Energ Convers Manage Han 187 1 2019 10.1016/j.enconman.2019.03.007 Optimization-based assessment framework for carbon utilization strategies: Energy production from coke oven gas 

  8. Fuel Ince 304 2021 10.1016/j.fuel.2021.121354 Modeling and simulation of Power-to-X systems: A review 

  9. World Energy Outlook. 2020. (IEA). 

  10. Appl Energ Zappa 233-234 1027 2019 10.1016/j.apenergy.2018.08.109 Is a 100% renewable European power system feasible by 2050? 

  11. J CO2 Util Bailera 46 101456 2021 10.1016/j.jcou.2021.101456 A review on CO2 mitigation in the Iron and Steel industry through Power to X processes 

  12. Appl Energ Lim 283 2021 10.1016/j.apenergy.2020.116302 Nationwide sustainable renewable energy and Power-to-X deployment planning in South Korea assisted with forecasting model 

  13. Appl Energ Chauvy 260 2020 10.1016/j.apenergy.2019.114249 Production of synthetic natural gas from industrial carbon dioxide 

  14. Renew Sust Energ Rev Buttler 82 2440 2018 10.1016/j.rser.2017.09.003 Current status of water electrolysis for energy storage, grid balancing and sector coupling via power-to-gas and power-to-liquids: A review 

  15. Appl Energy Drünert 277 2020 10.1016/j.apenergy.2020.115578 Power-to-Liquid fuels for aviation - Processes, resources and supply potential under German conditions 

  16. ACS Sustain Chem Eng Gong 9 21 7179 2021 10.1021/acssuschemeng.1c03212 Power-to-X: Lighting the Path to a Net-Zero-Emission Future 

  17. Chem Ing Tech Verdegaal 87 4 340 2015 10.1002/cite.201400098 Power-to-Liquids: Synthetisches Rohöl aus CO2, Wasser und Sonne 

  18. Energy König 91 833 2015 10.1016/j.energy.2015.08.099 Simulation and evaluation of a process concept for the generation of synthetic fuel from CO2 and H2 

  19. Fuel König 159 289 2015 10.1016/j.fuel.2015.06.085 Techno-economic study of the storage of fluctuating renewable energy in liquid hydrocarbons 

  20. Energy Procedia Fasihi 99 243 2016 10.1016/j.egypro.2016.10.115 Techno-Economic Assessment of Power-to-Liquids (PtL) Fuels Production and Global Trading Based on Hybrid PV-Wind Power Plants 

  21. Biomass Bioenergy Dietrich 111 165 2018 10.1016/j.biombioe.2017.07.006 Cost calculations for three different approaches of biofuel production using biomass, electricity and CO2 

  22. J CO₂ Util Vázquez 28 235 2018 10.1016/j.jcou.2018.09.026 Power-to-X technology using renewable electricity and carbon dioxide from ambient air: SOLETAIR proof-of-concept and improved process concept 

  23. Sustain Energy Technol Assess Adelung 43 2021 Impact of the reverse water-gas shift operating conditions on the Power-to-Liquid process efficiency 

  24. Appl Energ Herz 215 309 2018 10.1016/j.apenergy.2018.02.007 Techno-economic analysis of a co-electrolysis-based synthesis process for the production of hydrocarbons 

  25. Appl Energy Herz 292 2021 10.1016/j.apenergy.2021.116655 Economic assessment of Power-to-Liquid processes - Influence of electrolysis technology and operating conditions 

  26. Int J Hydrog Energy Tremel 40 35 11457 2015 10.1016/j.ijhydene.2015.01.097 Techno-economic analysis for the synthesis of liquid and gaseous fuels based on hydrogen production via electrolysis 

  27. J CO2 Util Zhang 34 293 2019 10.1016/j.jcou.2019.07.005 Direct conversion of carbon dioxide to liquid fuels and synthetic natural gas using renewable power: Techno-economic analysis 

  28. Fuel Gao 291 2021 10.1016/j.fuel.2020.120111 Transformation of CO2 into liquid fuels and synthetic natural gas using green hydrogen: A comparative analysis 

  29. J CO2 Util Gao 51 101619 2021 10.1016/j.jcou.2021.101619 Green liquid fuel and synthetic natural gas production via CO2 hydrogenation combined with reverse water-gas-shift and Co-based Fischer-Tropsch synthesis 

  30. Energ Convers Manage Hos 240 2021 10.1016/j.enconman.2021.114233 Utilization of CO-rich waste gases from the steel industry for production of renewable liquid fuels 

  31. Ind Eng Chem Res Hos 2022 10.1021/acs.iecr.1c04254 Hydrogenation of CO2 on Fe-Based Catalysts: Preferred Route to Renewable Liquid Fuels 

  32. Environ Sci Technol Zhang 48 14 8251 2014 10.1021/es501021u Efficient utilization of greenhouse gases in a gas-to-liquids process combined with CO2/Steam-mixed reforming and Fe-based Fischer-Tropsch synthesis 

  33. Fuel Zhang 157 285 2015 10.1016/j.fuel.2015.04.051 Efficient utilization of carbon dioxide in gas-to-liquids process: Process simulation and techno-economic analysis 

  34. Energy Fuels Kang 27 11 6377 2013 10.1021/ef401177k Effects of the CO/CO2 Ratio in Synthesis Gas on the Catalytic Behavior in Fischer-Tropsch Synthesis Using K/Fe-Cu-Al Catalysts 

  35. Fuel Abelló 113 598 2013 10.1016/j.fuel.2013.06.012 High-loaded nickel-alumina catalyst for direct CO2 hydrogenation into synthetic natural gas (SNG) 

  36. Energy Gao 248 2022 10.1016/j.energy.2022.123616 Efficient production of renewable hydrocarbon fuels using waste CO2 and green H2 by integrating Fe-based Fischer-Tropsch synthesis and olefin oligomerization 

  37. Couper 2010 Chemical process equipment: Selection and design 

  38. Peters 2003 Plant design and economics for chemical engineers 

  39. Energy Conv Manag Gao 213 2020 10.1016/j.enconman.2020.112819 Techno-economic evaluation of methanol production using by-product gases from iron and steel works 

  40. Fuel Zhang 190 303 2017 10.1016/j.fuel.2016.11.008 Carbon dioxide utilization in a gas-to-methanol process combined with CO2/Steam-mixed reforming: Techno-economic analysis 

  41. Fuel Zhang 176 32 2016 10.1016/j.fuel.2016.02.060 Efficient utilization of associated natural gas in a modular gas-to-liquids process: Technical and economic analysis 

  42. Green hydrogen cost reduction: Scaling up electrolysers to meet the 1.5 oC climate goal. Abu, Dhabi: International Renewable Energy Agency. 2020. 

  43. A comparison of slurry versus fixed-bed reactor designs for Fischer-Tropsch distillate production. U.S. Department of Energy. 1990. 

LOADING...

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

유발과제정보 저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로