$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] HiGee Microbubble Generator: (II) Controllable Preparation of Microbubbles

Industrial & engineering chemistry research, v.61 no.45 = no.45, 2022년, pp.16832 - 16842  

Jiang, Lan (State Key Laboratory of Organic−) ,  Wang, Li-Hua (Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China) ,  Liao, Hai-Long (State Key Laboratory of Organic−) ,  Jiang, Wen-Tao (Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China) ,  Luo, Qian (State Key Laboratory of Organic−) ,  Chu, Guang-Wen (Inorganic Composites , Beijing University of Chemical Technology , Beijing 100029 , P. R. China) ,  Luo, Yong (State Key Laboratory of Organic−)

Abstract AI-Helper 아이콘AI-Helper

Microbubbles can significantly intensify the gas-liquid mass transfer process. With the current bubble generators, it is difficult to achieve the controllable preparation of microbubbles with gas-liquid volume flow rate ratios greater than 0.5, which limits the applications of the microbubble techno...

참고문헌 (45)

  1. Liu, Chun, Tanaka, Hiroshi, Zhang, Lei, Zhang, Jing, Huang, Xia, Ma, Jin, Matsuzawa, Yoshiaki. Fouling and structural changes of Shirasu porous glass (SPG) membrane used in aerobic wastewater treatment process for microbubble aeration. Journal of membrane science, vol.421, 225-231.

  2. Liu, Chun, Chen, Xiao-Xuan, Zhang, Jing, Zhou, Hong-Zheng, Zhang, Lei, Guo, Yan-Kai. Advanced treatment of bio-treated coal chemical wastewater by a novel combination of microbubble catalytic ozonation and biological process. Separation and purification technology, vol.197, 295-301.

  3. Edri, Eitan, Armon, Nina, Greenberg, Ehud, Hadad, Elad, Bockstaller, Michael R., Shpaisman, Hagay. Assembly of Conductive Polyaniline Microstructures by a Laser-Induced Microbubble. ACS applied materials & interfaces, vol.12, no.19, 22278-22286.

  4. Liu, Yefei, Tao, Xihuan, Jiang, Hong, Chen, Rizhi. Intensification of fine apatite flotation with microbubble generation and inclined plates in the flotation column. Chemical engineering and processing = Génie des procédés = Verfahrenstechnik, vol.157, 108133-.

  5. Tan, J., Zhang, J. S., Lu, Y. C., Xu, J. H., Luo, G. S.. Process intensification of catalytic hydrogenation of ethylanthraquinone with gas‐liquid microdispersion. AIChE journal, vol.58, no.5, 1326-1335.

  6. Xiao, Zhengguo, Gao, Xiying, Mohammed, Montaser Abduallah, Zhang, Rongliang, Sun, Hongrui, Li, Dengxin, Pan, Fanfeng. Simultaneous Removal of NO and SO2 with a Novel Oxidation-Absorption Process Based on Air Microbubble Water System. Journal of environmental engineering, vol.146, no.9, 04020109-.

  7. Sánchez Quintero, Enrique, Gordillo, Jose M.. Method of mass production of monodisperse microbubbles aided by intense pressure gradients. AIChE journal, vol.66, no.10, e16659-.

  8. Tang, Jiguo, Yu, Shengzhi, Sun, Licheng, Xie, Guo, Li, Xiao. Continuous formation of microbubbles during partial coalescence of bubbles from a submerged capillary nozzle. AIChE journal, vol.66, no.7, e16233-.

  9. Rodríguez-Rodríguez, Javier, Sevilla, Alejandro, Martínez-Bazán, Carlos, Gordillo, José Manuel. Generation of Microbubbles with Applications to Industry and Medicine. Annual review of fluid mechanics, vol.47, 405-429.

  10. Wu, Mian, Yuan, Shiyan, Song, Haoyuan, Li, Xiaobing. Micro-nano bubbles production using a swirling-type venturi bubble generator. Chemical engineering and processing = Génie des procédés = Verfahrenstechnik, vol.170, 108697-.

  11. Ding, Guodong, Chen, Jiaqing, Li, Zhenlin, Cai, Xiaolei. Numerical Simulation on the Motion and Breakup Characteristics of a Single Bubble in a Venturi Channel. Industrial & engineering chemistry research, vol.60, no.40, 14613-14624.

  12. Feng, Yirong, Mu, Hongfeng, Liu, Xi, Huang, Zhengliang, Zhang, Haomiao, Wang, Jingdai, Yang, Yongrong. Leveraging 3D Printing for the Design of High-Performance Venturi Microbubble Generators. Industrial & engineering chemistry research, vol.59, no.17, 8447-8455.

  13. Wang, Xinyan, Shuai, Yun, Zhou, Xiaorui, Huang, Zhengliang, Yang, Yao, Sun, Jingyuan, Zhang, Haomiao, Wang, Jingdai, Yang, Yongrong. Performance comparison of swirl-venturi bubble generator and conventional venturi bubble generator. Chemical engineering and processing = Génie des procédés = Verfahrenstechnik, vol.154, 108022-.

  14. Wang, Xinyan, Shuai, Yun, Zhang, Haomiao, Sun, Jingyuan, Yang, Yao, Huang, Zhengliang, Jiang, Binbo, Liao, Zuwei, Wang, Jingdai, Yang, Yongrong. Bubble breakup in a swirl-venturi microbubble generator. Chemical engineering journal, vol.403, 126397-.

  15. Xie, Bingqi, Zhou, Caijin, Huang, Xiaoting, Chen, Junxin, Ma, Xiangdong, Zhang, Jisong. Microbubble Generation in Organic Solvents by Porous Membranes with Different Membrane Wettabilities. Industrial & engineering chemistry research, vol.60, no.23, 8579-8587.

  16. Gordiychuk, A., Svanera, M., Benini, S., Poesio, P.. Size distribution and Sauter mean diameter of micro bubbles for a Venturi type bubble generator. Experimental thermal and fluid science : ETF science, vol.70, 51-60.

  17. Huang, Jiang, Sun, Licheng, Du, Min, Liang, Zhao, Mo, Zhengyu, Tang, Jiguo, Xie, Guo. An investigation on the performance of a micro-scale Venturi bubble generator. Chemical engineering journal, vol.386, 120980-.

  18. Meeuwse, Marco, van der Schaaf, John, Schouten, Jaap C.. Multistage rotor‐stator spinning disc reactor. AIChE journal, vol.58, no.1, 247-255.

  19. Wang, Baorong, Yang, Guoqiang, Tian, Hongzhou, Li, Xiabing, Yang, Gaodong, Shi, Yukai, Zhou, Zheng, Zhang, Feng, Zhang, Zhibing. A new model of bubble Sauter mean diameter in fine bubble-dominated columns. Chemical engineering journal, vol.393, 124673-.

  20. Tian, Hongzhou, Pi, Shaofeng, Feng, Yaocheng, Zhou, Zheng, Zhang, Feng, Zhang, Zhibing. One-dimensional drift-flux model of gas holdup in fine-bubble jet reactor. Chemical engineering journal, vol.386, 121222-.

  21. Hesketh, R. P., Fraser Russell, T. W., Etchells, A. W.. Bubble size in horizontal pipelines. AIChE journal, vol.33, no.4, 663-667.

  22. Otsu, Nobuyuki. A Threshold Selection Method from Gray-Level Histograms. IEEE transactions on systems, man, and cybernetics, vol.9, no.1, 62-66.

  23. Swart, Bert, Zhao, Yubin, Khaku, Mohammed, Che, Eric, Maltby, Richard, Chew, Y.M. John, Wenk, Jannis. In situ characterisation of size distribution and rise velocity of microbubbles by high-speed photography. Chemical engineering science, vol.225, 115836-.

  24. Bubbles, Drops and Particles Clift R. 1978 

  25. Chen, Huiting, Wei, Shiyu, Ding, Weitian, Wei, Han, Li, Liang, Saxén, Henrik, Long, Hongming, Yu, Yaowei. Interfacial Area Transport Equation for Bubble Coalescence and Breakup: Developments and Comparisons. Entropy, vol.23, no.9, 1106-.

  26. Bizmark, Navid, Mostoufi, Navid, Mehrnia, Mohammad‐Reza, Zarringhalam, Simin M., Yazdani, Aryan. Coalescence efficiency of bubbles in bubble columns. The Canadian journal of chemical engineering, vol.90, no.6, 1579-1587.

  27. Prince, Michael J., Blanch, Harvey W.. Bubble coalescence and break‐up in air‐sparged bubble columns. AIChE journal, vol.36, no.10, 1485-1499.

  28. Liao, Y., Lucas, D.. A literature review on mechanisms and models for the coalescence process of fluid particles. Chemical engineering science, vol.65, no.10, 2851-2864.

  29. Klaseboer, E., Chevaillier, J.Ph., Gourdon, C., Masbernat, O.. Film Drainage between Colliding Drops at Constant Approach Velocity: Experiments and Modeling. Journal of colloid and interface science, vol.229, no.1, 274-285.

  30. Sovová, H.. Breakage and coalescence of drops in a batch stirred vessel—II comparison of model and experiments. Chemical engineering science, vol.36, no.9, 1567-1573.

  31. Kulkarni, A. A., Joshi, J. B.. Bubble Formation and Bubble Rise Velocity in Gas−Liquid Systems: A Review. Industrial & engineering chemistry research, vol.44, no.16, 5873-5931.

  32. Kolmogorov, A. N.. A refinement of previous hypotheses concerning the local structure of turbulence in a viscous incompressible fluid at high Reynolds number. Journal of fluid mechanics, vol.13, no.1, 82-85.

  33. Wang, Guang Q., Jiao, Yun Q., Xu, Zhi C., Ji, Jian B.. Studies on Performance of Crossflow Concentric-Ring Rotating Bed. Industrial & engineering chemistry research, vol.48, no.23, 10643-10649.

  34. Baltussen, M.W., Segers, Q.I.E., Kuipers, J.A.M., Deen, N.G.. Cutting bubbles with a single wire. Chemical engineering science, vol.157, 138-146.

  35. Baltussen, M.W., Kuipers, J.A.M., Deen, N.G.. A numerical study of cutting bubbles with a wire mesh. Chemical engineering science, vol.165, 25-32.

  36. Computational Fluid Dynamics for Engineers Andersson B. 2015 11 

  37. Solsvik, J., Skjervold, V.T., Han, L., Luo, H., Jakobsen, H.A.. A theoretical study on drop breakup modeling in turbulent flows: The inertial subrange versus the entire spectrum of isotropic turbulence. Chemical engineering science, vol.149, 249-265.

  38. Andersson, Ronnie, Andersson, Bengt. On the breakup of fluid particles in turbulent flows. AIChE journal, vol.52, no.6, 2020-2030.

  39. Wang, Guichao, Yang, Fan, Wu, Ke, Ma, Yongfeng, Peng, Cheng, Liu, Tianshu, Wang, Lian-Ping. Estimation of the dissipation rate of turbulent kinetic energy: A review. Chemical engineering science, vol.229, 116133-.

  40. Lee, Chang Hun, Choi, Hong, Jerng, Dong-Wook, Kim, Dong Eok, Wongwises, Somchai, Ahn, Ho Seon. Experimental investigation of microbubble generation in the venturi nozzle. International journal of heat and mass transfer, vol.136, 1127-1138.

  41. Yin, J., Li, J., Li, H., Liu, W., Wang, D.. Experimental study on the bubble generation characteristics for an venturi type bubble generator. International journal of heat and mass transfer, vol.91, 218-224.

  42. Khirani, Sarah, Kunwapanitchakul, Papitchaya, Augier, Frédéric, Guigui, Christelle, Guiraud, Pascal, Hébrard, Gilles. Microbubble Generation through Porous Membrane under Aqueous or Organic Liquid Shear Flow. Industrial & engineering chemistry research, vol.51, no.4, 1997-2009.

  43. Xie, B.Q., Zhou, C.J., Sang, L., Ma, X.D., Zhang, J.S.. Preparation and characterization of microbubbles with a porous ceramic membrane. Chemical engineering and processing = Génie des procédés = Verfahrenstechnik, vol.159, 108213-.

  44. Xie, Bingqi, Zhou, Caijin, Chen, Junxin, Huang, Xiaoting, Zhang, Jisong. Preparation of microbubbles with the generation of Dean vortices in a porous membrane. Chemical engineering science, vol.247, 117105-.

  45. Shuai, Yun, Wang, Xinyan, Huang, Zhengliang, Yang, Yao, Sun, Jingyuan, Wang, Jingdai, Yang, Yongrong. Structural Design and Performance of a Jet-Impinging Type Microbubble Generator. Industrial & engineering chemistry research, vol.61, no.12, 4445-4459.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로