$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Semi-Supervised Land Cover Classification of Remote Sensing Imagery Using CycleGAN and EfficientNet

KSCE journal of civil engineering, v.27 no.4, 2023년, pp.1760 - 1773  

Kwak, Taehong ,  Kim, Yongil

초록이 없습니다.

참고문헌 (44)

  1. 10.1007/978-3-319-54181-5_12 Audebert N, Le Saux B, Lefèvre S (2016) Semantic segmentation of earth observation data using multimodal and multi-scale deep networks. Proceedings of Asian conference on computer vision, November 21-23, Taipei, Taiwan 

  2. IEEE Geoscience and Remote Sensing Letters H Bai 19 1 2021 10.1109/LGRS.2021.3063799 Bai H, Cheng J, Huang X, Liu S, Deng C (2021) HCANet: A hierarchical context aggregation network for semantic segmentation of high-resolution remote sensing images. IEEE Geoscience and Remote Sensing Letters 19:1-5, DOI: https://doi.org/10.1109/LGRS.2021.3063799 

  3. International Journal of Remote Sensing E Bartholome 26 9 1959 2005 10.1080/01431160412331291297 Bartholome E, Belward AS (2005) GLC2000: A new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing 26(9):1959-1977, DOI: https://doi.org/10.1080/01431160412331291297 

  4. Berthelot D, Carlini N, Goodfellow I, Papernot N, Oliver A, Raffel C (2019) Mixmatch: A holistic approach to semi-supervised learning. Proceeding of Advances Neural Information Processing System Conference, December 8-14, Vancouver, Canada 

  5. 10.1109/ICIP.2019.8803050 Bischke B, Helber P, Folz J, Borth D, Dengel A (2019) Multi-task learning for segmentation of building footprints with deep neural networks. Proceedings of 2019 IEEE International Conference on Image Processing, September 22-25, Taipei, Taiwan 

  6. IEEE Transactions on Pattern Analysis and Machine Intelligence LC Chen 40 4 834 2017 10.1109/TPAMI.2017.2699184 Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(4):834-848, DOI: https://doi.org/10.1109/TPAMI.2017.2699184 

  7. Daudt RC, Le SB, Boulch A (2018) Fully convolutional siamese networks for change detection. Proceedings of 2018 25th IEEE International Conference on Image Processing, October 7-10, Athens, Greece 

  8. ISPRS Journal of Photogrammetry and Remote Sensing FI Diakogiannis 162 94 2020 10.1016/j.isprsjprs.2020.01.013 Diakogiannis FI, Waldner F, Caccetta P, Wu C (2020) Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS Journal of Photogrammetry and Remote Sensing 162:94-114, DOI: https://doi.org/10.1016/j.isprsjprs.2020.01.013 

  9. IEEE Access R Dong 7 65347 2019 10.1109/ACCESS.2019.2917952 Dong R, Pan X, Li F (2019a) DenseU-net-based semantic segmentation of small objects in urban remote sensing images. IEEE Access 7:65347-65356, DOI: https://doi.org/10.1109/ACCESS.2019.2917952 

  10. IEEE Geoscience and Remote Sensing Letters S Dong 17 8 1396 2019 10.1109/LGRS.2019.2947022 Dong S, Zhuang Y, Yang Z, Pang L, Chen H, Long T (2019b) Land cover classification from VHR optical remote sensing images by feature ensemble deep learning network. IEEE Geoscience and Remote Sensing Letters 17(8):1396-1400, DOI: https://doi.org/10.1109/LGRS.2019.2947022 

  11. Remote Sensing of Environment GM Foody 80 1 185 2002 10.1016/S0034-4257(01)00295-4 Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sensing of Environment 80(1):185-201, DOI: https://doi.org/10.1016/S0034-4257(01)00295-4 

  12. Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Bengio Y (2014) Generative adversarial nets. Proceeding of Advances Neural Information Processing System Conference, December 8-13, Montreal, Canada 

  13. 10.1109/CVPR.2016.90 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for Image recognition. Proceedings of 2016 IEEE conference on computer vision and pattern recognition, June 27-30, Las Vegas, NV, USA 

  14. Hung C, Tsai H, Liou T, Lin Y, Yang H (2018) Adversarial learning for semi-supervised semantic segmentation. Proceedings of 2018 IEEE conference on computer vision and pattern recognition, June 18-23, Salt Lake City, UT, USA 

  15. Iglovikov V, Mushinskiy S, Osin V (2017) Satellite imagery feature detection using deep convolutional neural network: A kaggle competition. Proceedings of 2017 IEEE conference on computer vision and pattern recognition, June 21-26, Honolulu, HI, USA 

  16. International Journal of Remote Sensing H Jin 35 6 2067 2014 10.1080/01431161.2014.885152 Jin H, Stehman SV, Mountrakis G (2014) Assessing the impact of training sample selection on accuracy of an urban classification: A case study in Denver, Colorado. International Journal of Remote Sensing 35(6):2067-2081, DOI: https://doi.org/10.1080/01431161.2014.885152 

  17. IEEE Transactions on Geoscience and Remote Sensing H Jung 60 1 2021 10.1109/TGRS.2021.3108781 Jung H, Choi H, Kang M (2021) Boundary enhancement semantic segmentation for building extraction from remote sensed image. IEEE Transactions on Geoscience and Remote Sensing 60:1-12, DOI: https://doi.org/10.1109/TGRS.2021.3108781 

  18. 10.1109/CVPRW.2016.90 Kampffmeyer M, Salberg AB, Jenssen R (2016) Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. Proceedings of 2016 IEEE conference on computer vision and pattern recognition, June 27-30, Las Vegas, NV, USA 

  19. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing M Kampffmeyer 11 6 1758 2018 10.1109/JSTARS.2018.2834961 Kampffmeyer M, Salberg AB, Jenssen R (2018) Urban land cover classification with missing data modalities using deep convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11(6):1758-1768, DOI: https://doi.org/10.1109/JSTARS.2018.2834961 

  20. T Kwak 2021 MSc Thesis Semi-supervised learning framework for very high resolution image classification using CycleGAN Kwak T (2021) Semi-supervised learning framework for very high resolution image classification using CycleGAN. MSc Thesis, Seoul National University, Seoul, Korea 

  21. 10.1109/CVPR.2017.106 Lin TY, Dollár P, Girshick R, He K, Hariharan B, Belongie S (2017) Feature pyramid networks for object detection. Proceedings of 2017 IEEE conference on computer vision and pattern recognition, June 21-26, Honolulu, HI, USA 

  22. IEEE Transactions on Geoscience and Remote Sensing Q Liu 58 9 6309 2020 10.1109/TGRS.2020.2976658 Liu Q, Kampffmeyer M, Jenssen R, Salberg AB (2020) Dense dilated convolutions’ merging network for land cover classification. IEEE Transactions on Geoscience and Remote Sensing 58(9):6309-6320, DOI: https://doi.org/10.1109/TGRS.2020.2976658 

  23. 10.1109/CVPR.2015.7298965 Long J, Shelhamer E, Darrell T (2015) Fully convolutional networks for semantic segmentation. Proceedings of 2015 IEEE conference on computer vision and pattern recognition, June 7-12, Boston, MA, USA 

  24. Mondal AK, Agarwal A, Dolz J, Desrosiers C (2019) Revisiting CycleGAN for semi-supervised segmentation. Proceedings of 2019 IEEE conference on computer vision and pattern recognition, June 15-20, Long Beach, CA, USA 

  25. IEEE Transactions on Geoscience and Remote Sensing D Peng 59 7 5891 2020 10.1109/TGRS.2020.3011913 Peng D, Bruzzone L, Zhang Y, Guan H, Ding H, Huang X (2020) SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing 59(7):5891-5906, DOI: https://doi.org/10.1109/TGRS.2020.3011913 

  26. Remote Sensing D Peng 11 11 1382 2019 10.3390/rs11111382 Peng D, Zhang Y, Guan H (2019) End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sensing 11(11):1382, DOI: https://doi.org/10.3390/rs11111382 

  27. 10.1007/978-3-030-64556-4_56 Protopapadakis E, Doulamis A, Doulamis N, Maltezos E (2020) Semi-supervised fine-tuning for deep learning models in remote sensing applications. Proceedings of international symposium on visual computing, November 5-7, San Diego, California, USA 

  28. International Journal of Engineering and Technology P Reddy 7 1.8 81 2018 10.14419/ijet.v7i1.8.9977 Reddy P, Viswanath P, Reddy, BE (2018) Semi-supervised learning: A brief review. International Journal of Engineering and Technology 7(1.8):81, DOI: https://doi.org/10.14419/ijet.v7i1.8.9977 

  29. 10.1007/978-3-319-24574-4_28 Ronneberger O, Fischer P, Brox T (2015) U-net: Convolutional networks for biomedical image segmentation. Proceedings of international conference on medical image computing and computer-assisted intervention, October 5-9, Munich, Germany 

  30. Sherrah J (2016) Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. Proceedings of 2016 IEEE conference on computer vision and pattern recognition, June 27-30, Las Vegas, NV, USA 

  31. 10.1007/978-3-030-01228-1_19 Shi W, Gong Y, Ding C, Tao ZM, Zheng N (2018a) Transductive semi-supervised deep learning using min-max features. In Proceedings of the European Conference on Computer Vision, September 8-14, Munich, Germany 

  32. IEEE Geoscience and Remote Sensing Letters Y Shi 16 4 603 2018 10.1109/LGRS.2018.2878486 Shi Y, Li Q, Zhu X (2018b) Building footprint generation using improved generative adversarial networks. IEEE Geoscience and Remote Sensing Letters 16(4):603-607, DOI: https://doi.org/10.1109/LGRS.2018.2878486 

  33. Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Proceedings of 2014 IEEE conference on computer vision and pattern recognition, June 24-27, Columbus, Ohio, USA 

  34. 10.1109/CVPR.2015.7298594 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Rabinovich A (2015) Going deeper with convolutions. Proceedings of 2015 IEEE conference on computer vision and pattern recognition, June 7-12, Boston, MA, USA 

  35. Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. Proceedings of international conference on machine learning, Jun 9-15, Long Beach, CA, USA 

  36. International Journal of Applied Earth Observation and Geoinformation N Wambugu 103 102515 2021 10.1016/j.jag.2021.102515 Wambugu N, Chen Y, Xiao Z, Wei M, Bello A, Junior JM, Li J (2021) A hybrid deep convolutional neural network for accurate land cover classification. International Journal of Applied Earth Observation and Geoinformation 103:102515, DOI: https://doi.org/10.1016/j.jag.2021.102515 

  37. Remote Sensing J Wang 12 21 3603 2020 10.3390/rs12213603 Wang J, Ding C, Chen S, He C, Luo B (2020) Semi-supervised remote sensing image semantic segmentation via consistency regularization and average update of pseudo-label. Remote Sensing 12(21):3603, DOI: https://doi.org/10.3390/rs12213603 

  38. IEEE Geoscience and Remote Sensing Letters X Wang 19 1 2022 10.1109/LGRS.2022.3157032 Wang X, Chen B, Ding H, Tang J, Luo B (2022) Semi-supervised semantic segmentation of remote sensing images with iterative contrastive network. IEEE Geoscience and Remote Sensing Letters 19:1-5, DOI: https://doi.org/10.1109/LGRS.2022.3157032 

  39. IEEE Transactions on Image Processing H Wu 27 3 1259 2017 10.1109/TIP.2017.2772836 Wu H, Prasad S (2017) Semi-supervised deep learning using pseudo labels for hyperspectral image classification. IEEE Transactions on Image Processing 27(3):1259-1270, DOI: https://doi.org/10.1109/TIP.2017.2772836 

  40. Nature LC Yan 521 7553 436 2015 10.1038/nature14539 Yan LC, Yoshua B, Geoffrey H (2015) Deep learning. Nature 521(7553): 436-444, DOI: https://doi.org/10.1038/nature14539 

  41. IEEE Geoscience and Remote Sensing Letters Z Zhang 15 5 749 2018 10.1109/LGRS.2018.2802944 Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters 15(5):749-753, DOI: https://doi.org/10.1109/LGRS.2018.2802944 

  42. 10.1109/CVPR.2017.660 Zhao H, Shi J, Qi X, Wang X, Jia J (2017) Pyramid scene parsing network. Proceedings of 2017 IEEE conference on computer vision and pattern recognition, June 21-26, Honolulu, HI, USA 

  43. 10.1109/CVPRW.2018.00034 Zhou L, Zhang C, Wu M (2018) D-linknet: Linknet with pretrained encoder and dilated convolution for high resolution satellite imagery road extraction. Proceedings of 2018 IEEE conference on computer vision and pattern recognition, June 18-23, Salt Lake City, UT, USA 

  44. 10.1109/ICCV.2017.244 Zhu JY, Park T, Isola P, Efros AA (2017) Unpaired image-to-image translation using cycle-consistent adversarial networks. Proceedings of 2017 IEEE conference on computer vision and pattern recognition, June 21-26, Honolulu, HI, USA 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로