$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Boosting catalyst activity with high valency metal species through Fe doping on normal spinel NiCr2O4 for superior water oxidation

Applied surface science, v.609, 2023년, pp.155326 -   

Lee, Keon Beom ,  Jo, Seunghwan ,  Choi, Hyeonggeun ,  Lee, Young-Woo ,  Sohn, Jung Inn

초록이 없습니다.

참고문헌 (52)

  1. Energies Shadidi 14 19 6209 2021 10.3390/en14196209 A review of hydrogen as a fuel in internal combustion engines 

  2. Int. J. Hydrogen Energy Ji 34 8 3546 2009 10.1016/j.ijhydene.2009.02.052 Effect of hydrogen addition on the idle performance of a spark ignited gasoline engine at stoichiometric condition 

  3. Appl. Energy Kim 160 15 945 2015 10.1016/j.apenergy.2015.03.084 Compact PEM fuel cell system combined with all-in-one hydrogen generator using chemical hydride as a hydrogen source 

  4. Int. J. Hydrogen Energy Vancoillie 37 12 9914 2012 10.1016/j.ijhydene.2012.03.145 Comparison of the renewable transportation fuels, hydrogen and methanol formed from hydrogen, with gasoline - Engine efficiency study 

  5. Appl. Therm. Eng. Yapicioglu 154 25 1 2019 10.1016/j.applthermaleng.2019.02.072 Experimental investigation and evaluation of using ammonia and gasoline fuel blends for power generators 

  6. Environ. Sci. Technol. Sun 53 12 7103 2019 10.1021/acs.est.8b06197 Criteria air pollutants and greenhouse gas emissions from hydrogen production in U.S. steam methane reforming facilities 

  7. J. Clean. Prod. Wang 179 1 335 2018 10.1016/j.jclepro.2018.01.063 Life cycle greenhouse gas assessment of hydrogen production via chemical looping combustion thermally coupled steam reforming 

  8. Appl. Energy Lee 217 1 467 2018 10.1016/j.apenergy.2018.02.132 Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States 

  9. Energy Li 199 15 2020 Life cycle assessment and techno-economic analysis of biomass-to-hydrogen production with methane tri-reforming 

  10. Sustain Energy Fuels Antonini 4 2967 2020 10.1039/D0SE00222D Hydrogen production from natural gas and biomethane with carbon capture and storage - A techno-environmental analysis 

  11. Adv. Energy Sustain. Res. Borett 2 11 2100097 2021 10.1002/aesr.202100097 Advances in hydrogen production from natural gas reforming 

  12. Small Methods Yao 4 10 2000494 2020 10.1002/smtd.202000494 Promoting electrocatalytic hydrogen evolution reaction and oxygen evolution reaction by fields: Effects of electric field, magnetic field, strain, and light 

  13. J. Power Sources Jamesh 333 30 213 2016 10.1016/j.jpowsour.2016.09.161 Recent progress on earth abundant hydrogen evolution reaction and oxygen evolution reaction bifunctional electrocatalyst for overall water splitting in alkaline media 

  14. J. Power Sources Li 341 15 250 2017 10.1016/j.jpowsour.2016.10.096 The urchin-like sphere arrays Co3O4 as a bifunctional catalyst for hydrogen evolution reaction and oxygen evolution reaction 

  15. Angew. Chem. Int. Ed. Xie 60 14 7576 2021 10.1002/anie.202015478 Enzyme-Inspired Iron Porphyrins for Improved ElectrocatalyticOxygen Reduction and Evolution Reactions 

  16. Energy Environ. Sci. Gao 13 1 174 2020 10.1039/C9EE02380A Karst landform-featured monolithic electrode for water electrolysis in neutral media 

  17. J. Am. Chem. Soc. Li 143 36 14613 2021 10.1021/jacs.1c05204 Identifying Intermediates in Electrocatalytic Water Oxidation with a Manganese Corrole Complex 

  18. Angew. Chem., Int. Ed. Long 126 29 7714 2014 10.1002/ange.201402822 A Strongly Coupled Graphene and FeNi Double Hydroxide Hybrid as an Excellent Electrocatalyst for the Oxygen Evolution Reaction 

  19. ACS Energy Lett. Huang 3 7 1698 2018 10.1021/acsenergylett.8b00888 Improving Electrocatalysts for Oxygen Evolution Using NixFe3−xO4/Ni Hybrid Nanostructures Formed by Solvothermal Synthesis 

  20. J. Phys. Chem. Lett. Lee 3 3 399 2012 10.1021/jz2016507 Synthesis and Activities of Rutile IrO2 and RuO2 Nanoparticles for Oxygen Evolution in Acid and Alkaline Solutions 

  21. J. Am. Chem. Soc. Reier 137 30 13031 2015 10.1021/jacs.5b07788 Molecular Insight in Structure and Activity of Highly Efficient, Low-Ir Ir-Ni Oxide Catalysts for Electrochemical Water Splitting (OER) 

  22. J. Am. Chem. Soc. Yeo 133 14 5587 2011 10.1021/ja200559j Enhanced Activity of Gold-Supported Cobalt Oxide for the Electrochemical Evolution of Oxygen 

  23. Nano Energy Li 78 2020 10.1016/j.nanoen.2020.105230 Porous NiCo2S4/FeOOH nanowire arrays with rich sulfide/hydroxide interfaces enable high OER activity 

  24. Appl. Surf. Sci. Pan 531 30 2020 Efficient bi-directional OER/ORR catalysis of metal-free C6H4NO2/g-C3N4: Density functional theory approaches 

  25. Chem. Rev. Zhao 117 15 10121 2017 10.1021/acs.chemrev.7b00051 Spinels: Controlled Preparation, Oxygen Reduction/Evolution Reaction Application, and Beyond 

  26. Mater. Chem. Phys. Kumar 279 1 2022 Design of Novel transition metal based multiphase stannate: An efficient electrocatalyst for oxygen evolution reaction 

  27. Small Methods He 3 9 1800419 2019 10.1002/smtd.201800419 Transition-Metal Single Atoms Anchored on Graphdiyne as High-Efficiency Electrocatalysts for Water Splitting and Oxygen Reduction 

  28. J. Power Sources Ge 476 15 2020 Heterostructure of Mn3O4 nanoparticles on Cu(OH)2 nanowire arrays for electrocatalytic water oxidation 

  29. Nat. Catal. Wu 2 763 2019 10.1038/s41929-019-0325-4 Iron-facilitated dynamic active-site generation on spinel CoAl2O4 with self-termination of surface reconstruction for water oxidation 

  30. Catalysis Liu 141 20 8136 2019 Valence Engineering via Selective Atomic Substitution on Tetrahedral Sites in Spinel Oxide for Highly Enhanced Oxygen Evolution 

  31. Nat. Catal. Zhang 3 985 2020 10.1038/s41929-020-00525-6 High-valence metals improve oxygen evolution reaction performance by modulating 3d metal oxidation cycle energetics 

  32. Sustain Energy Fuels Zhang 4 5417 2020 10.1039/D0SE01087A First-row transition metal oxide oxygen evolution electrocatalysts: regulation strategies and mechanistic understandings 

  33. Energy Environ. Sci. Gardner 9 184 2016 10.1039/C5EE02195B Structural basis for differing electrocatalytic water oxidation by the cubic, layered and spinel forms of lithium cobalt oxides 

  34. Adv. Mater. Zhou 30 32 1802912 2018 10.1002/adma.201802912 Enlarged Co(-)O Covalency in Octahedral Sites Leading to Highly Efficient Spinel Oxides for Oxygen Evolution Reaction 

  35. ACS Sustain. Chem. Eng. Xie 9 43 14596 2021 10.1021/acssuschemeng.1c05718 Molten-Salt-Protected Pyrolytic Approach for Fabricating Borate Modified Cobalt−Iron Spinel Oxide with Robust Oxygen-Evolving Performance 

  36. Adv. Funct. Mater. Sun 31 16 2009779 2021 10.1002/adfm.202009779 Desinging High-Valence Metal Sites for Electrochemical Water Splitting 

  37. Sci. China Chem. Yang 64 101 2021 10.1007/s11426-020-9895-2 Non-metallic electronic regulation in CuCo oxy-/thio-spinel as advanced oxygen evolution electrocatalysts 

  38. Nat. Commun. Zhang 11 1 2020 Lattice oxygen activation enabled by high-valence metal sites for enhanced water oxidation 

  39. Nat. Mater. Grimaud 15 121 2016 10.1038/nmat4551 Anionic redox processes for electrochemical devices 

  40. ACS Sustain. Chem. Eng. Tariq 6 4 4854 2018 10.1021/acssuschemeng.7b04266 Unraveling the Beneficial Electrochemistry of IrO2/MoO3 Hybrid as a Highly Stable and Efficient Oxygen Evolution Reaction Catalyst 

  41. Small Zhang 17 37 2100129 2021 10.1002/smll.202100129 Advanced Transition Metal-Based OER Electrocatalysts: Current Status, Opportunities, and Challenges 

  42. Appl. Catal. B Environ. Du 272 5 2020 PLD-fabricated perovskite oxide nanofilm as efficient electrocatalyst with highly enhanced water oxidation performance 

  43. J. Mater. Chem. A Lu 5 21016 2017 10.1039/C7TA06302D Active site-engineered bifunctional electrocatalysts of ternary spinel oxides, M0.1Ni0.9Co2O4 (M: Mn, Fe, Cu, Zn) for the air electrode of rechargeable zinc-air batteries 

  44. J. Catal. Yang 407 221 2022 10.1016/j.jcat.2022.02.002 The regulation mechanism of cationic substitution in morphology controlled oxy-spinel for oxygen evolution reaction 

  45. ACS Sustain. Chem. Eng. Hu 7 19 16828 2019 10.1021/acssuschemeng.9b04364 Novel Cobalt−Iron−Vanadium Layered Double Hydroxide Nanosheet Arrays for Superior Water Oxidation Performance 

  46. 10.1149/1945-7111/ab8647 Y. Liu, M. Huang, J. Zhao, M. Lu, X. Z., Q. Lin, P. Wang, J. Zhu, One-pot Synthesis of NiO/NiCr2O4 Nanostructure as an Efficient Catalyst for Urea Electro-oxidation in Alkaline Media, J. Electrochem. Soc. 167 (6) (2020) 066520, https://doi.org/10.1149/1945-7111/ab8647. 

  47. Acta Cryst. Shannon 32 751 1976 10.1107/S0567739476001551 Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides 

  48. J. Phys. Chem. C Reddy 116 20 11019 2012 10.1021/jp301090d Unexpected Behavior of Copper in Modified Ferrites during High Temperature WGS Reaction-Aspects of Fe3+ ↔ Fe2+ Redox Chemistry from Mössbauer and XPS Studies 

  49. ACS Energy Lett. He 3 6 1373 2018 10.1021/acsenergylett.8b00515 Nickel Vacancies Boost Reconstruction in Nickel Hydroxide Electrocatalyst 

  50. Ceram. Int. Zhang 47 9578 2021 10.1016/j.ceramint.2020.12.092 Inhibition of Cr6+ by the formation of in-situ Cr3+ containing solid-solution in Al2O3-CaO-Cr2O3-SiO2 system 

  51. Adv. Mater. Zhu 27 44 7150 2015 10.1002/adma.201503532 A High-Performance Electrocatalyst for Oxygen Evolution Reaction: LiCo0.8Fe0.2O2 

  52. ACS Appl. Energy Mater. Luo 3 7 7149 2020 10.1021/acsaem.0c01192 Hexagonal Perovskite Ba0.9Sr0.1Co0.8Fe0.1Ir0.1O3−δ as an Efficient Electrocatalyst towards the Oxygen Evolution Reaction 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로