$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Identification of hub salt-responsive genes in Cucumis sativus using a long non-coding RNA and mRNA interaction network

Horticulture, Environment, and Biotechnology, v.63 no.4, 2022년, pp.539 - 556  

Karimi, Marzieh ,  Pakdel, Mohammad Hossein ,  Bali lashaki, Khosro ,  Soorni, Aboozar

초록이 없습니다.

참고문헌 (131)

  1. Plant Cell G Bi 30 1543 2018 10.1105/tpc.17.00981 Bi G, Zhou Z, Wang W, Li L, Rao S, Wu Y, Zhang X, Menke FLH, Chen S, Zhou JM (2018) Receptor-like cytoplasmic kinases directly link diverse pattern recognition receptors to the activation of mitogen-activated protein kinase cascades in arabidopsis. Plant Cell 30:1543-1561. https://doi.org/10.1105/tpc.17.00981 

  2. Planta NA Abd-Hamid 251 68 2020 10.1007/s00425-020-03356-8 Abd-Hamid NA, Ahmad-Fauzi MI, Zainal Z, Ismail I (2020) Diverse and dynamic roles of F-box proteins in plant biology. Planta 251:68. https://doi.org/10.1007/s00425-020-03356-8 

  3. Mol Plant-Microbe Interact AJ Afzal 21 507 2008 10.1094/MPMI-21-5-0507 Afzal AJ, Wood AJ, Lightfoot DA (2008) Plant receptor-like serine threonine kinases: Roles in signaling and plant defense. Mol Plant-Microbe Interact 21:507-517. https://doi.org/10.1094/MPMI-21-5-0507 

  4. Sci Rep P Agarwal 9 4608 2019 10.1038/s41598-019-40659-7 Agarwal P, Baranwal VK, Khurana P (2019) Genome-wide analysis of bZIP transcription factors in wheat and functional characterization of a TabZIP under abiotic stress. Sci Rep 9:4608. https://doi.org/10.1038/s41598-019-40659-7 

  5. Can J Plant Sci H Ahmad 98 132 2017 10.1139/cjps-2016-0404 Ahmad H, Hayat S, Ali M, Ghani MI, Zhihui C (2017) Regulation of growth and physiological traits of cucumber (Cucumis sativus L.) through various levels of 28-homobrassinolide under salt stress conditions. Can J Plant Sci 98:132-140. https://doi.org/10.1139/cjps-2016-0404 

  6. Front Plant Sci M Ahmadi Khoei 12 779597 2021 10.3389/fpls.2021.779597 Ahmadi Khoei M, Karimi M, Karamian R, Amini S, Soorni A (2021) Identification of the complex interplay between nematode- related lncRNAs and their target genes in Glycine max L. Front Plant Sci 12:779597. https://doi.org/10.3389/fpls.2021.779597 

  7. PLoS ONE N Amirbakhtiar 14 e0213305 2019 10.1371/journal.pone.0213305 Amirbakhtiar N, Ismaili A, Ghaffari MR, Firouzabadi FN, Shobbar ZS (2019) Transcriptome response of roots to salt stress in a salinity-tolerant bread wheat cultivar. PLoS ONE 14:e0213305. https://doi.org/10.1371/journal.pone.0213305 

  8. Brazilian Arch Biol Technol GdeS Bido 53 533 2010 10.1590/S1516-89132010000300005 Bido G de S, Ferrarese M de LL, Marchiosi R, Ferrarese-Filho O (2010) Naringenin inhibits the growth and stimulates the lignification of soybean root. Brazilian Arch Biol Technol 53:533-542 

  9. Bioinformatics AM Bolger 30 2114 2014 10.1093/bioinformatics/btu170 Bolger AM, Lohse M, Usadel B (2014) Trimmomatic: A flexible trimmer for Illumina sequence data. Bioinformatics 30:2114-2120. https://doi.org/10.1093/bioinformatics/btu170 

  10. Front Plant Sci N Castelán-Muñoz 2019 10.3389/fpls.2019.00853 Castelán-Muñoz N, Herrera J, Cajero-Sánchez W, Arrizubieta M, Trejo C, García-Ponce B, Sánchez M de la P, Álvarez-Buylla ER, Garay-Arroyo A (2019) MADS-box genes are key components of genetic regulatory networks involved in abiotic stress and plastic developmental responses in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00853 

  11. Plant Biotechnol Rep AKN Chandran 13 567 2019 10.1007/s11816-019-00550-3 Chandran AKN, Kim JW, Yoo YH, Park HL, Kim YJ, Cho MH, Jung KH (2019) Transcriptome analysis of rice-seedling roots under soil-salt stress using RNA-Seq method. Plant Biotechnol Rep 13:567-578. https://doi.org/10.1007/s11816-019-00550-3 

  12. BMC Plant Biol C Chen 20 443 2020 10.1186/s12870-020-02625-8 Chen C, Chen X, Han J, Lu W, Ren Z (2020) Genome-wide analysis of the WRKY gene family in the cucumber genome and transcriptome-wide identification of WRKY transcription factors that respond to biotic and abiotic stresses. BMC Plant Biol 20:443. https://doi.org/10.1186/s12870-020-02625-8 

  13. Rice HC Chen 11 50 2018 10.1186/s12284-018-0244-z Chen HC, Cheng WH, Hong CY, Sen CY, Chang MC (2018) The transcription factor OsbHLH035 mediates seed germination and enables seedling recovery from salt stress through ABA-dependent and ABA-independent pathways, respectively. Rice 11:50. https://doi.org/10.1186/s12284-018-0244-z 

  14. Sci Rep J Chen 7 6769 2017 10.1038/s41598-017-05240-0 Chen J, Zhang J, Hu J, Xiong W, Du C, Lu M (2017) Integrated regulatory network reveals the early salt tolerance mechanism of Populus euphratica. Sci Rep 7:6769. https://doi.org/10.1038/s41598-017-05240-0 

  15. Plant Physiol LJ Chen 163 1752 2013 10.1104/pp.113.224881 Chen LJ, Wuriyanghan H, Zhang YQ, Duan KX, Chen HW, Li QT, Lu X, He SJ, Ma B, Zhang WK, Lin Q, Chen SY, Zhang JS (2013) An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol 163:1752-1765. https://doi.org/10.1104/pp.113.224881 

  16. BMC Syst Biol C-H Chin 8 Suppl 4 S11 2014 10.1186/1752-0509-8-S4-S11 Chin C-H, Chen S-H, Wu H-H, Ho C-W, Ko M-T, Lin C-Y (2014) cytoHubba: identifying hub objects and sub-networks from complex interactome. BMC Syst Biol 8(Suppl 4):S11-S11. https://doi.org/10.1186/1752-0509-8-S4-S11 

  17. Appl Biol Chem HD Chu 59 681 2016 10.1007/s13765-016-0213-4 Chu HD, Nguyen KL, Watanabe Y, Le DT, Tran LSP (2016) Expression analyses of soybean genes encoding methionine-R-sulfoxide reductase under various conditions suggest a possible role in the adaptation to stress. Appl Biol Chem 59:681-687. https://doi.org/10.1007/s13765-016-0213-4 

  18. Plant Signal Behav HJ Chun 14 1625697 2019 10.1080/15592324.2019.1625697 Chun HJ, Baek D, Cho HM, Lee SH, Jin BJ, Yun D-J, Hong Y-S, Kim MC (2019) Lignin biosynthesis genes play critical roles in the adaptation of Arabidopsis plants to high-salt stress. Plant Signal Behav 14:1625697. https://doi.org/10.1080/15592324.2019.1625697 

  19. FEBS Lett MH Cui 587 1773 2013 10.1016/j.febslet.2013.04.028 Cui MH, Yoo KS, Hyoung S, Nguyen HTK, Kim YY, Kim HJ, Ok SH, Yoo SD, Shin JS (2013) An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett 587:1773-1778. https://doi.org/10.1016/j.febslet.2013.04.028 

  20. Agronomy DM Cuong 10 390 2020 10.3390/agronomy10030390 Cuong DM, Kwon SJ, Van Nguyen B, Chun SW, Kim JK, Park SU (2020) Effect of salinity stress on phenylpropanoid genes expression and related gene expression in wheat sprout. Agronomy 10:390. https://doi.org/10.3390/agronomy10030390 

  21. Mol Biol Rep C Dai 39 6297 2012 10.1007/s11033-012-1451-0 Dai C, Wang MH (2012) Characterization and functional analysis of methionine sulfoxide reductase A gene family in tomato. Mol Biol Rep 39:6297-6308. https://doi.org/10.1007/s11033-012-1451-0 

  22. Biosci Rep S Dehghan 34 273 2014 10.1042/BSR20140026 Dehghan S, Sadeghi M, Oppel AP, Fischer R, Lakes-Harlan R, Kavousi HR, Vilcinskas A, Rahnamaeian M (2014) Differential inductions of phenylalanine ammonia-lyase and chalcone synthase during wounding, salicylic acid treatment, and salinity stress in safflower, Carthamus tinctorius. Biosci Rep 34:273-282. https://doi.org/10.1042/BSR20140026 

  23. BMC Plant Biol F Deng 18 23 2018 10.1186/s12870-018-1238-0 Deng F, Zhang X, Wang W, Yuan R, Shen F (2018) Identification of Gossypium hirsutum long non-coding RNAs (lncRNAs) under salt stress. BMC Plant Biol 18:23. https://doi.org/10.1186/s12870-018-1238-0 

  24. BMC Plant Biol N Ding 17 225 2017 10.1186/s12870-017-1179-z Ding N, Wang A, Zhang X, Wu Y, Wang R, Cui H, Huang R, Luo Y (2017) Identification and analysis of glutathione S-transferase gene family in sweet potato reveal divergent GST-mediated networks in aboveground and underground tissues in response to abiotic stresses. BMC Plant Biol 17:225. https://doi.org/10.1186/s12870-017-1179-z 

  25. 10.1002/0471250953.bi1114s51 Dobin A, Gingeras TR (2015) Mapping RNA-seq reads with STAR. Curr Protoc Bioinforma 51:11.14.1-11.14.19. https://doi.org/10.1002/0471250953.bi1114s51 

  26. Sci Rep S Dong 8 9314 2018 10.1038/s41598-018-27610-y Dong S, Zhang J, Beckles DM (2018) A pivotal role for starch in the reconfiguration of 14C-partitioning and allocation in Arabidopsis thaliana under short-term abiotic stress. Sci Rep 8:9314. https://doi.org/10.1038/s41598-018-27610-y 

  27. Mol Med B Elenbaas 2 439 1996 10.1007/bf03401903 Elenbaas B, Dobbelstein M, Roth J, Shenk T, Levine AJ (1996) The MDM2 oncoprotein binds specifically to RNA through its ring finger domain. Mol Med 2:439-451. https://doi.org/10.1007/bf03401903 

  28. Agronomy SH Eom 9 629 2019 10.3390/agronomy9100629 Eom SH, Lee HJ, Lee JH, Wi SH, Kim SK, Hyun TK (2019) Identification and functional prediction of drought-responsive long non-coding RNA in tomato. Agronomy 9:629. https://doi.org/10.3390/agronomy9100629 

  29. Mol Biol Rep F Fatehi 39 6387 2012 10.1007/s11033-012-1460-z Fatehi F, Hosseinzadeh A, Alizadeh H, Brimavandi T, Struik PC (2012) The proteome response of salt-resistant and salt-sensitive barley genotypes to long-term salinity stress. Mol Biol Rep 39:6387-6397. https://doi.org/10.1007/s11033-012-1460-z 

  30. Plants P Feduraev 9 476 2020 10.3390/plants9040476 Feduraev P, Skrypnik L, Riabova A, Pungin A, Tokupova E, Maslennikov P, Chupakhina G (2020) Phenylalanine and tyrosine as exogenous precursors of wheat (Triticum aestivum L.) secondary metabolism through PAL-associated pathways. Plants 9:476. https://doi.org/10.3390/plants9040476 

  31. Plant Signal Behav JX Fontaine 8 e23329 2013 10.4161/psb.23329 Fontaine JX, Tercé-Laforgue T, Bouton S, Pageau K, Lea PJ, Dubois F, Hirel B (2013) Further insights into the isoenzyme composition and activity of glutamate dehydrogenase in Arabidopsis thaliana. Plant Signal Behav 8:e23329. https://doi.org/10.4161/psb.23329 

  32. BMC Genomics L Fu 21 212 2020 10.1186/s12864-020-6633-x Fu L, Ding Z, Tan D, Han B, Sun X, Zhang J (2020) Genome-wide discovery and functional prediction of salt-responsive lncRNAs in duckweed. BMC Genomics 21:212. https://doi.org/10.1186/s12864-020-6633-x 

  33. Front Plant Sci WX Gai 2020 10.3389/fpls.2020.00139 Gai WX, Ma X, Qiao YM, Shi BH, ul Haq S, Li QH, Wei AM, Liu KK, Gong ZH (2020) Characterization of the bZIP transcription factor family in pepper (Capsicum annuum L.): CabZIP25 positively modulates the salt tolerance. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00139 

  34. Plant, Soil Environ S Gao 54 374 2008 10.17221/410-pse Gao S, Ouyang C, Wang S, Xu Y, Tang L, Chen F (2008) Effects of salt stress on growth, antioxidant enzyme and phenylalanine ammonia-lyase activities in Jatropha curcas L. seedlings. Plant, Soil Environ 54:374-381. https://doi.org/10.17221/410-pse 

  35. Proc Natl Acad Sci U S A AK Garg 99 15898 2002 10.1073/pnas.252637799 Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99:15898-15903. https://doi.org/10.1073/pnas.252637799 

  36. BMC Genomics F Ghorbani 22 704 2021 10.1186/s12864-021-07989-1 Ghorbani F, Abolghasemi R, Haghighi M, Etemadi N, Wang S, Karimi M, Soorni A (2021) Global identification of long non-coding RNAs involved in the induction of spinach flowering. BMC Genomics 22:704. https://doi.org/10.1186/s12864-021-07989-1 

  37. Planta X Guo 230 227 2009 10.1007/s00425-009-0934-2 Guo X, Wu Y, Wang Y, Chen Y, Chu C (2009) OsMSRA4.1 and OsMSRB1.1, two rice plastidial methionine sulfoxide reductases, are involved in abiotic stress responses. Planta 230:227-238. https://doi.org/10.1007/s00425-009-0934-2 

  38. Crop J Y Guo 6 181 2018 10.1016/j.cj.2017.08.005 Guo Y, Jiang Q, Hu Z, Sun X, Fan S, Zhang H (2018) Function of the auxin-responsive gene TaSAUR75 under salt and drought stress. Crop J 6:181-190. https://doi.org/10.1016/j.cj.2017.08.005 

  39. Genes (basel) W Huanca-Mamani 9 170 2018 10.3390/genes9030170 Huanca-Mamani W, Arias-Carrasco R, Cárdenas-Ninasivincha S, Rojas-Herrera M, Sepúlveda-Hermosilla G, Caris-Maldonado JC, Bastías E, Maracaja-Coutinho V (2018) Long non-coding RNAs responsive to salt and boron stress in the hyper-arid lluteño maize from atacama desert. Genes (basel) 9:170. https://doi.org/10.3390/genes9030170 

  40. Plant Cell Environ SM Hwang 37 1202 2014 10.1111/pce.12228 Hwang SM, Kim DW, Woo MS, Jeong HS, Son YS, Akhter S, Choi GJ, Bahk JD (2014) Functional characterization of ArabidopsisHsfA6a as a heat-shock transcription factor under high salinity and dehydration conditions. Plant Cell Environ 37:1202-1222. https://doi.org/10.1111/pce.12228 

  41. Plant Cell Tissue Organ Cult LJ Il 112 257 2013 10.1007/s11240-012-0225-7 Il LJ, Min SR, Lee JH, Lim YH, Kim JK, Bae CH, Liu JR (2013) Overexpression of a trehalose-6-phosphate synthase/phosphatase fusion gene enhances tolerance and photosynthesis during drought and salt stress without growth aberrations in tomato. Plant Cell Tissue Organ Cult 112:257-262. https://doi.org/10.1007/s11240-012-0225-7 

  42. Front Genet J Ma 2019 10.3389/fgene.2019.00777 Ma J, Bai X, Luo W, Feng Y, Shao X, Bai Q, Sun S, Long Q, Wan D (2019) Genome-wide identification of long noncoding RNAs and their responses to salt stress in two closely related poplars. Front Genet. https://doi.org/10.3389/fgene.2019.00777 

  43. J Plant Physiol S Irani 199 87 2016 10.1016/j.jplph.2016.05.011 Irani S, Todd CD (2016) Ureide metabolism under abiotic stress in Arabidopsis thaliana. J Plant Physiol 199:87-95. https://doi.org/10.1016/j.jplph.2016.05.011 

  44. Plant Physiol M Jain 143 1467 2007 10.1104/pp.106.091900 Jain M, Nijhawan A, Arora R, Agarwal P, Ray S, Sharma P, Kapoor S, Tyagi AK, Khurana JP (2007) F-Box proteins in rice. Genome-wide analysis, classification, temporal and spatial gene expression during panicle and seed development, and regulation by light and abiotic stress. Plant Physiol 143:1467-1483. https://doi.org/10.1104/pp.106.091900 

  45. Front Plant Sci J Jiang 2020 10.3389/fpls.2020.01283 Jiang J, Ren X, Li L, Hou R, Sun W, Jiao C, Yang N, Dong Y (2020) H2S Regulation of metabolism in cucumber in response to salt-stress through transcriptome and proteome analysis. Front Plant Sci. https://doi.org/10.3389/fpls.2020.01283 

  46. Plants L Jiang 8 216 2019 10.3390/plants8070216 Jiang L, Tian X, Li S, Fu Y, Xu J, Wang G (2019) The aabhlh35 transcription factor identified from anthurium andraeanum is involved in cold and drought tolerance. Plants 8:216. https://doi.org/10.3390/plants8070216 

  47. Front Genet V Jimenez-Jacinto 2019 10.3389/fgene.2019.00279 Jimenez-Jacinto V, Sanchez-Flores A, Vega-Alvarado L (2019) Integrative differential expression analysis for multiple experiments (IDEAMEX): a web server tool for integrated RNA-seq data analysis. Front Genet. https://doi.org/10.3389/fgene.2019.00279 

  48. Int J Mol Sci T Jin 20 3745 2019 10.3390/ijms20153745 Jin T, Sun Y, Zhao R, Shan Z, Gai J, Li Y (2019) Overexpression of peroxidase gene GsPRX9 confers salt tolerance in soybean. Int J Mol Sci 20:3745. https://doi.org/10.3390/ijms20153745 

  49. Nucleic Acids Res M Kanehisa 28 27 2000 10.1093/nar/28.1.27 Kanehisa M, Goto S (2000) KEGG: kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27-30. https://doi.org/10.1093/nar/28.1.27 

  50. Nucleic Acids Res YJ Kang 45 W12 2017 10.1093/nar/gkx428 Kang YJ, Yang DC, Kong L, Hou M, Meng YQ, Wei L, Gao G (2017) CPC2: A fast and accurate coding potential calculator based on sequence intrinsic features. Nucleic Acids Res 45:W12-W16. https://doi.org/10.1093/nar/gkx428 

  51. Plant Cell Physiol Y Kasukabe 45 712 2004 10.1093/pcp/pch083 Kasukabe Y, He L, Nada K, Misawa S, Ihara I, Tachibana S (2004) Overexpression of Spermidine synthase enhances tolerance to multiple environmental stresses and up-regulates the expression of various stress-regulated genes in transgenic Arabidopsis thaliana. Plant Cell Physiol 45:712-722. https://doi.org/10.1093/pcp/pch083 

  52. Adv Stud Biol S Kelij 5 403 2013 10.12988/asb.2013.3831 Kelij S, Majd A, Nematzade G, Jonoubi P, Haghighi L (2013) Phenylalanine ammonialyase gene expression and activity in relation to lignin deposition in salt stressed Aeluropus littoralis. Adv Stud Biol 5:403-412 

  53. Int J Mol Sci K Kosová 14 6757 2013 10.3390/ijms14046757 Kosová K, Prášil IT, Vítámvás P (2013) Protein contribution to plant salinity response and tolerance acquisition. Int J Mol Sci 14:6757-6789. https://doi.org/10.3390/ijms14046757 

  54. Antioxidants Redox Signal J Krasensky 21 1289 2014 10.1089/ars.2013.5693 Krasensky J, Broyart C, Rabanal FA, Jonak C (2014) The redox-sensitive chloroplast trehalose-6-phosphate phosphatase AtTPPD regulates salt stress tolerance. Antioxidants Redox Signal 21:1289-1304. https://doi.org/10.1089/ars.2013.5693 

  55. Sci Rep P Krishnamurthy 7 10031 2017 10.1038/s41598-017-10730-2 Krishnamurthy P, Mohanty B, Wijaya E, Lee D-Y, Lim T-M, Lin Q, Xu J, Loh C-S, Kumar PP (2017) Transcriptomics analysis of salt stress tolerance in the roots of the mangrove Avicennia officinalis. Sci Rep 7:10031. https://doi.org/10.1038/s41598-017-10730-2 

  56. Front Plant Sci S Kumar 2018 10.3389/fpls.2018.00751 Kumar S, Trivedi PK (2018) Glutathione S-transferases: Role in combating abiotic stresses including arsenic detoxification in plants. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00751 

  57. BMC Bioinformatics P Langfelder 9 559 2008 10.1186/1471-2105-9-559 Langfelder P, Horvath S (2008) WGCNA: An R package for weighted correlation network analysis. BMC Bioinformatics 9:559. https://doi.org/10.1186/1471-2105-9-559 

  58. Mol Breed SB Lee 11 1 2003 10.1023/A:1022100404542 Lee SB, Bin KH, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breed 11:1-13. https://doi.org/10.1023/A:1022100404542 

  59. Rice L Lei 13 55 2020 10.1186/s12284-020-00416-1 Lei L, Zheng H, Bi Y, Yang L, Liu H, Wang J, Sun J, Zhao H, Li X, Li J, Lai Y, Zou D (2020) Identification of a major QTL and candidate gene analysis of salt tolerance at the bud burst stage in rice (Oryza sativa L.) using QTL-seq and RNA-Seq. Rice 13:55. https://doi.org/10.1186/s12284-020-00416-1 

  60. Plant Mol Biol CI Lescano 91 581 2016 10.1007/s11103-016-0490-7 Lescano CI, Martini C, González CA, Desimone M (2016) Allantoin accumulation mediated by allantoinase downregulation and transport by Ureide Permease 5 confers salt stress tolerance to Arabidopsis plants. Plant Mol Biol 91:581-595. https://doi.org/10.1007/s11103-016-0490-7 

  61. PeerJ M Li 2019 e6536 2019 10.7717/peerj.6536 Li M, Xing Q, Lihong G, Qing L, Shuzhen L, Chaoxing H, Yansu L, Xianchang Y (2019) Selection of reference genes for quantitative real-time PCR analysis in cucumber (Cucumis sativus L.), pumpkin (Cucurbita moschata Duch) and cucumber-pumpkin grafted plants. PeerJ 2019:e6536. https://doi.org/10.7717/peerj.6536 

  62. Hortic Res YH Liang 1 14040 2014 10.1038/hortres.2014.40 Liang YH, Cai B, Chen F, Wang G, Wang M, Zhong Y, Cheng ZMM (2014) Construction and validation of a gene co-expression network in grapevine (Vitis vinifera L.). Hortic Res 1:14040. https://doi.org/10.1038/hortres.2014.40 

  63. Plant Cell Environ A Liu 42 98 2019 10.1111/pce.13186 Liu A, Xiao Z, Li MW, Wong FL, Yung WS, Ku YS, Wang Q, Wang X, Xie M, Yim AKY, Chan TF, Lam HM (2019) Transcriptomic reprogramming in soybean seedlings under salt stress. Plant Cell Environ 42:98-114. https://doi.org/10.1111/pce.13186 

  64. Plant Mol Biol C Liu 84 19 2014 10.1007/s11103-013-0115-3 Liu C, Mao B, Ou S, Wang W, Liu L, Wu Y, Chu C, Wang X (2014) OsbZIP71, a bZIP transcription factor, confers salinity and drought tolerance in rice. Plant Mol Biol 84:19-36. https://doi.org/10.1007/s11103-013-0115-3 

  65. Methods KJ Livak 25 402 2001 10.1006/meth.2001.1262 Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408. https://doi.org/10.1006/meth.2001.1262 

  66. Genome Biol MI Love 15 550 2014 10.1186/s13059-014-0550-8 Love MI, Huber W, Anders S (2014) Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol 15:550. https://doi.org/10.1186/s13059-014-0550-8 

  67. Nucleic Acids Res TM Lowe 44 W54 2016 10.1093/nar/gkw413 Lowe TM, Chan PP (2016) tRNAscan-SE On-line: integrating search and context for analysis of transfer RNA genes. Nucleic Acids Res 44:W54-W57. https://doi.org/10.1093/nar/gkw413 

  68. J Exp Bot G Malacarne 67 3509 2016 10.1093/jxb/erw181 Malacarne G, Coller E, Czemmel S, Vrhovsek U, Engelen K, Goremykin V, Bogs J, Moser C (2016) The grapevine VvibZIPC22 transcription factor is involved in the regulation of flavonoid biosynthesis. J Exp Bot 67:3509-3522. https://doi.org/10.1093/jxb/erw181 

  69. Dose-Response A Marium 17 155932581988980 2019 10.1177/1559325819889809 Marium A, Kausar A, Ali Shah SM, Ashraf MY, Akhtar N, Akram M, Riaz M (2019) Assessment of cucumber genotypes for salt tolerance based on germination and physiological indices. Dose-Response 17:1559325819889809. https://doi.org/10.1177/1559325819889809 

  70. FEBS Lett A Medici 588 3989 2014 10.1016/j.febslet.2014.09.016 Medici A, Laloi M, Atanassova R (2014) Profiling of sugar transporter genes in grapevine coping with water deficit. FEBS Lett 588:3989-3997. https://doi.org/10.1016/j.febslet.2014.09.016 

  71. Fitoterapia PK Mukherjee 84 227 2013 10.1016/j.fitote.2012.10.003 Mukherjee PK, Nema NK, Maity N, Sarkar BK (2013) Phytochemical and therapeutic potential of cucumber. Fitoterapia 84:227-236. https://doi.org/10.1016/j.fitote.2012.10.003 

  72. Cultivars N Nadernejad 12 807 2012 Nadernejad N, Ahmadimoghadam A, Hosseinifard J, Pourseyedi S (2012) Phenylalanin ammonia-lyase activity, total phenolic and flavonoid content in flowers, leaves, hulls and kernels of three pistachio (Pistacia vera L). Cultivars 12:807-814 

  73. Afr J Biotechnol K Nawaz 9 5475 2010 10.4314/ajb.v9i34 Nawaz K, Hussain K, Majeed A, Khan F, Afghan S, Ali K (2010) Fatality of salt stress to plants: morphological, physiological and biochemical aspects. Afr J Biotechnol 9:5475-5480. https://doi.org/10.4314/ajb.v9i34 

  74. Int J Mol Sci R Nefissi Ouertani 22 8155 2021 10.3390/ijms22158155 Nefissi Ouertani R, Arasappan D, Abid G, Ben Chikha M, Jardak R, Mahmoudi H, Mejri S, Ghorbel A, Ruhlman TA, Jansen RK (2021) Transcriptomic analysis of salt-stress-responsive genes in barley roots and leaves. Int J Mol Sci 22:8155. https://doi.org/10.3390/ijms22158155 

  75. Plant Cell Rep I Nianiou-Obeidat 36 791 2017 10.1007/s00299-017-2139-7 Nianiou-Obeidat I, Madesis P, Kissoudis C, Voulgari G, Chronopoulou E, Tsaftaris A, Labrou NE (2017) Plant glutathione transferase-mediated stress tolerance: functions and biotechnological applications. Plant Cell Rep 36:791-805. https://doi.org/10.1007/s00299-017-2139-7 

  76. Plant Cell Environ DM Oliveira 43 2172 2020 10.1111/pce.13805 Oliveira DM, Mota TR, Salatta FV, Sinzker RC, Končitíková R, Kopečný D, Simister R, Silva M, Goeminne G, Morreel K (2020) Cell wall remodeling under salt stress: insights into changes in polysaccharides, feruloylation, lignification, and phenolic metabolism in maize. Plant Cell Environ 43:2172-2191 

  77. Ecotoxicol Environ Saf AK Parida 60 324 2005 10.1016/j.ecoenv.2004.06.010 Parida AK, Das AB (2005) Salt tolerance and salinity effects on plants: a review. Ecotoxicol Environ Saf 60:324-349. https://doi.org/10.1016/j.ecoenv.2004.06.010 

  78. Nat Biotechnol M Pertea 33 290 2015 10.1038/nbt.3122 Pertea M, Pertea GM, Antonescu CM, Chang TC, Mendell JT, Salzberg SL (2015) StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol 33:290-295. https://doi.org/10.1038/nbt.3122 

  79. Russ J Plant Physiol YC Qi 57 233 2010 10.1134/S102144371002010X Qi YC, Liu WQ, Qiu LY, Zhang SM, Ma L, Zhang H (2010) Overexpression of glutathione S-transferase gene increases salt tolerance of arabidopsis. Russ J Plant Physiol 57:233-240. https://doi.org/10.1134/S102144371002010X 

  80. Plant Physiol T Qin 175 1321 2017 10.1104/pp.17.00574 Qin T, Zhao H, Cui P, Albesher N, Xionga L (2017) A nucleus-localized long non-coding rna enhances drought and salt stress tolerance. Plant Physiol 175:1321-1336. https://doi.org/10.1104/pp.17.00574 

  81. Proc Natl Acad Sci USA AM Rashotte 103 11081 2006 10.1073/pnas.0602038103 Rashotte AM, Mason MG, Hutchison CE, Ferreira FJ, Schaller GE, Kieber JJ (2006) A subset of Arabidopsis AP2 transcription factors mediates cytokinin responses in concert with a two-component pathway. Proc Natl Acad Sci USA 103:11081-11085. https://doi.org/10.1073/pnas.0602038103 

  82. Int J Mol Sci NK Rolly 21 1726 2020 10.3390/ijms21051726 Rolly NK, Imran QM, Lee IJ, Yun BW (2020) Salinity stress-mediated suppression of expression of salt overly sensitive signaling pathway genes suggests negative regulation by AtbZIP62 transcription factor in Arabidopsis thaliana. Int J Mol Sci 21:1726. https://doi.org/10.3390/ijms21051726 

  83. J Plant Physiol L Rossi 204 8 2016 10.1016/j.jplph.2016.07.014 Rossi L, Borghi M, Francini A, Lin X, Xie DY, Sebastiani L (2016) Salt stress induces differential regulation of the phenylpropanoid pathway in Olea europaea cultivars Frantoio (salt-tolerant) and Leccino (salt-sensitive). J Plant Physiol 204:8-15. https://doi.org/10.1016/j.jplph.2016.07.014 

  84. Sci Hortic (amsterdam) U Sahin 240 196 2018 10.1016/j.scienta.2018.06.016 Sahin U, Ekinci M, Ors S, Turan M, Yildiz S, Yildirim E (2018) Effects of individual and combined effects of salinity and drought on physiological, nutritional and biochemical properties of cabbage (Brassica oleracea var. capitata). Sci Hortic (amsterdam) 240:196-204. https://doi.org/10.1016/j.scienta.2018.06.016 

  85. Turk J Botany MA Shahid 38 511 2014 10.3906/bot-1304-45 Shahid MA, Balal RM, Pervez MA, Garcia-Sanchez F, Gimeno V, Abbas T, Mattson NS, Riaz A (2014) Treatment with 24-epibrassinolide mitigates NaCl-induced toxicity by enhancing carbohydrate metabolism, osmolyte accumulation, and antioxidant activity in Pisum sativum. Turk J Botany 38:511-525. https://doi.org/10.3906/bot-1304-45 

  86. Genome Res P Shannon 13 2498 2003 10.1101/gr.1239303 Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T (2003) Cytoscape: A software Environment for integrated models of biomolecular interaction networks. Genome Res 13:2498-2504. https://doi.org/10.1101/gr.1239303 

  87. Biomolecules A Sharma 9 397 2019 10.3390/biom9090397 Sharma A, Zheng B (2019) Molecular responses during plant grafting and its regulation by auxins, cytokinins, and gibberellins. Biomolecules 9:397. https://doi.org/10.3390/biom9090397 

  88. Plant Sci Z Shen 235 89 2015 10.1016/j.plantsci.2015.03.006 Shen Z, Yao J, Sun J et al (2015) Populus euphratica HSF binds the promoter of WRKY1 to enhance salt tolerance. Plant Sci 235:89-100. https://doi.org/10.1016/j.plantsci.2015.03.006 

  89. Front Plant Sci SS Shumayla 2017 10.3389/fpls.2017.01019 Shumayla SS, Taneja M, Tyagi S, Singh K, Upadhyay SK (2017) Survey of high throughput RNA-seq data reveals potential roles for lncrnas during development and stress response in bread wheat. Front Plant Sci. https://doi.org/10.3389/fpls.2017.01019 

  90. BMC Genomics CMA Simopoulos 19 316 2018 10.1186/s12864-018-4665-2 Simopoulos CMA, Weretilnyk EA, Golding GB (2018) Prediction of plant lncRNA by ensemble machine learning classifiers. BMC Genomics 19:316. https://doi.org/10.1186/s12864-018-4665-2 

  91. Funct Integr Genomics JB Song 15 495 2015 10.1007/s10142-015-0438-z Song JB, Wang YX, Li HB, Li BW, Zhou ZS, Gao S, Yang ZM (2015) The F-box family genes as key elements in response to salt, heavy mental, and drought stresses in Medicago truncatula. Funct Integr Genomics 15:495-507. https://doi.org/10.1007/s10142-015-0438-z 

  92. Plant Soil Environ D Steffens 51 545 2005 10.17221/3630-pse Steffens D, Hütsch BW, Eschholz T, Lošák T, Schubert S (2005) Water logging may inhibit plant growth primarily by nutrient deficiency rather than nutrient toxicity. Plant Soil Environ 51:545-552. https://doi.org/10.17221/3630-pse 

  93. BMC Plant Biol P Su 20 392 2020 10.1186/s12870-020-02602-1 Su P, Yan J, Li W, Wang L, Zhao J, Ma X, Li A, Wang H, Kong L (2020) A member of wheat class III peroxidase gene family, TaPRX-2A, enhanced the tolerance of salt stress. BMC Plant Biol 20:392. https://doi.org/10.1186/s12870-020-02602-1 

  94. Front Plant Sci M Sun 2018 10.3389/fpls.2018.00226 Sun M, Qian X, Chen C, Cheng S, Jia B, Zhu Y, Sun X (2018) Ectopic expression of GsSRK in Medicago sativa reveals its involvement in plant architecture and salt stress responses. Front Plant Sci. https://doi.org/10.3389/fpls.2018.00226 

  95. Front Bioeng Biotechnol X Sun 2020 10.3389/fbioe.2020.00331 Sun X, Zheng H, Li J, Liu L, Zhang X, Sui N (2020) Comparative transcriptome analysis reveals new lncRNAs responding to salt stress in sweet sorghum. Front Bioeng Biotechnol. https://doi.org/10.3389/fbioe.2020.00331 

  96. Genes (basel) A Suratanee 9 594 2018 10.3390/genes9120594 Suratanee A, Chokrathok C, Chutimanukul P, Khrueasan N, Buaboocha T, Chadchawan S, Plaimas K (2018) Two-state co-expression network analysis to identify genes related to salt tolerance in Thai rice. Genes (basel) 9:594. https://doi.org/10.3390/genes9120594 

  97. BMC Genomics Y Tai 19 616 2018 10.1186/s12864-018-4999-9 Tai Y, Liu C, Yu S, Yang H, Sun J, Guo C, Huang B, Liu Z, Yuan Y, Xia E, Wei C, Wan X (2018) Gene co-expression network analysis reveals coordinated regulation of three characteristic secondary biosynthetic pathways in tea plant (Camellia sinensis). BMC Genomics 19:616. https://doi.org/10.1186/s12864-018-4999-9 

  98. Front Plant Sci Y Tang 2019 10.3389/fpls.2019.00168 Tang Y, Bao X, Zhi Y et al (2019) Overexpression of a myb family gene, Osmyb6, increases drought and salinity stress tolerance in transgenic rice. Front Plant Sci. https://doi.org/10.3389/fpls.2019.00168 

  99. Plant Cell Physiol T Tercé-Laforgue 56 1918 2015 10.1093/pcp/pcv114 Tercé-Laforgue T, Clément G, Marchi L, Restivo FM, Lea PJ, Hirel B (2015) Resolving the role of plant NAD-glutamate dehydrogenase: III. Overexpressing individually or simultaneously the two enzyme subunits under salt stress induces changes in the leaf metabolic profile and increases plant biomass production. Plant Cell Physiol 56:1918-1929. https://doi.org/10.1093/pcp/pcv114 

  100. 10.1007/978-1-4614-4747-4_13 Todorova D, Katerova Z, Sergiev I, Alexieva V (2013) Role of polyamines in alleviating salt stress. In: Ecophysiology and responses of plants under salt stress. Springer, Berlin, pp 355-379 

  101. Aust J Crop Sci M Valifard 9 656 2015 Valifard M, Mohsenzadeh S, Niazi A, Moghadam A (2015) Phenylalanine ammonia lyase isolation and functional analysis of phenylpropanoid pathway under salinity stress in Salvia species. Aust J Crop Sci 9:656-665 

  102. Brief Bioinform S van Dam 19 575 2018 10.1093/bib/bbw139 van Dam S, Võsa U, van der Graaf A, Franke L, de Magalhães JP (2018) Gene co-expression analysis for functional classification and gene-disease predictions. Brief Bioinform 19:575-592. https://doi.org/10.1093/bib/bbw139 

  103. Front Plant Sci S Wan 2020 10.3389/fpls.2020.00218 Wan S, Zhang Y, Duan M, Huang L, Wang W, Xu Q, Yang Y, Yu Y (2020) Integrated analysis of long non-coding RNAs (lncRNAs) and mRNAs Reveals the regulatory role of lncRNAs associated with salt resistance in Camellia sinensis. Front Plant Sci. https://doi.org/10.3389/fpls.2020.00218 

  104. PLoS ONE J Wang 8 e64929 2013 10.1371/journal.pone.0064929 Wang J, Chen L, Wang Y, Zhang J, Liang Y, Xu D (2013) A Computational systems biology study for understanding salt tolerance mechanism in rice. PLoS ONE 8:e64929. https://doi.org/10.1371/journal.pone.0064929 

  105. Plant Mol Biol Report X Wang 35 333 2017 10.1007/s11105-017-1026-2 Wang X, Fang G, Yang J, Li Y (2017) A Thioredoxin-Dependent Glutathione Peroxidase (OsGPX5) Is Required for Rice Normal Development and Salt Stress Tolerance. Plant Mol Biol Report 35:333-342. https://doi.org/10.1007/s11105-017-1026-2 

  106. Transgenic Res XP Wen 17 251 2008 10.1007/s11248-007-9098-7 Wen XP, Pang XM, Matsuda N, Kita M, Inoue H, Hao YJ, Honda C, Moriguchi T (2008) Over-expression of the apple spermidine synthase gene in pear confers multiple abiotic stress tolerance by altering polyamine titers. Transgenic Res 17:251-263. https://doi.org/10.1007/s11248-007-9098-7 

  107. Nucleic Acids Res V Wucher 45 e57 2017 10.1093/nar/gkw1306 Wucher V, Legeai F, Hédan B et al (2017) FEELnc: A tool for long non-coding RNA annotation and its application to the dog transcriptome. Nucleic Acids Res 45:e57-e57. https://doi.org/10.1093/nar/gkw1306 

  108. Sci Rep H Xiong 7 2731 2017 10.1038/s41598-017-03024-0 Xiong H, Guo H, Xie Y, Zhao L, Gu J, Zhao S, Li J, Liu L (2017) RNAseq analysis reveals pathways and candidate genes associated with salinity tolerance in a spaceflight-induced wheat mutant. Sci Rep 7:2731. https://doi.org/10.1038/s41598-017-03024-0 

  109. J Agric Food Chem F Xu 61 10110 2013 10.1021/jf4029688 Xu F, Zhang G, Tong C, Sun X, Corke H, Sun M, Bao J (2013) Association mapping of starch physicochemical properties with starch biosynthesizing genes in waxy rice (Oryza sativa L.). J Agric Food Chem 61:10110-10117. https://doi.org/10.1021/jf4029688 

  110. J Integr Plant Biol Y Yang 60 796 2018 10.1111/jipb.12689 Yang Y, Guo Y (2018) Unraveling salt stress signaling in plants. J Integr Plant Biol 60:796-804. https://doi.org/10.1111/jipb.12689 

  111. Plant Cell Rep Y Ye 36 235 2017 10.1007/s00299-016-2084-x Ye Y, Ding Y, Jiang Q, Wang F, Sun J, Zhu C (2017) The role of receptor-like protein kinases (RLKs) in abiotic stress response in plants. Plant Cell Rep 36:235-242. https://doi.org/10.1007/s00299-016-2084-x 

  112. Agronomy Y Yoon 10 788 2020 10.3390/agronomy10060788 Yoon Y, Seo DH, Shin H, Kim HJ, Kim CM, Jang G (2020) The role of stress-responsive transcription factors in modulating abiotic stress tolerance in plants. Agronomy 10:788. https://doi.org/10.3390/agronomy10060788 

  113. PLoS ONE S Yousefirad 15 2020 10.1371/journal.pone.0229513 Yousefirad S, Soltanloo H, Ramezanpour SS, Nezhad KZ, Shariati V (2020) The RNA-seq transcriptomic analysis reveals genes mediating salt tolerance through rapid triggering of ion transporters in a mutant barley. PLoS ONE 15:e0229513. https://doi.org/10.1371/journal.pone.0229513 

  114. Environ Exp Bot Y Yu 180 2020 10.1016/j.envexpbot.2020.104249 Yu Y, Bai Y, Wang P, Wang Y, Wan H, Liu C, Ni Z (2020) Soybean nuclear factor YA10 positively regulates drought resistance in transgenic Arabidopsis thaliana. Environ Exp Bot 180:104249. https://doi.org/10.1016/j.envexpbot.2020.104249 

  115. Sci Rep H Yuan 8 14928 2018 10.1038/s41598-018-33113-7 Yuan H, Zeng X, Yang Q, Xu Q, Wang Y, Jabu D, Sang Z, Tashi N (2018) Gene coexpression network analysis combined with metabonomics reveals the resistance responses to powdery mildew in Tibetan hulless barley. Sci Rep 8:14928. https://doi.org/10.1038/s41598-018-33113-7 

  116. Stat Appl Genet Mol Biol B Zhang 2005 10.2202/1544-6115.1128 Zhang B, Horvath S (2005) A general framework for weighted gene co-expression network analysis. Stat Appl Genet Mol Biol. https://doi.org/10.2202/1544-6115.1128 

  117. Int J Agric Biol HH Zhang 19 735 2017 10.17957/IJAB/15.0348 Zhang HH, Xu N, Li X, Jin WW, Tian Q, Gu SY, Sun GY (2017) Overexpression of 2-Cys Prx increased salt tolerance of photosystem II in tobacco. Int J Agric Biol 19:735-745. https://doi.org/10.17957/IJAB/15.0348 

  118. Plant Physiol L Zhang 149 916 2009 10.1104/pp.108.131144 Zhang L, Tian LH, Zhao JF, Song Y, Zhang CJ, Guo Y (2009) Identification of an apoplastic protein involved in the initial phase of salt stress response in rice root by two-dimensional electrophoresis. Plant Physiol 149:916-928. https://doi.org/10.1104/pp.108.131144 

  119. Front Plant Sci T Zhang 2018 10.3389/fpls.2018.01303 Zhang T, Zhao Y, Wang Y, Liu Z, Gao C (2018) Comprehensive analysis of myb gene family and their expressions under abiotic stresses and hormone treatments in tamarix hispida. Front Plant Sci. https://doi.org/10.3389/fpls.2018.01303 

  120. BMC Plant Biol X Zhang 19 459 2019 10.1186/s12870-019-2088-0 Zhang X, Dong J, Deng F, Wang W, Cheng Y, Song L, Hu M, Shen J, Xu Q, Shen F (2019a) The long non-coding RNA lncRNA973 is involved in cotton response to salt stress. BMC Plant Biol 19:459. https://doi.org/10.1186/s12870-019-2088-0 

  121. Plant Cell X Zhang 25 4994 2013 10.1105/tpc.113.119644 Zhang X, Gou M, Liu CJ (2013) Arabidopsis kelch repeat F-Box proteins regulate phenylpropanoid biosynthesis via controlling the turnover of phenylalanine ammonia-lyase. Plant Cell 25:4994-5010. https://doi.org/10.1105/tpc.113.119644 

  122. Int J Mol Sci X Zhang 20 5573 2019 10.3390/ijms20225573 Zhang X, Wang W, Zhu W, Dong J, Cheng Y, Yin Z, Shen F (2019b) Mechanisms and functions of long non-coding RNAs at multiple regulatory levels. Int J Mol Sci 20:5573. https://doi.org/10.3390/ijms20225573 

  123. BMC Plant Biol J Zhao 13 110 2013 10.1186/1471-2229-13-110 Zhao J, Gao Y, Zhang Z, Chen T, Guo W, Zhang T (2013) A receptor-like kinase gene (GbRLK) from Gossypium barbadense enhances salinity and drought-stress tolerance in Arabidopsis. BMC Plant Biol 13:110. https://doi.org/10.1186/1471-2229-13-110 

  124. Chemosphere M Zhou 209 892 2018 10.1016/j.chemosphere.2018.06.143 Zhou M, Han R, Ghnaya T, Lutts S (2018) Salinity influences the interactive effects of cadmium and zinc on ethylene and polyamine synthesis in the halophyte plant species Kosteletzkya pentacarpos. Chemosphere 209:892-900. https://doi.org/10.1016/j.chemosphere.2018.06.143 

  125. PLoS ONE SM Zhou 10 2015 10.1371/journal.pone.0122117 Zhou SM, Kong XZ, Kang HH, Sun XD, Wang W (2015) The involvement of wheat F-box protein gene TaFBA1 in the oxidative stress tolerance of plants. PLoS ONE 10:e0122117. https://doi.org/10.1371/journal.pone.0122117 

  126. New Phytol Y Zhou 227 407 2020 10.1111/nph.16524 Zhou Y, Zhang Y, Wang X, Han X, An Y, Lin S, Shen C, Wen JL, Liu C, Yin W, Xia X (2020) Root-specific NF-Y family transcription factor, PdNF-YB21, positively regulates root growth and drought resistance by abscisic acid-mediated indoylacetic acid transport in Populus. New Phytol 227:407-426. https://doi.org/10.1111/nph.16524 

  127. BMC Plant Biol M Zhu 18 83 2018 10.1186/s12870-018-1299-0 Zhu M, Meng X, Cai J, Li G, Dong T, Li Z (2018) Basic leucine zipper transcription factor SlbZIP1 mediates salt and drought stress tolerance in tomato. BMC Plant Biol 18:83. https://doi.org/10.1186/s12870-018-1299-0 

  128. Ecotoxicol Environ Saf Y Zhu 174 245 2019 10.1016/j.ecoenv.2019.02.075 Zhu Y, Yin J, Liang Y, Liu J, Jia J, Huo H, Wu Z, Yang R, Gong H (2019a) Transcriptomic dynamics provide an insight into the mechanism for silicon-mediated alleviation of salt stress in cucumber plants. Ecotoxicol Environ Saf 174:245-254. https://doi.org/10.1016/j.ecoenv.2019.02.075 

  129. BMC Plant Biol YX Zhu 19 164 2019 10.1186/s12870-019-1712-3 Zhu YX, Jia JH, Yang L, Xia YC, Zhang HL, Jia JB, Zhou R, Nie PY, Yin JL, Ma DF, Liu LC (2019b) Identification of cucumber circular RNAs responsive to salt stress. BMC Plant Biol 19:164. https://doi.org/10.1186/s12870-019-1712-3 

  130. BMC Plant Biol YX Zhu 19 345 2019 10.1186/s12870-019-1953-1 Zhu YX, Yang L, Liu N, Yang J, Zhou XK, Xia YC, He Y, He YQ, Gong HJ, Ma DF, Yin JL (2019c) Genome-wide identification, structure characterization, and expression pattern profiling of aquaporin gene family in cucumber. BMC Plant Biol 19:345. https://doi.org/10.1186/s12870-019-1953-1 

  131. J Exp Bot PJ Zwack 66 4863 2015 10.1093/jxb/erv172 Zwack PJ, Rashotte AM (2015) Interactions between cytokinin signalling and abiotic stress responses. J Exp Bot 66:4863-4871. https://doi.org/10.1093/jxb/erv172 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로