$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Wireless Chargers for Electric Vehicle: A Systematic Review on Converter Topologies, Environmental Assessment, and Review Policy 원문보기

Energies, v.16 no.4, 2023년, pp.1731 -   

Vishnuram, Pradeep (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India) ,  P., Suresh (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India) ,  R., Narayanamoorthi (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India) ,  K., Vijayakumar (Electric Vehicle Charging Research Centre, Department of Electrical and Electronics Engineering, SRM Institute of Science and Technology, Chennai 603203, India) ,  Nastasi, Benedetto (Department of Planning, Design, and Technology of Architecture, Sapienza University of Rome, Via Flaminia 72, 00196 Rome, Italy)

Abstract AI-Helper 아이콘AI-Helper

The delivery of electricity employing an electromagnetic field that extends across an intervening region is called a wireless power transfer (WPT). This approach paves the way for electric vehicles (EVs) to use newly available options to reduce their environmental impact. This article is a review th...

참고문헌 (92)

  1. Tesla, N. (1905). Art of Transmitting Electrical Energy through the Natural Mediums. (787,412), U.S. Patent. 

  2. Tesla, N. (1914). Apparatus for Transmitting Electrical Energy. (1,119,732), U.S. Patent. 

  3. Zhang Frequency-Splitting Analysis of Four-Coil Resonant Wireless Power Transfer IEEE Trans. Ind. Appl. 2014 10.1109/TIA.2013.2295007 50 2436 

  4. Zhang Loosely Coupled Transformer Structure and Interoperability Study for EV Wireless Charging Systems IEEE Trans. Power Electron. 2015 10.1109/TPEL.2015.2433678 30 6356 

  5. Bi A review of wireless power transfer for electric vehicles: Prospects to enhance sustainable mobility Appl. Energy 2016 10.1016/j.apenergy.2016.07.003 179 413 

  6. Li Battery Protective Electric Vehicle Charging Management in Renewable Energy System IEEE Trans. Ind. Inform. 2023 10.1109/TII.2022.3184398 19 1312 

  7. Shanmugam A Systematic Review of Dynamic Wireless Charging System for Electric Transportation IEEE Access 2022 10.1109/ACCESS.2022.3227217 10 133617 

  8. Kurs Wireless Power Transfer via Strongly Coupled Magnetic Resonances Science 2007 10.1126/science.1143254 317 83 

  9. Lukic Cutting the Cord: Static and Dynamic Inductive Wireless Charging of Electric Vehicles IEEE Electrif. Mag. 2013 10.1109/MELE.2013.2273228 1 57 

  10. Bi Plug-in vs. wireless charging: Life cycle energy and greenhouse gas emissions for an electric bus system Appl. Energy 2015 10.1016/j.apenergy.2015.02.031 146 11 

  11. Thornton Pulling power from the road: Charged by the route it follows, an electric bus gets a real world test Mech. Eng. 2014 10.1115/1.2014-Apr-3 136 44 

  12. Reikes, J. Personal Communication. 

  13. Miller ORNL Experience and Challenges Facing Dynamic Wireless Power Charging of EV’s IEEE Circuits Syst. Mag. 2015 10.1109/MCAS.2015.2419012 15 40 

  14. Vishnuram A Comprehensive Review on EV Power Converter Topologies Charger Types Infrastructure and Communication Techniques Front. Energy Res. 2023 10.3389/fenrg.2023.1103093 11 101 

  15. Li Wireless Power Transfer for Electric Vehicle Applications IEEE J. Emerg. Sel. Top. Power Electron. 2014 3 4 

  16. 10.3390/en15207816 Venkatesan, M., Rajamanickam, N., Vishnuram, P., Bajaj, M., Blazek, V., Prokop, L., and Misak, S. (2022). A Review of Compensation Topologies and Control Techniques of Bidirectional Wireless Power Transfer Systems for Electric Vehicle Applications. Energies, 15. 

  17. Lu PEV Charging Technologies and V2G on Distributed Systems and Utility Interfaces Vehicle-to-Grid: Linking Electric Vehicles to the Smart Grid 2015 Volume 79 157 

  18. 10.3390/en9110937 Kalwar, K.A., Mekhilef, S., Seyedmahmoudian, M., and Horan, B. (2016). Coil Design for High Misalignment Tolerant Inductive Power Transfer System for EV Charging. Energies, 9. 

  19. Hao A Parallel Topology for Inductive Power Transfer Power Supplies IEEE Trans. Power Electron. 2014 10.1109/TPEL.2013.2262714 29 1140 

  20. 10.1109/ICELMACH.2014.6960532 Cirimele, V., Freschi, F., and Guglielmi, P. (2014, January 2-5). Wireless power transfer structure design for electric vehicle in charge while driving. Proceedings of the 2014 International Conference on Electrical Machines (ICEM), Berlin, Germany. 

  21. 10.1007/978-3-030-80126-7 Arai, K. (2021). Intelligent Computing, Springer. Lecture Notes in Networks and Systems. 

  22. Cristofari An almost cyclic 2-coordinate descent method for singly linearly constrained problems Comput. Optim. Appl. 2019 10.1007/s10589-019-00082-0 73 411 

  23. Wang A Hybrid Incentive Program for Managing Electric Vehicle Charging Flexibility IEEE Trans. Smart Grid 2022 10.1109/TSG.2022.3197422 14 476 

  24. Batra, T. (2015). Design of Static Wireless Charging System for Electric Vehicles with Focus on Magnetic Coupling and Emissions. [Ph.D. Thesis, Aalborg University]. 

  25. Kamineni A mistuning tolerant and controllable power supply for roadway wireless power systems IEEE Trans. Power Electron. 2017 10.1109/TPEL.2016.2622300 32 6689 

  26. Nagendra Sizing of Inductive Power Pads for Dynamic Charging of EVs on IPT Highways IEEE Trans. Transp. Electrif. 2017 10.1109/TTE.2017.2666554 3 405 

  27. Huh Narrow-Width Inductive Power Transfer System for Online Electrical Vehicles IEEE Trans. Power Electron. 2011 10.1109/TPEL.2011.2160972 26 3666 

  28. Choi Ultraslim S-Type Power Supply Rails for Roadway-Powered Electric Vehicles IEEE Trans. Power Electron. 2015 10.1109/TPEL.2015.2444894 30 6456 

  29. Miller Demonstrating Dynamic Wireless Charging of an Electric Vehicle: The Benefit of Electrochemical Capacitor Smoothing IEEE Power Electron. Mag. 2014 10.1109/MPEL.2014.2300978 1 12 

  30. Park Uniform Power I-Type Inductive Power Transfer System with DQ-Power Supply Rails for On-Line Electric Vehicles IEEE Trans. Power Electron. 2015 10.1109/TPEL.2015.2420372 30 6446 

  31. Farajizadeh Expandable N-Legged Converter to Drive Closely Spaced Multitransmitter Wireless Power Transfer Systems for Dynamic Charging IEEE Trans. Power Electron. 2019 10.1109/TPEL.2019.2939848 35 3794 

  32. Arteaga Multi-MHz IPT Systems for Variable Coupling IEEE Trans. Power Electron. 2017 10.1109/TPEL.2017.2768244 33 7744 

  33. Shin Design and implementation of shaped magnetic resonance- based wireless power transfer system for road-way-powered moving electric vehicles IEEE Trans. Ind. Electron. 2014 10.1109/TIE.2013.2258294 61 1179 

  34. Miller Primary-Side Power Flow Control of Wireless Power Transfer for Electric Vehicle Charging IEEE J. Emerg. Sel. Top. Power Electron. 2014 10.1109/JESTPE.2014.2382569 3 147 

  35. Vu A High-Power Multiphase Wireless Dynamic Charging System with Low Output Power Pulsation for Electric Vehicles IEEE J. Emerg. Sel. Top. Power Electron. 2019 10.1109/JESTPE.2019.2932302 8 3592 

  36. Godoy Modeling and prototype of a dynamic wireless charging system using LSPS compensation topology IEEE Trans. Ind. Appl. 2019 10.1109/TIA.2018.2871035 55 786 

  37. Azad Analysis, Optimization, and Demonstration of a Vehicular Detection System Intended for Dynamic Wireless Charging Applications IEEE Trans. Transp. Electrif. 2018 10.1109/TTE.2018.2870339 5 147 

  38. Patil A Coil Detection System for Dynamic Wireless Charging of Electric Vehicle IEEE Trans. Transp. Electrif. 2019 10.1109/TTE.2019.2905981 5 988 

  39. Huang Power Allocation for Dynamic Dual-Pickup Wireless Charging System of Electric Vehicle IEEE Trans. Magn. 2019 10.1109/TMAG.2019.2894163 55 8600106 

  40. Acero Analysis of the mutual inductance of planar-lumped inductive power transfer systems IEEE Trans. Ind. Electron. 2013 10.1109/TIE.2011.2164772 60 410 

  41. 10.1109/ECCE.2011.6064008 Covic, G.A., Kissin, M.L.G., Kacprzak, D., Clausen, N., and Hao, H. (2011, January 17-22). A bipolar primary pad topology for EV stationary charging and highway power by inductive coupling. Proceedings of the IEEE Energy Conversion Congress and Exposition, Phoenix, AZ, USA. 

  42. Zaheer A Dynamic EV Charging System for Slow Moving Traffic Applications IEEE Trans. Transp. Electrif. 2016 10.1109/TTE.2016.2628796 3 354 

  43. Zhou Dynamic Wireless Power Transfer System for Electric Vehicles Employing Multiplexing LCC Modules with Individual Transmitters IEEE Access 2018 10.1109/ACCESS.2018.2875950 6 62514 

  44. Patil Wireless Power Transfer for Vehicular Applications: Overview and Challenges IEEE Trans. Transp. Electrif. 2018 10.1109/TTE.2017.2780627 4 3 

  45. Strauch Optimization, design, and modeling of ferrite core geometry for inductive wireless power transfer Int. J. Appl. Electromagn. Mech. 2015 10.3233/JAE-150029 49 145 

  46. 10.1007/978-3-030-89912-7 Arai, K. (2022). Proceedings of the Future Technologies Conference (FTC) 2021, Volume 3, Springer. Lecture Notes in Networks and Systems. 

  47. Huang LCL Pickup Circulating Current Controller for Inductive Power Transfer Systems IEEE Trans. Power Electron. 2012 10.1109/TPEL.2012.2199132 28 2081 

  48. Sarkar An Isolated Single Input-Multiple Output DC-DC Modular Multilevel Converter for Fast Electric Vehicle Charging IEEE J. Emerg. Sel. Top. Ind. Electron. 2023 10.1109/JESTIE.2022.3221006 4 178 

  49. Chen Analysis, Design, and Control of a Transcutaneous Power Regulator for Artificial Hearts IEEE Trans. Biomed. Circuits Syst. 2009 10.1109/TBCAS.2008.2006492 3 23 

  50. Samanta A New Inductive Power Transfer Topology Using Direct AC-AC Converter with Active Source Current Waveshaping IEEE Trans. Power Electron. 2017 10.1109/TPEL.2017.2750081 33 5565 

  51. Rahulkumar An Empirical Survey on Wireless Inductive Power Pad and Resonant Magnetic Field Coupling for In-Motion EV Charging System IEEE Access 2022 10.1109/ACCESS.2022.3232852 11 4660 

  52. 10.1109/EEEIC/ICPSEurope49358.2020.9160851 Smagulova, A., Lu, M., Darabi, A., and Bagheri, M. (2020, January 9-12). Simulation Analysis of PI and Fuzzy Controller for Dynamic Wireless Charging of Electric Vehicle. Proceedings of the 2020 IEEE International Conference on Environment and Electrical Engineering and 2020 IEEE Industrial and Commercial Power Systems Europe (EEEIC/I&CPS Europe), Madrid, Spain. 

  53. Yang Dynamic Improvement of Series-Series Compensated Wireless Power Transfer Systems Using Discrete Sliding Mode Control IEEE Trans. Power Electron. 2018 10.1109/TPEL.2017.2747139 33 6351 

  54. Huang Control Design for Optimizing Efficiency in Inductive Power Transfer Systems IEEE Trans. Power Electron. 2017 10.1109/TPEL.2017.2724039 33 4523 

  55. Zhang Frequency Decrease Analysis of Resonant Wireless Power Transfer IEEE Trans. Power Electron. 2014 10.1109/TPEL.2013.2277783 29 1058 

  56. Yvkoff, L. (2017, August 18). Will DC Fast Charging Harm Electric Car Batteries? 2010. Available online: https://www.cnet.com/roadshow/news/will-dc-fast-charging-harm-electric-carbatteries/. 

  57. Wu Heterogeneous Aggregation and Control Modeling for Electric Vehicles with Random Charging Behaviors IEEE Trans. Sustain. Energy 2022 10.1109/TSTE.2022.3219343 14 525 

  58. Ko The optimal system design of the online electric vehicle utilizing wireless power transmission technology IEEE Trans. Intell. Transp. Syst. 2013 10.1109/TITS.2013.2259159 14 1255 

  59. ORNL (2017, April 12). Surges Forward with 20-Kilowatt Wireless Charging for Vehicles|ORNL, Available online: https://www.ornl.gov/news/ornl-surges-forward-20-kilowatt-wireless-charging-vehicles. 

  60. Fisher Electric vehicle wireless charging technology: A state-of-the-art review of magnetic coupling systems Wirel. Power Transf. 2014 10.1017/wpt.2014.8 1 87 

  61. Lu Wireless charging technologies: Fundamentals, standards, and network applications IEEE Commun. Surveys Tuts. 2016 10.1109/COMST.2015.2499783 18 1413 

  62. Bosshard Modeling and η-α-Pareto optimization of inductive power transfer coils for electric vehicles IEEE J. Emerg. Sel. Top. Power Electron. 2015 10.1109/JESTPE.2014.2311302 3 50 

  63. 10.1109/ITEC.2015.7165747 Wu, H.H., and Masquelier, M.P. (2015, January 14-17). An overview of a 50kW inductive charging system for electric buses. Proceedings of the 2015 IEEE Transportation Electrification Conference and Expo (ITEC), Dearborn, MI, USA. 

  64. 10.1109/RWS.2013.6486657 Shinohara, N. (2013, January 20-23). Wireless power transmission progress for electric vehicle in Japan. Proceedings of the 2013 IEEE Radio and Wireless Symposium, Austin, TX, USA. 

  65. Shanmugam A Comprehensive Review of the On-Road Wireless Charging System for E-Mobility Applications Front. Energy Res. 2022 10.3389/fenrg.2022.926270 10 926270 

  66. 10.1109/APEC.2016.7468105 Bojarski, M., Asa, E., Colak, K., and Czarkowski, D. (2016, January 20-24). A 25 kW industrial prototype wireless electric vehicle charger. Proceedings of the 2016 IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, USA. 

  67. Bojarski Analysis and Control of Multiphase Inductively Coupled Resonant Converter for Wireless Electric Vehicle Charger Applications IEEE Trans. Transp. Electrif. 2016 10.1109/TTE.2016.2566921 3 312 

  68. Kamineni Analysis of coplanar intermediate coil structures in inductive power transfer systems IEEE Trans. Power Electron. 2015 10.1109/TPEL.2014.2378733 30 6141 

  69. Wu A High Efficiency 5 kW Inductive Charger for EVs Using Dual Side Control IEEE Trans. Ind. Inform. 2012 10.1109/TII.2012.2192283 8 585 

  70. Tao Adaptive Integrated Planning of Electricity Networks and Fast Charging Stations under Electric Vehicle Diffusion IEEE Trans. Power Syst. 2023 10.1109/TPWRS.2022.3167666 38 499 

  71. Sato Research on Highly Efficient Contactless Power Station System Using Meander Coil for Moving Electric Vehicle Model J. Magn. Soc. Jpn. 2012 10.3379/msjmag.1205R014 36 249 

  72. WAVE Team (2022, December 05). WAVE Projects. Available online: http://www.waveipt.com/. 

  73. Naberezhnykh, D. (2022, December 04). Feasibility Analysis and Development of On-Road Charging Solutions for Future Electric Vehicles: Dynamic Wireless Power Transfer. Available online: http://www.fabric-project.eu/images/Presentations/CERV_2015_-_Denis_ Naberezh-nykh_-_FABRIC_-_V1.pdf. 

  74. Brecher, A., and Arthur, D. (2014). Review and Evaluation of Wireless Power Transfer (WPT) for Electric Transit Applications, U.S. Department of Transportation. 

  75. Mohamed Testing and Assessment of EMFs and Touch Currents From 25-kW IPT System for Medium-Duty EVs IEEE Trans. Veh. Technol. 2019 10.1109/TVT.2019.2920827 68 7477 

  76. 10.1109/IEMDC.2011.5994820 Wu, H.H., Gilchrist, A., Sealy, K., Israelsen, P., and Muhs, J.A. (2011, January 15-18). A review on inductive charging for electric vehicles. Proceedings of the 2011 IEEE International Electric Machines & Drives Conference (IEMDC), Niagara Falls, ON, Canada. 

  77. Bi Integrated Life Cycle Assessment and Life Cycle Cost Model for Comparing Plug-in versus Wireless Charging for an Electric Bus System J. Ind. Ecol. 2016 10.1111/jiec.12419 21 344 

  78. Jang System Architecture and Mathematical Models of Electric Transit Bus System Utilizing Wireless Power Transfer Technology IEEE Syst. J. 2015 10.1109/JSYST.2014.2369485 10 495 

  79. Jeong Economic Analysis of the Dynamic Charging Electric Vehicle IEEE Trans. Power Electron. 2015 10.1109/TPEL.2015.2424712 30 6368 

  80. Christ Evaluation of Wireless Resonant Power Transfer Systems with Human Electromagnetic Exposure Limits IEEE Trans. Electromagn. Compat. 2013 55 265 

  81. 10.1097/HP.0b013e3181f06c86 International Commission on Non-Ionizing Radiation Protection (2010). Guidelines for limiting exposure to time-varying electric and magnatic fields (1 Hz-100 kHz). Health Phys., 99, 818-836. 

  82. Tell Very-low-frequency and low-frequency electric and magnetic fields associated with electric shuttle bus wireless charging Radiat. Prot. Dosim. 2014 10.1093/rpd/nct208 158 123 

  83. Nguyen Optimal coordinationof G2V and V2G to support power grids with high penetration of renewable energy IEEE Trans. Transp. Electrif. 2015 10.1109/TTE.2015.2430288 1 188 

  84. Nguyen Dynamic Demand Control of Electric Vehicles to Support Power Grid with High Penetration Level of Renewable Energy IEEE Trans. Transp. Electrif. 2016 10.1109/TTE.2016.2519821 2 66 

  85. Wei Robust Energy and Reserve Dispatch under Variable Renewable Generation IEEE Trans. Smart Grid 2015 10.1109/TSG.2014.2317744 6 369 

  86. Nastasi Innovative Use of Hydrogen in Energy Retrofitting of Listed Buildings Energy Procedia 2017 10.1016/j.egypro.2017.03.205 111 435 

  87. 10.1109/IEVC.2014.7056148 Jain, P., and Jain, T. (2014, January 17-19). Impacts of G2V and V2G power on electricity demand profile. Proceedings of the 2014 IEEE International Electric Vehicle Conference (IEVC), Florence, Italy. 

  88. 10.1109/VPPC.2013.6671718 Huang, X., Qiang, H., Huang, Z., Sun, Y., and Li, J. (2013, January 15-18). The Interaction Research of Smart Grid and EV Based Wireless Charging. Proceedings of the 2013 IEEE Vehicle Power and Propulsion Conference (VPPC), Beijing, China. 

  89. Brooks Final report grid regulation ancillary service Regulation 2002 1 61 

  90. 10.3390/su132313065 Annarelli, A., and Palombi, G. (2021). Digitalization Capabilities for Sustainable Cyber Resilience: A Conceptual Framework. Sustainability, 13. 

  91. Cristofari A Derivative-Free Method for Structured Optimization Problems SIAM J. Optim. 2021 10.1137/20M1337417 31 1 

  92. Cristofari Total Variation Based Community Detection Using a Nonlinear Optimization Approach SIAM J. Appl. Math. 2020 10.1137/19M1270446 80 15 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로