$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Sterylglucosides in Fungi 원문보기

Journal of fungi, v.8 no.11, 2022년, pp.1130 -   

Pereira de Sa, Nivea (Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA) ,  Del Poeta, Maurizio (Department of Microbiology and Immunology, Stony Brook University, Stony Brook, NY 11794, USA)

Abstract AI-Helper 아이콘AI-Helper

Sterylglucosides (SGs) are sterol conjugates widely distributed in nature. Although their universal presence in all living organisms suggests the importance of this kind of glycolipids, they are yet poorly understood. The glycosylation of sterols confers a more hydrophilic character, modifying bioph...

주제어

참고문헌 (139)

  1. 1. Casares D. Escribá P.V. Rosselló C.A. Membrane Lipid Composition: Effect on Membrane and Organelle Structure, Function and Compartmentalization and Therapeutic Avenues Int. J. Mol. Sci. 2019 20 2167 10.3390/ijms20092167 31052427 

  2. 2. Nes W.D. Biosynthesis of Cholesterol and Other Sterols Chem. Rev. 2011 111 6423 6451 10.1021/cr200021m 21902244 

  3. 3. Bieberich E. Sphingolipids and lipid rafts: Novel concepts and methods of analysis Chem. Phys. Lipids 2018 216 114 131 10.1016/j.chemphyslip.2018.08.003 30194926 

  4. 4. Castoreno A.B. Wang Y. Stockinger W. Jarzylo L.A. Du H. Pagnon J.C. Shieh E.C. Nohturfft A. Transcriptional regulation of phagocytosis-induced membrane biogenesis by sterol regulatory element binding proteins Proc. Natl. Acad. Sci. USA 2005 102 13129 13134 10.1073/pnas.0506716102 16141315 

  5. 5. Riobo N.A. Cholesterol and its derivatives in Sonic Hedgehog signaling and cancer Curr. Opin. Pharmacol. 2012 12 736 741 10.1016/j.coph.2012.07.002 22832232 

  6. 6. Xu F. Rychnovsky S.D. Belani J.D. Hobbs H.H. Cohen J.C. Rawson R.B. Dual roles for cholesterol in mammalian cells Proc. Natl. Acad. Sci. USA 2005 102 14551 14556 10.1073/pnas.0503590102 16199524 

  7. 7. Xu X. Bittman R. Duportail G. Heissler D. Vilcheze C. London E. Effect of the structure of natural sterols and sphingolipids on the formation of ordered sphingolipid/sterol domains (rafts). Comparison of cholesterol to plant, fungal, and disease-associated sterols and comparison of sphingomyelin, cerebrosides, and ceramide J. Biol. Chem. 2001 276 33540 33546 11432870 

  8. 8. Alvarez F.J. Douglas L.M. Konopka J.B. Sterol-Rich Plasma Membrane Domains in Fungi Eukaryot. Cell 2007 6 755 763 10.1128/EC.00008-07 17369440 

  9. 9. Koch B. Schmidt C. Daum G. Storage lipids of yeasts: A survey of nonpolar lipid metabolism in Saccharomyces cerevisiae , Pichia pastoris , and Yarrowia lipolytica FEMS Microbiol. Rev. 2014 38 892 915 10.1111/1574-6976.12069 24597968 

  10. 10. Olzmann J.A. Carvalho P. Dynamics and functions of lipid droplets Nat. Rev. Mol. Cell Biol. 2019 20 137 155 10.1038/s41580-018-0085-z 30523332 

  11. 11. Choi S.-H. Sviridov D. Miller Y.I. Oxidized cholesteryl esters and inflammation Biochim. Biophys. Acta Mol. Cell Biol. Lipids 2017 1862 393 397 10.1016/j.bbalip.2016.06.020 27368140 

  12. 12. Akiyama H. Nakajima K. Itoh Y. Sayano T. Ohashi Y. Yamaguchi Y. Greimel P. Hirabayashi Y. Aglycon diversity of brain sterylglucosides: Structure determination of cholesteryl- and sitosterylglucoside J. Lipid Res. 2016 57 2061 2072 10.1194/jlr.M071480 27697915 

  13. 13. Aguirre A. Peiru S. Eberhardt F. Vetcher L. Cabrera R. Menzella H.G. Enzymatic hydrolysis of steryl glucosides, major contaminants of vegetable oil-derived biodiesel Appl. Microbiol. Biotechnol. 2014 98 4033 4040 10.1007/s00253-013-5345-4 24265025 

  14. 14. Grille S. Zaslawski A. Thiele S. Plat J. Warnecke D. The functions of steryl glycosides come to those who wait: Recent advances in plants, fungi, bacteria and animals Prog. Lipid Res. 2010 49 262 288 10.1016/j.plipres.2010.02.001 20138912 

  15. 15. Nyström L. Schär A. Lampi A.M. Steryl glycosides and acylated steryl glycosides in plant foods reflect unique sterol patterns Eur. J. Lipid Sci. Technol. 2012 114 656 669 10.1002/ejlt.201200033 

  16. 16. Shimamura M. Structure, metabolism and biological functions of steryl glycosides in mammals Biochem. J. 2020 477 4243 4261 10.1042/BCJ20200532 33186452 

  17. 17. Schrick K. Shiva S. Arpin J.C. Delimont N. Isaac G. Tamura P. Welti R. Steryl Glucoside and Acyl Steryl Glucoside Analysis of Arabidopsis Seeds by Electrospray Ionization Tandem Mass Spectrometry Lipids 2012 47 185 193 10.1007/s11745-011-3602-9 21830156 

  18. 18. Ferrer A. Altabella T. Arró M. Boronat A. Emerging roles for conjugated sterols in plants Prog. Lipid Res. 2017 67 27 37 10.1016/j.plipres.2017.06.002 28666916 

  19. 19. Bale N.J. Ding S. Hopmans E.C. Arts M.G.I. Villanueva L. Boschman C. Haas A.F. Schouten S. Damsté J.S.S. Lipidomics of Environmental Microbial Communities. I: Visualization of Component Distributions Using Untargeted Analysis of High-Resolution Mass Spectrometry Data Front. Microbiol. 2021 12 659302 10.3389/fmicb.2021.659302 34367080 

  20. 20. Xu T. Hu C. Xuan Q. Xu G. Recent advances in analytical strategies for mass spectrometry-based lipidomics Anal. Chim. Acta 2020 1137 156 169 10.1016/j.aca.2020.09.060 33153599 

  21. 21. Zandkarimi F. Brown L.M. Application of Ion Mobility Mass Spectrometry in Lipidomics Adv. Exp. Med. Biol. 2019 1140 317 326 31347056 

  22. 22. Skubic C. Vovk I. Rozman D. Križman M. Simplified LC-MS Method for Analysis of Sterols in Biological Samples Molecules 2020 25 4116 10.3390/molecules25184116 32916848 

  23. 23. Rella A. Mor V. Farnoud A.M. Singh A. Shamseddine A.A. Ivanova E. Carpino N. Montagna M.T. Luberto C. Del Poeta M. Role of Sterylglucosidase 1 (Sgl1) on the pathogenicity of Cryptococcus neoformans : Potential applications for vaccine development Front. Microbiol. 2015 6 836 10.3389/fmicb.2015.00836 26322039 

  24. 24. Fernandes C.M. Normile T.G. Fabri J.H. Brauer V.S. de SAraújo G.R. Frases S. Nimrichter L. Malavazi I. Del Poeta M. Vaccination with Live or Heat-Killed Aspergillus fumigatus Δ sglA Conidia Fully Protects Immunocompromised Mice from Invasive Aspergillosis mBio 2022 e0232822 10.1128/mbio.02328-22 36066100 

  25. 25. Watanabe T. Ito T. Goda H.M. Ishibashi Y. Miyamoto T. Ikeda K. Taguchi R. Okino N. Ito M. Sterylglucoside Catabolism in Cryptococcus neoformans with Endoglycoceramidase-related Protein 2 (EGCrP2), the First Steryl-β-glucosidase Identified in Fungi J. Biol. Chem. 2015 290 1005 1019 10.1074/jbc.M114.616300 25361768 

  26. 26. Sakaki T. Zähringer U. Warnecke D.C. Fahl A. Knogge W. Heinz E. Sterol glycosides and cerebrosides accumulate in Pichia pastoris , Rhynchosporium secalis and other fungi under normal conditions or under heat shock and ethanol stress Yeast 2001 18 679 695 10.1002/yea.720 11378896 

  27. 27. Watanabe T. Tani M. Ishibashi Y. Endo I. Okino N. Ito M. Ergosteryl-β-glucosidase (Egh1) involved in sterylglucoside catabolism and vacuole formation in Saccharomyces cerevisiae Glycobiology 2015 25 1079 1089 10.1093/glycob/cwv045 26116408 

  28. 28. Warnecke D. Erdmann R. Fahl A. Hube B. Müller F. Zank T. Zahringer U. Heinz E. Cloning and functional expression of UGT genes encoding sterol glucosyltransferases from Saccharomyces cerevisiae , Candida albicans , Pichia pastoris , and Dictyostelium discoideum J. Biol. Chem. 1999 274 13048 13059 10.1074/jbc.274.19.13048 10224056 

  29. 29. Moreau R.A. Whitaker B.D. Hicks K.B. Phytosterols, phytostanols, and their conjugates in foods: Structural diversity, quantitative analysis, and health-promoting uses Prog. Lipid Res. 2002 41 457 500 10.1016/S0163-7827(02)00006-1 12169300 

  30. 30. Castillo N. Pastor V. Chávez Á. Arró M. Boronat A. Flors V. Ferrer A. Altabella T. Inactivation of UDP-Glucose Sterol Glucosyltransferases Enhances Arabidopsis Resistance to Botrytis cinerea Front. Plant Sci. 2019 10 1162 10.3389/fpls.2019.01162 31611892 

  31. 31. Kunimoto S. Kobayashi T. Kobayashi S. Murakami-Murofushi K. Expression of cholesteryl glucoside by heat shock in human fibroblasts Cell Stress Chaperones 2000 5 3 7 10.1379/1466-1268(2000)005<0003:EOCGBH>2.0.CO;2 10701833 

  32. 32. Kunimoto S. Murofushi W. Kai H. Ishida Y. Uchiyama A. Kobayashi T. Kobayashi S. Murofushi H. Murakami-Murofushi K. Steryl Glucoside is a Lipid Mediator in Stress-responsive Signal Transduction Cell Struct. Funct. 2002 27 157 162 10.1247/csf.27.157 12207046 

  33. 33. Sugai M. Takakuwa N. Ohnishi M. Urashima T. Oda Y. Characterization of Sterol Lipids in Kluyveromyces lactis Strain M-16 Accumulating a High Amount of Steryl Glucoside J. Oleo Sci. 2009 58 91 96 10.5650/jos.58.91 19145063 

  34. 34. Duperon R. Thiersault M. Duperon P. High level of glycosylated sterols in species of solanum and sterol changes during the development of the tomato Phytochemistry 1984 23 743 746 10.1016/S0031-9422(00)85016-5 

  35. 35. Behmer S.T. Olszewski N. Sebastiani J. Palka S. Sparacino G. Sciarrno E. Grebenok R.J. Plant phloem sterol content: Forms, putative functions, and implications for phloem-feeding insects Front. Plant Sci. 2013 4 370 10.3389/fpls.2013.00370 24069026 

  36. 36. Stübs G. Fingerle V. Wilske B. Göbel U.B. Zähringer U. Schumann R.R. Schröder N.W. Acylated Cholesteryl Galactosides Are Specific Antigens of Borrelia Causing Lyme Disease and Frequently Induce Antibodies in Late Stages of Disease J. Biol. Chem. 2009 284 13326 13334 10.1074/jbc.M809575200 19307181 

  37. 37. Schröder N.W.J. Schombel U. Heine H. Göbel U.B. Zähringer U. Schumann R.R. Acylated Cholesteryl Galactoside as a Novel Immunogenic Motif in Borrelia burgdorferi Sensu Stricto J. Biol. Chem. 2003 278 33645 33653 10.1074/jbc.M305799200 12810705 

  38. 38. Ben-Menachem G. Kubler-Kielb J. Coxon B. Yergey A. Schneerson R. A newly discovered cholesteryl galactoside from Borrelia burgdorferi Proc. Natl. Acad. Sci. USA 2003 100 7913 7918 10.1073/pnas.1232451100 12799465 

  39. 39. Abraham W. Wertz P.W. Burken R.R. Downing D.T. Glucosylsterol and acylglucosylsterol of snake epidermis: Structure determination J. Lipid Res. 1987 28 446 449 10.1016/S0022-2275(20)38695-8 3585177 

  40. 40. Lebrun A.-H. Wunder C. Hildebrand J. Churin Y. Zähringer U. Lindner B. Meyer T.F. Heinz E. Warnecke D. Cloning of a Cholesterol-α-glucosyltransferase from Helicobacter pylori J. Biol. Chem. 2006 281 27765 27772 10.1074/jbc.M603345200 16844692 

  41. 41. Kawakubo M. Ito Y. Okimura Y. Kobayashi M. Sakura K. Kasama S. Fukuda M.N. Fukuda M. Katsuyama T. Nakayama J. Natural Antibiotic Function of a Human Gastric Mucin Against Helicobacter pylori Infection Science 2004 305 1003 1006 10.1126/science.1099250 15310903 

  42. 42. Akiyama H. Ide M. Nagatsuka Y. Sayano T. Nakanishi E. Uemura N. Yuyama K. Yamaguchi Y. Kamiguchi H. Takahashi R. Glucocerebrosidases catalyze a transgalactosylation reaction that yields a newly-identified brain sterol metabolite, galactosylated cholesterol J. Biol. Chem. 2020 295 5257 5277 10.1074/jbc.RA119.012502 32144204 

  43. 43. Taketomi T. Hara A. Kasama T. Abnormalities in cerebral lipids and hepatic cholesterol glucuronide of a patient with GM1-gangliosidosis type 2 Adv. Exp. Med. Biol. 1982 152 291 305 7136918 

  44. 44. Ghannoum M.A. Janini G. Khamis L. Radwan S.S. Dimorphism-associated Variations in the Lipid Composition of Candida albicans Microbiology 1986 132 2367 2375 10.1099/00221287-132-8-2367 3540201 

  45. 45. Muhiudeen I.A. Koerner T.A. Samuelsson B. Hirabayashi Y. Degasperi R. Li S.C. Li Y.T. Characterization of human liver 3-O-β-D-glucopyranuronosyl-cholesterol by mass spectrometry and nuclear magnetic resonance spectroscopy J. Lipid Res. 1984 25 1117 1123 10.1016/S0022-2275(20)37721-X 6512417 

  46. 46. Osmani S.A. Bak S. Imberty A. Olsen C.E. Møller B.L. Catalytic key amino acids and UDP-sugar donor specificity of a plant glucuronosyltransferase, UGT94B1: Molecular modeling substantiated by site-specific mutagenesis and biochemical analyses Plant Physiol. 2008 148 1295 1308 10.1104/pp.108.128256 18829982 

  47. 47. Akiyama H. Kobayashi S. Hirabayashi Y. Murakami-Murofushi K. Cholesterol glucosylation is catalyzed by transglucosylation reaction of β-glucosidase 1 Biochem. Biophys. Res. Commun. 2013 441 838 843 10.1016/j.bbrc.2013.10.145 24211208 

  48. 48. Breton C. Šnajdrová L. Jeanneau C. Koča J. Imberty A. Structures and mechanisms of glycosyltransferases Glycobiology 2005 16 29R 37R 10.1093/glycob/cwj016 16049187 

  49. 49. Zhang P. Zhang Z. Zhang L. Wang J. Wu C. Glycosyltransferase GT1 family: Phylogenetic distribution, substrates coverage, and representative structural features Comput. Struct. Biotechnol. J. 2020 18 1383 1390 10.1016/j.csbj.2020.06.003 32637037 

  50. 50. Warnecke D.C. Heinz E. Purification of a Membrane-Bound UDP-Glucose:Sterol [β]-D-Glucosyltransferase Based on Its Solubility in Diethyl Ether Plant Physiol. 1994 105 1067 1073 10.1104/pp.105.4.1067 12232266 

  51. 51. Chen L. Zhang Y. Feng Y. Structural dissection of sterol glycosyltransferase UGT51 from Saccharomyces cerevisiae for substrate specificity J. Struct. Biol. 2018 204 371 379 10.1016/j.jsb.2018.11.001 30395931 

  52. 52. Yuan W. Strømhaug P.E. Dunn W.A. Jr. Glucose-induced Autophagy of Peroxisomes in Pichia pastoris Requires a Unique E1-like Protein Mol. Biol. Cell 1999 10 1353 1366 10.1091/mbc.10.5.1353 10233149 

  53. 53. Stasyk O. Nazarko T.Y. Krasovska O.S. Warnecke D. Nicaud J. Cregg J.M. Sibirny A.A. Sterol glucosyltransferases have different functional roles in Pichia pastoris and Yarrowia lipolytica Cell Biol. Int. 2003 27 947 952 10.1016/j.cellbi.2003.08.004 14585290 

  54. 54. Kim Y.K. Wang Y. Liu Z.M. Kolattukudy P.E. Identification of a hard surface contact-induced gene in Colletotrichum gloeosporioides conidia as a sterol glycosyl transferase, a novel fungal virulence factor Plant J. 2002 30 177 187 10.1046/j.1365-313X.2002.01284.x 12000454 

  55. 55. Ishibashi Y. Ikeda K. Sakaguchi K. Okino N. Taguchi R. Ito M. Quality Control of Fungus-specific Glucosylceramide in Cryptococcus neoformans by Endoglycoceramidase-related Protein 1 (EGCrP1) J. Biol. Chem. 2012 287 368 381 10.1074/jbc.M111.311340 22072709 

  56. 56. Pereira de Sa N. Taouil A. Kim J. Clement T. Hoffmann R.M. Burke J.E. Rizzo R.C. Ojima I. del Poeta M. Airola M.V. Structure and inhibition of Cryptococcus neoformans sterylglucosidase to develop antifungal agents Nat. Commun. 2021 12 5885 10.1038/s41467-021-26163-5 34620873 

  57. 57. Caines M.E. Vaughan M.D. Tarling C.A. Hancock S.M. Warren R.A.J. Withers S.G. Strynadka N.C. Structural and Mechanistic Analyses of endo-Glycoceramidase II, a Membrane-associated Family 5 Glycosidase in the Apo and GM3 Ganglioside-bound Forms J. Biol. Chem. 2007 282 14300 14308 10.1074/jbc.M611455200 17329247 

  58. 58. Rowland R.J. Wu L. Liu F. Davies G.J. A baculoviral system for the production of human β-glucocerebrosidase enables atomic resolution analysis Acta Crystallogr. Sect. D Struct. Biol. 2020 76 Pt 6 565 580 10.1107/S205979832000501X 32496218 

  59. 59. Kwon-Chung K.J. Fraser J.A. Doering T.L. Wang Z.A. Janbon G. Idnurm A. Bahn Y.S. Cryptococcus neoformans and Cryptococcus gattii , the etiologic agents of cryptococcosis Cold Spring Harb. Perspect. Med. 2014 4 a019760 10.1101/cshperspect.a019760 24985132 

  60. 60. Hurtado J.C. Castillo P. Fernandes F. Navarro M. Lovane L. Casas I. Quintó L. Marco F. Jordao D. Ismail M.R. Mortality due to Cryptococcus neoformans and Cryptococcus gattii in low-income settings: An autopsy study Sci. Rep. 2019 9 7493 10.1038/s41598-019-43941-w 31097746 

  61. 61. Abadi J. Pirofski L.-A. Antibodies Reactive with the Cryptococcal Capsular Polysaccharide Glucuronoxylomannan Are Present in Sera from Children with and without Human Immunodeficiency Virus Infection J. Infect. Dis. 1999 180 915 919 10.1086/314953 10438394 

  62. 62. Goldman D.L. Khine H. Abadi J. Lindenberg D.J. Pirofski L.-A. Niang R. Casadevall A. Serologic Evidence for Cryptococcus neoformans Infection in Early Childhood Pediatrics 2001 107 e66 10.1542/peds.107.5.e66 11331716 

  63. 63. McQuiston T. Luberto C. Del Poeta M. Role of sphingosine-1-phosphate (S1P) and S1P receptor 2 in the phagocytosis of Cryptococcus neoformans by alveolar macrophages Microbiology 2011 157 Pt 5 1416 1427 10.1099/mic.0.045989-0 21292747 

  64. 64. McQuiston T. Luberto C. Del Poeta M. Role of Host Sphingosine Kinase 1 in the Lung Response against Cryptococcosis Infect. Immun. 2010 78 2342 2352 10.1128/IAI.01140-09 20194596 

  65. 65. Garcia J. Shea J. Alvarez-Vasquez F. Qureshi A. Luberto C. Voit E.O. Del Poeta M. Mathematical modeling of pathogenicity of Cryptococcus neoformans Mol. Syst. Biol. 2008 4 183 10.1038/msb.2008.17 18414484 

  66. 66. Macura N. Zhang T. Casadevall A. Dependence of Macrophage Phagocytic Efficacy on Antibody Concentration Infect. Immun. 2007 75 1904 1915 10.1128/IAI.01258-06 17283107 

  67. 67. Kechichian T.B. Shea J. del Poeta M. Depletion of alveolar macrophages decreases the dissemination of a glucosylceramide-deficient mutant of Cryptococcus neoformans in immunodeficient mice Infect. Immun. 2007 75 4792 4798 10.1128/IAI.00587-07 17664261 

  68. 68. Shea J.M. Kechichian T.B. Luberto C. Del Poeta M. The Cryptococcal Enzyme Inositol Phosphosphingolipid-Phospholipase C Confers Resistance to the Antifungal Effects of Macrophages and Promotes Fungal Dissemination to the Central Nervous System Infect. Immun. 2006 74 5977 5988 10.1128/IAI.00768-06 16988277 

  69. 69. Alvarez M. Casadevall A. Phagosome Extrusion and Host-Cell Survival after Cryptococcus neoformans Phagocytosis by Macrophages Curr. Biol. 2006 16 2161 2165 10.1016/j.cub.2006.09.061 17084702 

  70. 70. Wormley F.L. Jr. Cox G.M. Perfect J.R. Perfect, Evaluation of host immune responses to pulmonary cryptococcosis using a temperature-sensitive Cryptococcus neoformans calcineurin A mutant strain Microb. Pathog. 2005 38 113 123 10.1016/j.micpath.2004.12.007 15748813 

  71. 71. Khan M.A. Jabeen R. Nasti T.H. Mohammad O. Enhanced anticryptococcal activity of chloroquine in phosphatidylserine-containing liposomes in a murine model J. Antimicrob. Chemother. 2005 55 223 228 10.1093/jac/dkh522 15590713 

  72. 72. Olszewski M.A. Noverr M.C. Chen G.-H. Toews G.B. Cox G.M. Perfect J.R. Huffnagle G.B. Urease Expression by Cryptococcus neoformans Promotes Microvascular Sequestration, Thereby Enhancing Central Nervous System Invasion Am. J. Pathol. 2004 164 1761 1771 10.1016/S0002-9440(10)63734-0 15111322 

  73. 73. Steenbergen J.N. Casadevall A. The origin and maintenance of virulence for the human pathogenic fungus Cryptococcus neoformans Microbes Infect. 2003 5 667 675 10.1016/S1286-4579(03)00092-3 12787743 

  74. 74. Luberto C. Martinez-Mariño B. Taraskiewicz D. Bolaños B. Chitano P. Toffaletti D.L. Cox G.M. Perfect J.R. Hannun Y.A. Balish E. Identification of App1 as a regulator of phagocytosis and virulence of Cryptococcus neoformans J. Clin. Investig. 2003 112 1080 1094 10.1172/JCI18309 14523045 

  75. 75. Tucker S.C. Casadevall A. Replication of Cryptococcus neoformans in macrophages is accompanied by phagosomal permeabilization and accumulation of vesicles containing polysaccharide in the cytoplasm Proc. Natl. Acad. Sci. USA 2002 99 3165 3170 10.1073/pnas.052702799 11880650 

  76. 76. Feldmesser M. Tucker S. Casadevall A. Intracellular parasitism of macrophages by Cryptococcus neoformans Trends Microbiol. 2001 9 273 278 10.1016/S0966-842X(01)02035-2 11390242 

  77. 77. Spitzer E. Spitzer S. Freundlich L. Casadevall A. Persistence of initial infection in recurrent Cryptococcus neoformans meningitis Lancet 1993 341 595 596 10.1016/0140-6736(93)90354-J 8094831 

  78. 78. Alanio A. Desnos-Ollivier M. Dromer F. Dynamics of Cryptococcus neoformans -Macrophage Interactions Reveal that Fungal Background Influences Outcome during Cryptococcal Meningoencephalitis in Humans mBio 2011 2 e00158-11 10.1128/mBio.00158-11 21828220 

  79. 79. Desnos-Ollivier M. Patel S. Spaulding A.R. Charlier C. Garcia-Hermoso D. Nielsen K. Dromer F. Mixed Infections and In Vivo Evolution in the Human Fungal Pathogen Cryptococcus neoformans mBio 2010 1 e00091-10 10.1128/mBio.00091-10 20689742 

  80. 80. Sorrell T.C. Chen S.C. Phillips P. Marr K.A. Clinical perspective on Cryptococcus neoformans and Cryptococcus gattii : Implications for diagnosis and management Cryptococcus: From Human Pathogen to Model Yeast Heitman J. Kozel T.R. Kwon-Chung K.J. Perfect J.R. Casadevall A. ASM Washington, DC, USA 2011 595 606 

  81. 81. McMullan B.J. Sorrell T.C. Chen S.C. Cryptococcus gattii infections: Contemporary aspects of epidemiology, clinical manifestations and management of infection Future Microbiol. 2013 8 1613 1631 10.2217/fmb.13.123 24266360 

  82. 82. Escandón P. Sánchez A. Martínez M. Meyer W. Castañeda E. Molecular epidemiology of clinical and environmental isolates of the Cryptococcus neoformans species complex reveals a high genetic diversity and the presence of the molecular type VGII mating type a in Colombia FEMS Yeast Res. 2006 6 625 635 10.1111/j.1567-1364.2006.00055.x 16696659 

  83. 83. Calo S. Billmyre R.B. Heitman J. Generators of Phenotypic Diversity in the Evolution of Pathogenic Microorganisms PLOS Pathog. 2013 9 e1003181 10.1371/journal.ppat.1003181 23555239 

  84. 84. Danesi P. Firacative C. Cogliati M. Otranto D. Capelli G. Meyer W. Multilocus sequence typing (MLST) and M13 PCR fingerprinting revealed heterogeneity amongst Cryptococcus species obtained from Italian veterinary isolates FEMS Yeast Res. 2014 14 897 909 10.1111/1567-1364.12178 24981157 

  85. 85. Rajasingham R. Smith R.M. Park B.J. Jarvis J.N. Govender N.P. Chiller T.M. Denning D.W. Loyse A. Boulware D.R. Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis Lancet Infect. Dis. 2017 17 873 881 10.1016/S1473-3099(17)30243-8 28483415 

  86. 86. Nami S. Mohammadi R. Vakili M. Khezripour K. Mirzaei H. Morovati H. Fungal vaccines, mechanism of actions and immunology: A comprehensive review Biomed. Pharmacother. 2018 109 333 344 10.1016/j.biopha.2018.10.075 30399567 

  87. 87. Ueno K. Yanagihara N. Shimizu K. Miyazaki Y. Vaccines and Protective Immune Memory against Cryptococcosis Biol. Pharm. Bull. 2020 43 230 239 10.1248/bpb.b19-00841 32009111 

  88. 88. Bouic P. Etsebeth S. Liebenberg R. Albrecht C. Pegel K. Van Jaarsveld P. β-sitosterol and β-sitosterol glucoside stimulate human peripheral blood lymphocyte proliferation: Implications for their use as an immunomodulatory vitamin combination Int. J. Immunopharmacol. 1996 18 693 700 10.1016/S0192-0561(97)85551-8 9172012 

  89. 89. Lee J.H. Lee J.Y. Park J.H. Jung H.S. Kim J.S. Kang S.S. Kim Y.S. Han Y. Immunoregulatory activity by daucosterol, a β-sitosterol glycoside, induces protective Th1 immune response against disseminated Candidiasis in mice Vaccine 2007 25 3834 3840 10.1016/j.vaccine.2007.01.108 17335944 

  90. 90. Donald P.R. Lamprecht J.H. Freestone M. Albrecht C.F. Bouic P.J. Kotze D. Van Jaarsveld P.P. A randomised placebo-controlled trial of the efficacy of beta-sitosterol and its glucoside as adjuvants in the treatment of pulmonary tuberculosis Int. J. Tuberc. Lung Dis. 1997 1 518 522 9487449 

  91. 91. Bouic P.J. The role of phytosterols and phytosterolins in immune modulation: A review of the past 10 years Curr. Opin. Clin. Nutr. Metab. Care 2001 4 471 475 10.1097/00075197-200111000-00001 11706278 

  92. 92. Colombo A.C. Rella A. Normile T. Joffe L.S. Tavares P.M. Araújo G.R.D.S. Frases S. Orner E.P. Farnoud A.M. Fries B.C. Cryptococcus neoformans Glucuronoxylomannan and Sterylglucoside Are Required for Host Protection in an Animal Vaccination Model mBio 2019 10 e02909-18 10.1128/mBio.02909-18 30940711 

  93. 93. Normile T.G. Rella A. Del Poeta M. Cryptococcus neoformans Δ sgl1 Vaccination Requires Either CD 4 + or CD 8 + T Cells for Complete Host Protection Front Cell Infect Microbiol. 2021 11 739027 10.3389/fcimb.2021.739027 34568097 

  94. 94. Walsh T.J. Anaissie E.J. Denning D.W. Herbrecht R. Kontoyiannis D.P. Marr K.A. Morrison V.A. Segal B.H. Steinbach W.J. Stevens D.A. Treatment of aspergillosis: Clinical practice guidelines of the Infectious Diseases Society of America Clin. Infect. Dis. 2008 46 327 360 10.1086/525258 18177225 

  95. 95. Pagano L. Akova M. Dimopoulos G. Herbrecht R. Drgona L. Blijlevens N. Risk assessment and prognostic factors for mould-related diseases in immunocompromised patients J. Antimicrob. Chemother. 2010 66 (Suppl. S1) i5 i14 10.1093/jac/dkq437 

  96. 96. Neofytos D. Horn D. Anaissie E. Steinbach W. Olyaei A. Fishman J. Pfaller M. Chang C. Webster K. Marr K. Epidemiology and outcome of invasive fungal infection in adult hematopoietic stem cell transplant recipients: Analysis of Multicenter Prospective Antifungal Therapy (PATH) Alliance registry Clin. Infect. Dis. 2009 48 265 273 10.1086/595846 19115967 

  97. 97. Cadena J. Thompson G.R. Patterson T.F. 3rd Invasive Aspergillosis: Current Strategies for Diagnosis and Management Infect. Dis. Clin. N. Am. 2016 30 125 142 10.1016/j.idc.2015.10.015 

  98. 98. Bochud P.-Y. Chien J.W. Marr K.A. Leisenring W.M. Upton A. Janer M. Rodrigues S.D. Li S. Hansen J.A. Zhao L.P. Toll-like Receptor 4 Polymorphisms and Aspergillosis in Stem-Cell Transplantation N. Engl. J. Med. 2008 359 1766 1777 10.1056/NEJMoa0802629 18946062 

  99. 99. Brown G.D. Denning D.W. Gow N.A.R. Levitz S.M. Netea M.G. White T.C. Hidden Killers: Human Fungal Infections Sci. Transl. Med. 2012 4 165rv13 10.1126/scitranslmed.3004404 

  100. 100. Asakura M. Ninomiya S. Sugimoto M. Oku M. Yamashita S.-I. Okuno T. Sakai Y. Takano Y. Atg26-Mediated Pexophagy Is Required for Host Invasion by the Plant Pathogenic Fungus Colletotrichum orbiculare Plant Cell 2009 21 1291 1304 10.1105/tpc.108.060996 19363139 

  101. 101. Kikuma T. Kitamoto K. Analysis of autophagy in Aspergillus oryzae by disruption of Aoatg13 , Aoatg4 , and Aoatg15 genes FEMS Microbiol. Lett. 2011 316 61 69 10.1111/j.1574-6968.2010.02192.x 21204928 

  102. 102. Kikuma T. Tadokoro T. Maruyama J.I. Kitamoto K. AoAtg26 , a putative sterol glucosyltransferase, is required for autophagic degradation of peroxisomes, mitochondria, and nuclei in the filamentous fungus Aspergillus oryzae Biosci. Biotechnol. Biochem. 2017 81 384 395 10.1080/09168451.2016.1240603 27696999 

  103. 103. Ghannoum M.A. Jurevic R.J. Mukherjee P.K. Cui F. Sikaroodi M. Naqvi A. Gillevet P.M. Characterization of the Oral Fungal Microbiome ( Mycobiome ) in Healthy Individuals PLoS Pathog. 2010 6 e1000713 10.1371/journal.ppat.1000713 20072605 

  104. 104. Nash A.K. Auchtung T.A. Wong M.C. Smith D.P. Gesell J.R. Ross M.C. Stewart C.J. Metcalf G.A. Muzny D.M. Gibbs R.A. The gut mycobiome of the Human Microbiome Project healthy cohort Microbiome 2017 5 153 10.1186/s40168-017-0373-4 29178920 

  105. 105. Drell T. Lillsaar T. Tummeleht L. Simm J. Aaspõllu A. Väin E. Saarma I. Salumets A. Donders G. Metsis M. Characterization of the Vaginal Micro- and Mycobiome in Asymptomatic Reproductive-Age Estonian Women PLoS ONE 2013 8 e54379 10.1371/journal.pone.0054379 23372716 

  106. 106. Mayer F.L. Wilson D. Hube B. Candida albicans pathogenicity mechanisms Virulence 2013 4 119 128 10.4161/viru.22913 23302789 

  107. 107. Mba I.E. Nweze E.I. The use of nanoparticles as alternative therapeutic agents against Candida infections : An up-to-date overview and future perspectives World J. Microbiol. Biotechnol. 2020 36 163 10.1007/s11274-020-02940-0 32990838 

  108. 108. D’Enfert C. Kaune A.-K. Alaban L.-R. Chakraborty S. Cole N. Delavy M. Kosmala D. Marsaux B. Fróis-Martins R. Morelli M. The impact of the Fungus-Host-Microbiota interplay upon Candida albicans infections: Current knowledge and new perspectives FEMS Microbiol. Rev. 2021 45 fuaa060 10.1093/femsre/fuaa060 33232448 

  109. 109. Pfaller M. Neofytos D. Diekema D. Azie N. Meier-Kriesche H.-U. Quan S.-P. Horn D. Epidemiology and outcomes of candidemia in 3648 patients: Data from the Prospective Antifungal Therapy (PATH Alliance ® ) registry, 2004–2008 Diagn. Microbiol. Infect. Dis. 2012 74 323 331 10.1016/j.diagmicrobio.2012.10.003 23102556 

  110. 110. Strollo S. Lionakis M.S. Adjemian J. Steiner C.A. Prevots D.R. Epidemiology of Hospitalizations Associated with Invasive Candidiasis, United States, 2002–20121 Emerg. Infect. Dis. 2016 23 7 13 10.3201/eid2301.161198 27983497 

  111. 111. Goemaere B. Becker P. Van Wijngaerden E. Maertens J. Spriet I. Hendrickx M. Lagrou K. Increasing candidaemia incidence from 2004 to 2015 with a shift in epidemiology in patients preexposed to antifungals Mycoses 2018 61 127 133 10.1111/myc.12714 29024057 

  112. 112. Bassetti M. Garnacho-Montero J. Calandra T. Kullberg B. Dimopoulos G. Azoulay E. Chakrabarti A. Kett D. Leon C. Ostrosky-Zeichner L. Intensive care medicine research agenda on invasive fungal infection in critically ill patients Intensiv. Care Med. 2017 43 1225 1238 10.1007/s00134-017-4731-2 28255613 

  113. 113. Spivak E.S. Hanson K.E. Candida auris : An Emerging Fungal Pathogen J. Clin. Microbiol. 2018 56 e01588-17 10.1128/JCM.01588-17 29167291 

  114. 114. Alim D. Sircaik S. Panwar S.L. The Significance of Lipids to Biofilm Formation in Candida albicans : An Emerging Perspective J. Fungi 2018 4 140 10.3390/jof4040140 30567300 

  115. 115. Mukherjee P.K. Chandra J. Kuhn D.M. Ghannoum M.A. Mechanism of Fluconazole Resistance in Candida albicans Biofilms: Phase-Specific Role of Efflux Pumps and Membrane Sterols Infect. Immun. 2003 71 4333 4340 10.1128/IAI.71.8.4333-4340.2003 12874310 

  116. 116. Selmecki A. Forche A. Berman J. Genomic Plasticity of the Human Fungal Pathogen Candida albicans Eukaryot. Cell 2010 9 991 1008 10.1128/EC.00060-10 20495058 

  117. 117. Ene I.V. Lohse M.B. Vladu A.V. Morschhäuser J. Johnson A.D. Bennett R.J. Phenotypic Profiling Reveals that Candida albicans Opaque Cells Represent a Metabolically Specialized Cell State Compared to Default White Cells mBio 2016 7 e01269-16 10.1128/mBio.01269-16 27879329 

  118. 118. Desai J.V. Mitchell A.P. Andes D.R. Andes, Fungal biofilms , drug resistance, and recurrent infection Cold Spring Harb Perspect. Med. 2014 4 a019729 10.1101/cshperspect.a019729 25274758 

  119. 119. Mallick E.M. Bergeron A.C. Jones S.K. Jr. Newman Z.R. Brothers K.M. Creton R. Wheeler R.T. Bennett R.J. Phenotypic Plasticity Regulates Candida albicans Interactions and Virulence in the Vertebrate Host Front. Microbiol. 2016 7 780 10.3389/fmicb.2016.00780 27303374 

  120. 120. Ghannoum M.A. Swairjo I. Soll D.R. Variation in lipid and sterol contents in Candida albicans white and opaque phenotypes J. Med. Vet. Mycol. 1990 28 103 115 10.1080/02681219080000151 2199656 

  121. 121. Chang W. Li Y. Zheng S. Zhang M. Gao Y. Lou H. Solasodine-3-O-β-d-glucopyranoside is hydrolyzed by a membrane glucosidase into active molecule solasodine against Candida albicans Food Chem. Toxicol. 2017 109 Pt 1 356 362 10.1016/j.fct.2017.09.026 28919409 

  122. 122. Eskes E. Deprez M.-A. Wilms T. Winderickx J. pH homeostasis in yeast; the phosphate perspective Curr. Genet. 2018 64 155 161 10.1007/s00294-017-0743-2 28856407 

  123. 123. Davies B.S.J. Rine J. A Role for Sterol Levels in Oxygen Sensing in Saccharomyces cerevisiae Genetics 2006 174 191 201 10.1534/genetics.106.059964 16783004 

  124. 124. Hughes B.T. Espenshade P.J. Oxygen-regulated degradation of fission yeast SREBP by Ofd1, a prolyl hydroxylase family member EMBO J. 2008 27 1491 1501 10.1038/emboj.2008.83 18418381 

  125. 125. Brown H.E. Telzrow C.L. Saelens J.W. Fernandes L. Alspaugh J.A. Sterol-Response Pathways Mediate Alkaline Survival in Diverse Fungi mBio 2020 11 e00719-20 10.1128/mBio.00719-20 32546619 

  126. 126. Chang Y.C. Bien C.M. Lee H. Espenshade P.J. Kwon-Chung K.J. Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans Mol. Microbiol. 2007 64 614 629 10.1111/j.1365-2958.2007.05676.x 17462012 

  127. 127. Yang Z. Klionsky D.J. An Overview of the Molecular Mechanism of Autophagy Autophagy Infect. Immun. 2009 335 1 32 10.1007/978-3-642-00302-8_1 

  128. 128. Kirkin V. Rogov V.V. A Diversity of Selective Autophagy Receptors Determines the Specificity of the Autophagy Pathway Mol. Cell 2019 76 268 285 10.1016/j.molcel.2019.09.005 31585693 

  129. 129. Reggiori F. Membrane Origin for Autophagy Curr. Top. Dev. Biol. 2006 74 1 30 10.1016/s0070-2153(06)74001-7 16860663 

  130. 130. Wu P. Choo C.Y.L. Lu H. Wei X. Chen Y. Yago J.I. Chung K. Pexophagy is critical for fungal development, stress response, and virulence in Alternaria alternata Mol. Plant Pathol. 2022 23 1538 1554 10.1111/mpp.13247 35810316 

  131. 131. Richie D.L. Fuller K.K. Fortwendel J. Miley M.D. McCarthy J.W. Feldmesser M. Rhodes J.C. Askew D.S. Unexpected Link between Metal Ion Deficiency and Autophagy in Aspergillus fumigatus Eukaryot. Cell 2007 6 2437 2447 10.1128/EC.00224-07 17921348 

  132. 132. Hou J. Wang J.J. Lin H.Y. Feng M.G. Ying S.H. Roles of autophagy-related genes in conidiogenesis and blastospore formation, virulence, and stress response of Beauveria bassiana Fungal Biology 2020 124 1052 1057 10.1016/j.funbio.2020.10.002 33213785 

  133. 133. Zhang S. Liang M. Naqvi N.I. Lin C. Qian W. Zhang L.-H. Deng Y.Z. Phototrophy and starvation-based induction of autophagy upon removal of Gcn5-catalyzed acetylation of Atg7 in Magnaporthe oryzae Autophagy 2017 13 1318 1330 10.1080/15548627.2017.1327103 28594263 

  134. 134. Yamashita S.-I. Oku M. Sakai Y. Functions of PI4P and sterol glucoside are necessary for the synthesis of a nascent membrane structure during pexophagy Autophagy 2007 3 35 37 10.4161/auto.3311 16969129 

  135. 135. Nazarko T.Y. Polupanov A.S. Manjithaya R.R. Subramani S. Sibirny A.A. The Requirement of Sterol Glucoside for Pexophagy in Yeast Is Dependent on the Species and Nature of Peroxisome Inducers Mol. Biol. Cell 2007 18 106 118 10.1091/mbc.e06-06-0554 17079731 

  136. 136. Hatzipapas P. Kalosaka K. Alexia D.A. Christias C. Spore germination and appressorium formation in the entomopathogenic Alternaria alternata Mycol. Res. 2002 106 1349 1359 10.1017/S0953756202006792 

  137. 137. Sadhu A. Moriyasu Y. Acharya K. Bandyopadhyay M. Nitric oxide and ROS mediate autophagy and regulate Alternaria alternata toxin-induced cell death in tobacco BY-2 cells Sci. Rep. 2019 9 8973 10.1038/s41598-019-45470-y 31222105 

  138. 138. Hu G. Gibbons J. Williamson P.R. Chapter 22 Analysis of Autophagy during Infections of Cryptococcus neoformans Methods Enzym. 2008 451 323 342 10.1016/s0076-6879(08)03222-9 

  139. 139. Palmer G.E. Kelly M.N. Sturtevant J.E. Autophagy in the pathogen Candida albicans Microbiology 2007 153 51 58 10.1099/mic.0.2006/001610-0 17185534 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로