$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Discriminative Feature Learning Framework With Gradient Preference for Anomaly Detection 원문보기

IEEE transactions on instrumentation and measurement, v.72, 2023년, pp.1 - 10  

Xu, Muhao (Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, China) ,  Zhou, Xueying (Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, China) ,  Gao, Xizhan (Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, China) ,  He, WeiKai (School of Aeronautics, Shandong Jiaotong University, Jinan, China) ,  Niu, Sijie (Shandong Provincial Key Laboratory of Network-Based Intelligent Computing, School of Information Science and Engineering, University of Jinan, Jinan, China)

초록이 없습니다.

참고문헌 (53)

  1. Wei-Chen Li, Du-Ming Tsai. Defect Inspection in Low-Contrast LCD Images Using Hough Transform-Based Nonstationary Line Detection. IEEE transactions on industrial informatics, vol.7, no.1, 136-147.

  2. Dong, Hongwen, Song, Kechen, He, Yu, Xu, Jing, Yan, Yunhui, Meng, Qinggang. PGA-Net: Pyramid Feature Fusion and Global Context Attention Network for Automated Surface Defect Detection. IEEE transactions on industrial informatics, vol.16, no.12, 7448-7458.

  3. Liu, Kun, Luo, Nana, Li, Aimei, Tian, Ying, Sajid, Hasan, Chen, Haiyong. A New Self-Reference Image Decomposition Algorithm for Strip Steel Surface Defect Detection. IEEE transactions on instrumentation and measurement, vol.69, no.7, 4732-4741.

  4. Luo, Qiwu, Fang, Xiaoxin, Liu, Li, Yang, Chunhua, Sun, Yichuang. Automated Visual Defect Detection for Flat Steel Surface: A Survey. IEEE transactions on instrumentation and measurement, vol.69, no.3, 626-644.

  5. Xiao, Weiwei, Song, Kechen, Liu, Jie, Yan, Yunhui. Graph Embedding and Optimal Transport for Few-Shot Classification of Metal Surface Defect. IEEE transactions on instrumentation and measurement, vol.71, 1-10.

  6. Cao, Xincheng, Chen, Binqiang, He, Wangpeng. Unsupervised Defect Segmentation of Magnetic Tile Based on Attention Enhanced Flexible U-Net. IEEE transactions on instrumentation and measurement, vol.71, 1-10.

  7. Bergmann, Paul, Batzner, Kilian, Fauser, Michael, Sattlegger, David, Steger, Carsten. The MVTec Anomaly Detection Dataset: A Comprehensive Real-World Dataset for Unsupervised Anomaly Detection. International journal of computer vision, vol.129, no.4, 1038-1059.

  8. Huang, Yibin, Qiu, Congying, Yuan, Kui. Surface defect saliency of magnetic tile. The Visual computer, vol.36, no.1, 85-96.

  9. 10.1109/CVPR42600.2020.00424 

  10. arXiv:2108.12159 Anomaly detection of defect using energy of point pattern features within random finite set framework Kamoona 2021 

  11. 10.1109/CVPR.2018.00865 

  12. Chen, Yuanhong, Tian, Yu, Pang, Guansong, Carneiro, Gustavo. Deep One-Class Classification via Interpolated Gaussian Descriptor. Proceedings of the ... aaai conference on artificial intelligence, vol.36, no.1, 383-392.

  13. Schlegl, Thomas, Seeböck, Philipp, Waldstein, Sebastian M., Langs, Georg, Schmidt-Erfurth, Ursula. f-AnoGAN: Fast unsupervised anomaly detection with generative adversarial networks. Medical image analysis, vol.54, 30-44.

  14. 10.1109/CVPR.2019.00301 

  15. Pang, Guansong, Shen, Chunhua, Cao, Longbing, Hengel, Anton Van Den. Deep Learning for Anomaly Detection : A Review. ACM computing surveys, vol.54, no.2, 1-38.

  16. arXiv:1901.03407 Deep learning for anomaly detection: A survey Chalapathy 2019 

  17. 10.1007/978-3-030-20893-6_39 

  18. Proc. Int. Conf. Mach. Learn. Anomaly detection with multiple-hypotheses predictions Nguyen 4800 

  19. Principi, Emanuele, Rossetti, Damiano, Squartini, Stefano, Piazza, Francesco. Unsupervised electric motor fault detection by using deep autoencoders. IEEE/CAA journal of automatica sinica, vol.6, no.2, 441-451.

  20. 10.1109/CVPRW56347.2022.00218 

  21. 10.1007/978-3-030-68799-1_35 

  22. 10.1109/CVPR46437.2021.00283 

  23. arXiv:2110.04538 Focus your distribution: Coarse-to-fine non-contrastive learning for anomaly detection and localization Zheng 2021 

  24. 10.1109/CVPR46437.2021.01466 

  25. 10.1109/CVPR52688.2022.00951 

  26. Bergmann, Paul, Batzner, Kilian, Fauser, Michael, Sattlegger, David, Steger, Carsten. Beyond Dents and Scratches: Logical Constraints in Unsupervised Anomaly Detection and Localization. International journal of computer vision, vol.130, no.4, 947-969.

  27. 10.1109/WACV48630.2021.00195 

  28. 10.1109/WACV51458.2022.00189 

  29. arXiv:2103.04257 Student-teacher feature pyramid matching for anomaly detection Wang 2021 

  30. arXiv:2005.02357 Sub-image anomaly detection with deep pyramid correspondences Cohen 2020 

  31. Proc. Adv. Neural Inf. Process. Syst. Support vector method for novelty detection Schölkopf 12 582 

  32. Li, L., Hansman, R.J., Palacios, R., Welsch, R.. Anomaly detection via a Gaussian Mixture Model for flight operation and safety monitoring. Transportation research. Part C, Emerging technologies, vol.64, 45-57.

  33. Proc. Int. Conf. Mach. Learn. Deep one-class classification Ruff 4393 

  34. 10.1007/978-3-030-69544-6_23 

  35. 10.1109/IJCNN.2019.8851808 

  36. Zhou, Kang, Li, Jing, Xiao, Yuting, Yang, Jianlong, Cheng, Jun, Liu, Wen, Luo, Weixin, Liu, Jiang, Gao, Shenghua. Memorizing Structure-Texture Correspondence for Image Anomaly Detection. IEEE transactions on neural networks and learning systems, vol.33, no.6, 2335-2349.

  37. 10.1007/978-3-319-59050-9_12 

  38. Proc. Int. Conf. Med. Imag. Deep Learn. Unsupervised lesion detection via image restoration with a normative prior You 540 

  39. 10.1109/ICCV.2019.00179 

  40. Chen, Yurong, Zhang, Hui, Wang, Yaonan, Yang, Yimin, Zhou, Xianen, Wu, Q. M. Jonathan. MAMA Net: Multi-Scale Attention Memory Autoencoder Network for Anomaly Detection. IEEE transactions on medical imaging, vol.40, no.3, 1032-1041.

  41. Int. J. Image Process. Study and comparison of various image edge detection techniques Maini 3 1 1 2009 

  42. 10.1109/CVPR46437.2021.01549 

  43. 10.1109/ICCV48922.2021.00822 

  44. 10.1109/CVPR46437.2021.00954 

  45. 10.1109/CVPR.2019.00982 

  46. 10.1109/ISIE45552.2021.9576231 

  47. Brain Tumor MRI Dataset Nickparvar 2021 

  48. 10.1109/CVPR.2016.90 

  49. 10.5244/C.30.87 

  50. 10.1109/CVPR.2017.634 

  51. Proc. Int. Conf. Mach. Learn. EfficientNet: Rethinking model scaling for convolutional neural networks Tan 6105 

  52. 10.1109/ICCV48922.2021.00838 

  53. Dong, Hongwen, Song, Kechen, Wang, Qi, Yan, Yunhui, Jiang, Peng. Deep Metric Learning-Based for Multi-Target Few-Shot Pavement Distress Classification. IEEE transactions on industrial informatics, vol.18, no.3, 1801-1810.

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GREEN

저자가 공개 리포지터리에 출판본, post-print, 또는 pre-print를 셀프 아카이빙 하여 자유로운 이용이 가능한 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로