$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Used coffee/PCL composite filter for Cu(II) removal from wastewater

Journal of water process engineering, v.50, 2022년, pp.103253 -   

Lee, Ji Soo ,  Lee, Han Bi ,  Oh, Yuree ,  Choi, Ah-Jeong ,  Seo, Tae Hoon ,  Kim, Young-Kwan ,  Lee, Min Wook

초록이 없습니다.

참고문헌 (50)

  1. Heliyon Briffa 6 2020 10.1016/j.heliyon.2020.e04691 Heavy metal pollution in the environment and their toxicological effects on humans 

  2. Winge 1990 Host Defenses against Copper Toxicity 

  3. Environ. Sci. Pollut. Res. Rehman 26 18003 2019 10.1007/s11356-019-05073-6 Copper environmental toxicology, recent advances, and future outlook: a review 

  4. J. Environ. Impact Assess. Soon Ju 17 143 2008 Valid assessment for copper standard establishment in drinking water 

  5. Sci. Total Environ. Hube 710 2020 10.1016/j.scitotenv.2019.136375 Direct membrane filtration for wastewater treatment and resource recovery: a review 

  6. J. Water Process. Eng. Anis 32 2019 10.1016/j.jwpe.2019.100941 Microfiltration membrane processes: a review of research trends over the past decade 

  7. Environ. Sci. Technol. Wingenfelder 39 4606 2005 10.1021/es048482s Removal of heavy metals from mine waters by natural zeolites 

  8. Desalination Mirbagheri 171 85 2005 10.1016/j.desal.2004.03.022 Pilot plant investigation on petrochemical wastewater treatmentfor the removal of copper and chromium with the objective of reuse 

  9. Bioresour. Technol. Tadesse 97 529 2006 10.1016/j.biortech.2005.04.028 Lime enhanced chromium removal in advanced integrated wastewater pond system 

  10. Bioresour. Technol. Lu 99 1509 2008 10.1016/j.biortech.2007.04.024 Copper removal from wastewater using spent-grain as biosorbent 

  11. Water Res. Chen 43 2605 2009 10.1016/j.watres.2009.03.007 Precipitation of heavy metals from wastewater using simulated flue gas: sequent additions of fly ash, lime and carbon dioxide 

  12. Environ. Technol. Utomo 27 25 2006 10.1080/09593332708618619 Adsorption of divalent copper, zinc, cadmium and Lead ions from aqueous solution by waste tea and coffee adsorbents 

  13. Materials Chwastowski 13 2020 10.3390/ma13122782 Adsorption of cadmium, manganese and Lead ions from aqueous solutions using spent coffee grounds and biochar produced by its pyrolysis in the fluidized bed reactor 

  14. Materials Torres-Caban 12 2019 10.3390/ma12030395 Removal of copper from water by adsorption with calcium-alginate/spent-coffee-grounds composite beads 

  15. Resour. Conserv. Recycl. Janissen 128 110 2018 10.1016/j.resconrec.2017.10.001 Chemical composition and value-adding applications of coffee industry by-products: a review 

  16. Plant Physiol. Biochem. Franklin 49 835 2011 10.1016/j.plaphy.2011.05.009 Chlorogenic acid participates in the regulation of shoot, root and root hair development in Hypericum perforatum 

  17. ACS Sustain. Chem. Eng. Vardon 1 1286 2013 10.1021/sc400145w Complete utilization of spent coffee grounds to produce biodiesel, bio-oil, and biochar 

  18. ACS Sustain. Chem. Eng. Wang 4 2830 2016 10.1021/acssuschemeng.6b00336 Removal of heavy metal ions by Poly(vinyl alcohol) and carboxymethyl cellulose composite hydrogels prepared by a freeze-thaw method 

  19. Water Nam 9 867 2017 10.3390/w9110867 An environmentally benign approach for as (V) absorption from wastewater using untreated coffee grounds-preliminary results 

  20. Materials Kyzas 5 1826 2012 10.3390/ma5101826 Commercial coffee wastes as materials for adsorption of heavy metals from aqueous solutions 

  21. J. Hazard. Mater. Oliveira 152 1073 2008 10.1016/j.jhazmat.2007.07.085 Untreated coffee husks as biosorbents for the removal of heavy metals from aqueous solutions 

  22. Case Stud. Therm. Eng. Qalyoubi 3 2021 Recent progress and challenges on adsorptive membranes for the removal of pollutants from wastewater. Part I: fundamentals and classification of membranes 

  23. Chem. Eng. J. Bao 281 460 2015 10.1016/j.cej.2015.06.094 Application of amine-functionalized MCM-41 modified ultrafiltration membrane to remove chromium (VI) and copper (II) 

  24. J. Membr. Sci. Klein 179 1 2000 10.1016/S0376-7388(00)00514-7 Affinity membranes: a 10-year review 

  25. Desalination Nasef 249 677 2009 10.1016/j.desal.2008.12.059 Adsorption of some heavy metal ions from aqueous solutions on nafion 117 membrane 

  26. J. Membr. Sci. Kolbasov 530 250 2017 10.1016/j.memsci.2017.02.019 Heavy metal adsorption on solution-blown biopolymer nanofiber membranes 

  27. Eur. Polym. J. Van der Schueren 47 1256 2011 10.1016/j.eurpolymj.2011.02.025 An alternative solvent system for the steady state electrospinning of polycaprolactone 

  28. Carbohydr. Polym. Van der Schueren 88 1221 2012 10.1016/j.carbpol.2012.01.085 Polycaprolactone/chitosan blend nanofibres electrospun from an acetic acid/formic acid solvent system 

  29. Adv. Nat. Sci. Nanosci. Nanotechnol. Ekram 8 2017 10.1088/2043-6254/aa92b4 Optimum parameters for the production of nano-scale electrospun polycaprolactone to be used as a biomedical material 

  30. J. Colloid Interface Sci. Yang 351 122 2010 10.1016/j.jcis.2010.07.042 Folding/aggregation of graphene oxide and its application in Cu2+ removal 

  31. Polym. Bull. Wang 70 2359 2013 10.1007/s00289-013-0957-5 Facile preparation of poly (ε-caprolactone)/Fe3O4@ graphene oxide superparamagnetic nanocomposites 

  32. J. Mater. Res. Rufford 25 1451 2010 10.1557/JMR.2010.0186 A comparative study of chemical treatment by FeCl3, MgCl2, and ZnCl2 on microstructure, surface chemistry, and double-layercapacitance of carbons from waste biomass 

  33. Arab. J. Chem. Wen 10 S1680 2017 10.1016/j.arabjc.2013.06.013 A facile, sensitive, and rapid spectrophotometric method for copper(II) ion detection in aqueous media using polyethyleneimine 

  34. Food Chem. Belay 108 310 2008 10.1016/j.foodchem.2007.10.024 Measurement of caffeine in coffee beans with UV/Vis spectrometer 

  35. Int. J. Pharm. Chem. Sci. Thilagan 2 1055 2013 Adsorption of copper (II) ions in aqueous solution by chitosan immobilised on red soil: isotherms, kinetics and mechanism 

  36. J. Hazard. Mater. Zhao 147 67 2007 10.1016/j.jhazmat.2006.12.045 Preparation of porous chitosan gel beads for copper (II) ion adsorption 

  37. Appl Water Sci Shikuku 11 1 2021 10.1007/s13201-021-01440-2 Adsorption isotherm modeling for methylene blue removal onto magnetic kaolinite clay: a comparison of two-parameter isotherms 

  38. Kaeding 1973 1970 Aquatic Chemistry An Introduction Emphasizing Chemical Equilibria in Natural Waters 

  39. Appl. Chem. Eng. Jib 30 190 2019 Study on isotherm, kinetic and thermodynamic parameters for adsorption of methyl green using activated carbon 

  40. Z. Phys. Chem. Herbert 57 385 1907 Über die adsorption in lösungen 

  41. Appl. Nanosci. Bahgat 3 251 2013 10.1007/s13204-012-0127-3 Adsorption of methyl green dye onto multi-walled carbon nanotubes decorated with ni nanoferrite 

  42. Chem. Eng. J. Vargas 181-182 243 2012 10.1016/j.cej.2011.11.073 Kinetic and equilibrium studies: adsorption of food dyes acid yellow 6, acid yellow 23, and acid red 18 on activated carbon from flamboyant pods 

  43. Process Biochem. Aksu 38 89 2002 10.1016/S0032-9592(02)00051-1 Determination of the equilibrium, kinetic and thermodynamic parameters of the batch biosorption of nickel(II) ions onto Chlorella vulgaris 

  44. Mater. Chem. Phys. Altintig 220 313 2018 10.1016/j.matchemphys.2018.05.077 Preparation, characterization and evaluation of bio-based magnetic activated carbon for effective adsorption of malachite green from aqueous solution 

  45. Korean J. Chem. Eng. Saadi 32 787 2015 10.1007/s11814-015-0053-7 Monolayer and multilayer adsorption isotherm models for sorption from aqueous media 

  46. Chem. Eng. Sci. Fritz 29 1279 1974 10.1016/0009-2509(74)80128-4 Simultaneous adsorption equilibria of organic solutes in dilute aqueous solutions on activated carbon 

  47. Hindawi J. Chem. Ayawei 2017 1 2017 10.1155/2017/3039817 Modelling and interpretation of adsorption isotherms 

  48. J. Hazard. Mater. Xu 421 2022 10.1016/j.jhazmat.2021.126680 Adsorption desulfurization performance of PdO/SiO2@ graphene oxide hybrid aerogel: influence of graphene oxide 

  49. J. Nanostruct. Chem. Robati 3 1 2013 10.1186/2193-8865-3-55 Pseudo-second-order kinetic equations for modeling adsorption systems for removal of lead ions using multi-walled carbon nanotube 

  50. Carbon Lett. Gholitabar 22 14 2017 Kinetic and multi-parameter isotherm studies of picric acid removal from aqueous solutions by carboxylated multi-walled carbon nanotubes in the presence and absence of ultrasound 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로