$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

DNA-Encoded Library Screening To Inform Design of a Ribonuclease Targeting Chimera (RiboTAC)

Journal of the American Chemical Society, v.144 no.46, 2022년, pp.21096 - 21102  

Meyer, Samantha M. (Department of Chemistry , UF Scripps Biomedical Research and The Scripps Research Institute , Jupiter , Florida 33458 , United States) ,  Tanaka, Toru (Department of Chemistry , UF Scripps Biomedical Research and The Scripps Research Institute , Jupiter , Florida 33458 , United States) ,  Zanon, Patrick R. A. (Department of Chemistry , UF Scripps Biomedical Research and The Scripps Research Institute , Jupiter , Florida 33458 , United States) ,  Baisden, Jared T. (Department of Chemistry , UF Scripps Biomedical Research and The Scripps Research Institute , Jupiter , Florida 33458 , United States) ,  Abegg, Daniel (Department of Chemistry , UF Scripps Biomedical Research and The Scripps Research Institute , Jupiter , Florida 33458 , United States) ,  Yang, Xueyi (Department of Chemistry , UF Scripps Biomedical Research and The Scripps Research Institute , Jupiter , Florida 33458 , United States United) ,  Akahori, Yoshihiro ,  Alshakarchi, Zainab ,  Cameron, Michael D. ,  Adibekian, Alexander ,  Disney, Matthew D.

Abstract AI-Helper 아이콘AI-Helper

Ribonuclease targeting chimeras (RiboTACs) induce degradation of an RNA target by facilitating an interaction between an RNA and a ribonuclease (RNase). We describe the screening of a DNA-encoded library (DEL) to identify binders of monomeric RNase L to provide a compound that induced dimerization o...

참고문헌 (36)

  1. Burslem, George M., Crews, Craig M.. Proteolysis-Targeting Chimeras as Therapeutics and Tools for Biological Discovery. Cell, vol.181, no.1, 102-114.

  2. Costales, Matthew G., Matsumoto, Yasumasa, Velagapudi, Sai Pradeep, Disney, Matthew D.. Small Molecule Targeted Recruitment of a Nuclease to RNA. Journal of the American Chemical Society, vol.140, no.22, 6741-6744.

  3. Roberts, Thomas C., Langer, Robert, Wood, Matthew J. A.. Advances in oligonucleotide drug delivery. Nature reviews. Drug discovery, vol.19, no.10, 673-694.

  4. Velagapudi, Sai Pradeep, Gallo, Steven M., Disney, Matthew D.. Sequence-based design of bioactive small molecules that target precursor microRNAs. Nature chemical biology, vol.10, no.4, 291-297.

  5. Disney, Matthew D., Labuda, Lucas P., Paul, Dustin J., Poplawski, Shane G., Pushechnikov, Alexei, Tran, Tuan, Velagapudi, Sai P., Wu, Meilan, Childs-Disney, Jessica L.. Two-Dimensional Combinatorial Screening Identifies Specific Aminoglycoside−RNA Internal Loop Partners. Journal of the American Chemical Society, vol.130, no.33, 11185-11194.

  6. Sztuba-Solinska, Joanna, Shenoy, Shilpa R., Gareiss, Peter, Krumpe, Lauren R. H., Le Grice, Stuart F. J., O’Keefe, Barry R., Schneekloth Jr., John S.. Identification of Biologically Active, HIV TAR RNA-Binding Small Molecules Using Small Molecule Microarrays. Journal of the American Chemical Society, vol.136, no.23, 8402-8410.

  7. Chen, Jonathan L., Zhang, Peiyuan, Abe, Masahito, Aikawa, Haruo, Zhang, Liying, Frank, Alexander J., Zembryski, Timothy, Hubbs, Christopher, Park, HaJeung, Withka, Jane, Steppan, Claire, Rogers, Lucy, Cabral, Shawn, Pettersson, Martin, Wager, Travis T., Fountain, Matthew A., Rumbaugh, Gavin, Childs-Disney, Jessica L., Disney, Matthew D.. Design, Optimization, and Study of Small Molecules That Target Tau Pre-mRNA and Affect Splicing. Journal of the American Chemical Society, vol.142, no.19, 8706-8727.

  8. Andrałojć, Witold, Ravera, Enrico, Salmon, Loïc, Parigi, Giacomo, Al-Hashimi, Hashim M., Luchinat, Claudio. Inter-helical conformational preferences of HIV-1 TAR-RNA from maximum occurrence analysis of NMR data and molecular dynamics simulations. Physical chemistry chemical physics : PCCP, vol.18, no.8, 5743-5752.

  9. Stelzer, Andrew C, Frank, Aaron T, Kratz, Jeremy D, Swanson, Michael D, Gonzalez-Hernandez, Marta J, Lee, Janghyun, Andricioaei, Ioan, Markovitz, David M, Al-Hashimi, Hashim M. Discovery of selective bioactive small molecules by targeting an RNA dynamic ensemble. Nature chemical biology, vol.7, no.8, 553-559.

  10. Shortridge, Matthew D., Walker, Matthew J., Pavelitz, Tom, Chen, Yu, Yang, Wen, Varani, Gabriele. A Macrocyclic Peptide Ligand Binds the Oncogenic MicroRNA-21 Precursor and Suppresses Dicer Processing. ACS chemical biology, vol.12, no.6, 1611-1620.

  11. Han, Yuchen, Donovan, Jesse, Rath, Sneha, Whitney, Gena, Chitrakar, Alisha, Korennykh, Alexei. Structure of Human RNase L Reveals the Basis for Regulated RNA Decay in the IFN Response. Science, vol.343, no.6176, 1244-1248.

  12. Washenberger, C.L., Han, J.Q., Kechris, K.J., Jha, B.K., Silverman, R.H., Barton, D.J.. Hepatitis C virus RNA: Dinucleotide frequencies and cleavage by RNase L. Virus research : an international journal of molecular and cellular virology, vol.130, no.1, 85-95.

  13. Mannocci, Luca, Leimbacher, Markus, Wichert, Moreno, Scheuermann, Jörg, Neri, Dario. 20 years of DNA-encoded chemical libraries. Chemical communications : Chem comm, vol.47, no.48, 12747-12753.

  14. Disch, Jeremy S., Duffy, Jennifer M., Lee, Esther C. Y., Gikunju, Diana, Chan, Betty, Levin, Benjamin, Monteiro, Michael I., Talcott, Sarah A., Lau, Anthony C., Zhou, Fei, Kozhushnyan, Anton, Westlund, Neil E., Mullins, Patrick B., Yu, Yan, von Rechenberg, Moritz, Zhang, Junyi, Arnautova, Yelena A., Liu, Yanbin, Zhang, Ying, McRiner, Andrew J., Keefe, Anthony D., Kohlmann, Anna, Clark, Matthew A., Cuozzo, John W., Huguet, Christelle, Arora, Shilpi. Bispecific Estrogen Receptor α Degraders Incorporating Novel Binders Identified Using DNA-Encoded Chemical Library Screening. Journal of medicinal chemistry, vol.64, no.8, 5049-5066.

  15. Thakur, Chandar S., Jha, Babal Kant, Dong, Beihua, Das Gupta, Jaydip, Silverman, Kenneth M., Mao, Hongxia, Sawai, Hiro, Nakamura, Akiko O., Banerjee, Amiya K., Gudkov, Andrei, Silverman, Robert H.. Small-molecule activators of RNase L with broad-spectrum antiviral activity. Proceedings of the National Academy of Sciences of the United States of America, vol.104, no.23, 9585-9590.

  16. Lerner, Richard A., Brenner, Sydney. DNA‐Encoded Compound Libraries as Open Source: A Powerful Pathway to New Drugs. Angewandte Chemie. international edition, vol.56, no.5, 1164-1165.

  17. Costales, Matthew G., Aikawa, Haruo, Li, Yue, Childs-Disney, Jessica L., Abegg, Daniel, Hoch, Dominic G., Pradeep Velagapudi, Sai, Nakai, Yoshio, Khan, Tanya, Wang, Kye Won, Yildirim, Ilyas, Adibekian, Alexander, Wang, Eric T., Disney, Matthew D.. Small-molecule targeted recruitment of a nuclease to cleave an oncogenic RNA in a mouse model of metastatic cancer. Proceedings of the National Academy of Sciences of the United States of America, vol.117, no.5, 2406-2411.

  18. Zhang, Peiyuan, Liu, Xiaohui, Abegg, Daniel, Tanaka, Toru, Tong, Yuquan, Benhamou, Raphael I., Baisden, Jared, Crynen, Gogce, Meyer, Samantha M., Cameron, Michael D., Chatterjee, Arnab K., Adibekian, Alexander, Childs-Disney, Jessica L., Disney, Matthew D.. Reprogramming of Protein-Targeted Small-Molecule Medicines to RNA by Ribonuclease Recruitment. Journal of the American Chemical Society, vol.143, no.33, 13044-13055.

  19. 10.37349/etat.2020.00018 

  20. Daou, Salima, Talukdar, Manisha, Tang, Jinle, Dong, Beihua, Banerjee, Shuvojit, Li, Yize, Duffy, Nicole M., Ogunjimi, Abiodun A., Gaughan, Christina, Jha, Babal K., Gish, Gerald, Tavernier, Nicolas, Mao, Daniel, Weiss, Susan R., Huang, Hao, Silverman, Robert H., Sicheri, Frank. A phenolic small molecule inhibitor of RNase L prevents cell death from ADAR1 deficiency. Proceedings of the National Academy of Sciences of the United States of America, vol.117, no.40, 24802-24812.

  21. Greenfield, Norma J. Using circular dichroism spectra to estimate protein secondary structure. Nature protocols, vol.1, no.6, 2876-2890.

  22. Bartel, David P. MicroRNAs : Genomics, Biogenesis, Mechanism, and Function. Cell, vol.116, no.2, 281-297.

  23. Krichevsky, Anna M, Gabriely, Galina. miR-21: a small multi-faceted RNA. Journal of cellular and molecular medicine, vol.13, no.1, 39-53.

  24. Feng, Yin-Hsun, Tsao, Chao-Jung. Emerging role of microRNA-21 in cancer. Biomedical reports, vol.5, no.4, 395-402.

  25. Guan, Lirui, Disney, Matthew D.. Covalent Small‐Molecule–RNA Complex Formation Enables Cellular Profiling of Small‐Molecule–RNA Interactions. Angewandte Chemie. international edition, vol.52, no.38, 10010-10013.

  26. Frankel, Lisa B., Christoffersen, Nanna R., Jacobsen, Anders, Lindow, Morten, Krogh, Anders, Lund, Anders H.. Programmed Cell Death 4 (PDCD4) Is an Important Functional Target of the MicroRNA miR-21 in Breast Cancer Cells. The Journal of biological chemistry, vol.283, no.2, 1026-1033.

  27. Zhu, Shuomin, Wu, Hailong, Wu, Fangting, Nie, Daotai, Sheng, Shijie, Mo, Yin-Yuan. MicroRNA-21 targets tumor suppressor genes in invasion and metastasis. Cell research, vol.18, no.3, 350-359.

  28. Agarwal, Vikram, Bell, George W, Nam, Jin-Wu, Bartel, David P. Predicting effective microRNA target sites in mammalian mRNAs. eLife, vol.4, e05005-.

  29. Yan, Li Xu, Wu, Qi Nian, Zhang, Yan, Li, Yang Yang, Liao, Ding Zhun, Hou, Jing Hui, Fu, Jia, Zeng, Mu Sheng, Yun, Jing Ping, Wu, Qiu Liang, Zeng, Yi Xin, Shao, Jian Yong. Knockdown of miR-21 in human breast cancer cell lines inhibits proliferation, in vitro migration and in vivo tumor growth. Breast cancer research : BCR, vol.13, no.1, R2-R2.

  30. Kang, Chan Woo, Jang, Kang Won, Sohn, Jinyoung, Kim, Sung-Moo, Pyo, Kyoung-Ho, Kim, Hwan, Yun, Mi Ran, Kang, Han Na, Kim, Hye Ryun, Lim, Sun Min, Moon, Yong Wha, Paik, Soonmyung, Kim, Dae Joon, Kim, Joo Hang, Cho, Byoung Chul. Antitumor Activity and Acquired Resistance Mechanism of Dovitinib (TKI258) in RET-Rearranged Lung Adenocarcinoma. Molecular cancer therapeutics, vol.14, no.10, 2238-2248.

  31. Gaur, Shikha, Chen, Linling, Ann, Vincent, Lin, Wei-Chen, Wang, Yafan, Chang, Vincent HS, Hsu, Nan Yong, Shia, Her-Shuyong, Yen, Yun. Dovitinib synergizes with oxaliplatin in suppressing cell proliferation and inducing apoptosis in colorectal cancer cells regardless of RAS-RAF mutation status. Molecular cancer, vol.13, 21-21.

  32. Velagapudi, Sai Pradeep, Costales, Matthew G., Vummidi, Balayeshwanth R., Nakai, Yoshio, Angelbello, Alicia J., Tran, Tuan, Haniff, Hafeez S., Matsumoto, Yasumasa, Wang, Zi Fu, Chatterjee, Arnab K., Childs-Disney, Jessica L., Disney, Matthew D.. Approved Anti-cancer Drugs Target Oncogenic Non-coding RNAs. Cell chemical biology, vol.25, no.9, 1086-1094.e7.

  33. Tong, Yuquan, Gibaut, Quentin M. R., Rouse, Warren, Childs-Disney, Jessica L., Suresh, Blessy M., Abegg, Daniel, Choudhary, Shruti, Akahori, Yoshihiro, Adibekian, Alexander, Moss, Walter N., Disney, Matthew D.. Transcriptome-Wide Mapping of Small-Molecule RNA-Binding Sites in Cells Informs an Isoform-Specific Degrader of QSOX1 mRNA. Journal of the American Chemical Society, vol.144, no.26, 11620-11625.

  34. Ishida, Tasuku, Ciulli, Alessio. E3 Ligase Ligands for PROTACs: How They Were Found and How to Discover New Ones. SLAS discovery : advancing life sciences R & D, vol.26, no.4, 484-502.

  35. Spradlin, Jessica N., Hu, Xirui, Ward, Carl C., Brittain, Scott M., Jones, Michael D., Ou, Lisha, To, Milton, Proudfoot, Andrew, Ornelas, Elizabeth, Woldegiorgis, Mikias, Olzmann, James A., Bussiere, Dirksen E., Thomas, Jason R., Tallarico, John A., McKenna, Jeffrey M., Schirle, Markus, Maimone, Thomas J., Nomura, Daniel K.. Harnessing the anti-cancer natural product nimbolide for targeted protein degradation. Nature chemical biology, vol.15, no.7, 747-755.

  36. Zhang, Xiaoyu, Crowley, Vincent M., Wucherpfennig, Thomas G., Dix, Melissa M., Cravatt, Benjamin F.. Electrophilic PROTACs that degrade nuclear proteins by engaging DCAF16. Nature chemical biology, vol.15, no.7, 737-746.

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로