최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기KSCE journal of civil engineering, v.27 no.4, 2023년, pp.1760 - 1773
Kwak, Taehong , Kim, Yongil
초록이 없습니다.
IEEE Geoscience and Remote Sensing Letters H Bai 19 1 2021 10.1109/LGRS.2021.3063799 Bai H, Cheng J, Huang X, Liu S, Deng C (2021) HCANet: A hierarchical context aggregation network for semantic segmentation of high-resolution remote sensing images. IEEE Geoscience and Remote Sensing Letters 19:1-5, DOI: https://doi.org/10.1109/LGRS.2021.3063799
International Journal of Remote Sensing E Bartholome 26 9 1959 2005 10.1080/01431160412331291297 Bartholome E, Belward AS (2005) GLC2000: A new approach to global land cover mapping from Earth observation data. International Journal of Remote Sensing 26(9):1959-1977, DOI: https://doi.org/10.1080/01431160412331291297
Berthelot D, Carlini N, Goodfellow I, Papernot N, Oliver A, Raffel C (2019) Mixmatch: A holistic approach to semi-supervised learning. Proceeding of Advances Neural Information Processing System Conference, December 8-14, Vancouver, Canada
IEEE Transactions on Pattern Analysis and Machine Intelligence LC Chen 40 4 834 2017 10.1109/TPAMI.2017.2699184 Chen LC, Papandreou G, Kokkinos I, Murphy K, Yuille AL (2017) Deeplab: Semantic image segmentation with deep convolutional nets, atrous convolution, and fully connected crfs. IEEE Transactions on Pattern Analysis and Machine Intelligence 40(4):834-848, DOI: https://doi.org/10.1109/TPAMI.2017.2699184
Daudt RC, Le SB, Boulch A (2018) Fully convolutional siamese networks for change detection. Proceedings of 2018 25th IEEE International Conference on Image Processing, October 7-10, Athens, Greece
ISPRS Journal of Photogrammetry and Remote Sensing FI Diakogiannis 162 94 2020 10.1016/j.isprsjprs.2020.01.013 Diakogiannis FI, Waldner F, Caccetta P, Wu C (2020) Resunet-a: A deep learning framework for semantic segmentation of remotely sensed data. ISPRS Journal of Photogrammetry and Remote Sensing 162:94-114, DOI: https://doi.org/10.1016/j.isprsjprs.2020.01.013
IEEE Access R Dong 7 65347 2019 10.1109/ACCESS.2019.2917952 Dong R, Pan X, Li F (2019a) DenseU-net-based semantic segmentation of small objects in urban remote sensing images. IEEE Access 7:65347-65356, DOI: https://doi.org/10.1109/ACCESS.2019.2917952
IEEE Geoscience and Remote Sensing Letters S Dong 17 8 1396 2019 10.1109/LGRS.2019.2947022 Dong S, Zhuang Y, Yang Z, Pang L, Chen H, Long T (2019b) Land cover classification from VHR optical remote sensing images by feature ensemble deep learning network. IEEE Geoscience and Remote Sensing Letters 17(8):1396-1400, DOI: https://doi.org/10.1109/LGRS.2019.2947022
Remote Sensing of Environment GM Foody 80 1 185 2002 10.1016/S0034-4257(01)00295-4 Foody GM (2002) Status of land cover classification accuracy assessment. Remote Sensing of Environment 80(1):185-201, DOI: https://doi.org/10.1016/S0034-4257(01)00295-4
Goodfellow IJ, Pouget-Abadie J, Mirza M, Xu B, Warde-Farley D, Ozair S, Bengio Y (2014) Generative adversarial nets. Proceeding of Advances Neural Information Processing System Conference, December 8-13, Montreal, Canada
Hung C, Tsai H, Liou T, Lin Y, Yang H (2018) Adversarial learning for semi-supervised semantic segmentation. Proceedings of 2018 IEEE conference on computer vision and pattern recognition, June 18-23, Salt Lake City, UT, USA
Iglovikov V, Mushinskiy S, Osin V (2017) Satellite imagery feature detection using deep convolutional neural network: A kaggle competition. Proceedings of 2017 IEEE conference on computer vision and pattern recognition, June 21-26, Honolulu, HI, USA
International Journal of Remote Sensing H Jin 35 6 2067 2014 10.1080/01431161.2014.885152 Jin H, Stehman SV, Mountrakis G (2014) Assessing the impact of training sample selection on accuracy of an urban classification: A case study in Denver, Colorado. International Journal of Remote Sensing 35(6):2067-2081, DOI: https://doi.org/10.1080/01431161.2014.885152
IEEE Transactions on Geoscience and Remote Sensing H Jung 60 1 2021 10.1109/TGRS.2021.3108781 Jung H, Choi H, Kang M (2021) Boundary enhancement semantic segmentation for building extraction from remote sensed image. IEEE Transactions on Geoscience and Remote Sensing 60:1-12, DOI: https://doi.org/10.1109/TGRS.2021.3108781
10.1109/CVPRW.2016.90 Kampffmeyer M, Salberg AB, Jenssen R (2016) Semantic segmentation of small objects and modeling of uncertainty in urban remote sensing images using deep convolutional neural networks. Proceedings of 2016 IEEE conference on computer vision and pattern recognition, June 27-30, Las Vegas, NV, USA
IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing M Kampffmeyer 11 6 1758 2018 10.1109/JSTARS.2018.2834961 Kampffmeyer M, Salberg AB, Jenssen R (2018) Urban land cover classification with missing data modalities using deep convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 11(6):1758-1768, DOI: https://doi.org/10.1109/JSTARS.2018.2834961
T Kwak 2021 MSc Thesis Semi-supervised learning framework for very high resolution image classification using CycleGAN Kwak T (2021) Semi-supervised learning framework for very high resolution image classification using CycleGAN. MSc Thesis, Seoul National University, Seoul, Korea
IEEE Transactions on Geoscience and Remote Sensing Q Liu 58 9 6309 2020 10.1109/TGRS.2020.2976658 Liu Q, Kampffmeyer M, Jenssen R, Salberg AB (2020) Dense dilated convolutions’ merging network for land cover classification. IEEE Transactions on Geoscience and Remote Sensing 58(9):6309-6320, DOI: https://doi.org/10.1109/TGRS.2020.2976658
Mondal AK, Agarwal A, Dolz J, Desrosiers C (2019) Revisiting CycleGAN for semi-supervised segmentation. Proceedings of 2019 IEEE conference on computer vision and pattern recognition, June 15-20, Long Beach, CA, USA
IEEE Transactions on Geoscience and Remote Sensing D Peng 59 7 5891 2020 10.1109/TGRS.2020.3011913 Peng D, Bruzzone L, Zhang Y, Guan H, Ding H, Huang X (2020) SemiCDNet: A semisupervised convolutional neural network for change detection in high resolution remote-sensing images. IEEE Transactions on Geoscience and Remote Sensing 59(7):5891-5906, DOI: https://doi.org/10.1109/TGRS.2020.3011913
Remote Sensing D Peng 11 11 1382 2019 10.3390/rs11111382 Peng D, Zhang Y, Guan H (2019) End-to-end change detection for high resolution satellite images using improved UNet++. Remote Sensing 11(11):1382, DOI: https://doi.org/10.3390/rs11111382
Sherrah J (2016) Fully convolutional networks for dense semantic labelling of high-resolution aerial imagery. Proceedings of 2016 IEEE conference on computer vision and pattern recognition, June 27-30, Las Vegas, NV, USA
IEEE Geoscience and Remote Sensing Letters Y Shi 16 4 603 2018 10.1109/LGRS.2018.2878486 Shi Y, Li Q, Zhu X (2018b) Building footprint generation using improved generative adversarial networks. IEEE Geoscience and Remote Sensing Letters 16(4):603-607, DOI: https://doi.org/10.1109/LGRS.2018.2878486
Simonyan K, Zisserman A (2014) Very deep convolutional networks for large-scale image recognition. Proceedings of 2014 IEEE conference on computer vision and pattern recognition, June 24-27, Columbus, Ohio, USA
Tan M, Le Q (2019) Efficientnet: Rethinking model scaling for convolutional neural networks. Proceedings of international conference on machine learning, Jun 9-15, Long Beach, CA, USA
International Journal of Applied Earth Observation and Geoinformation N Wambugu 103 102515 2021 10.1016/j.jag.2021.102515 Wambugu N, Chen Y, Xiao Z, Wei M, Bello A, Junior JM, Li J (2021) A hybrid deep convolutional neural network for accurate land cover classification. International Journal of Applied Earth Observation and Geoinformation 103:102515, DOI: https://doi.org/10.1016/j.jag.2021.102515
Remote Sensing J Wang 12 21 3603 2020 10.3390/rs12213603 Wang J, Ding C, Chen S, He C, Luo B (2020) Semi-supervised remote sensing image semantic segmentation via consistency regularization and average update of pseudo-label. Remote Sensing 12(21):3603, DOI: https://doi.org/10.3390/rs12213603
IEEE Geoscience and Remote Sensing Letters X Wang 19 1 2022 10.1109/LGRS.2022.3157032 Wang X, Chen B, Ding H, Tang J, Luo B (2022) Semi-supervised semantic segmentation of remote sensing images with iterative contrastive network. IEEE Geoscience and Remote Sensing Letters 19:1-5, DOI: https://doi.org/10.1109/LGRS.2022.3157032
IEEE Transactions on Image Processing H Wu 27 3 1259 2017 10.1109/TIP.2017.2772836 Wu H, Prasad S (2017) Semi-supervised deep learning using pseudo labels for hyperspectral image classification. IEEE Transactions on Image Processing 27(3):1259-1270, DOI: https://doi.org/10.1109/TIP.2017.2772836
Nature LC Yan 521 7553 436 2015 10.1038/nature14539 Yan LC, Yoshua B, Geoffrey H (2015) Deep learning. Nature 521(7553): 436-444, DOI: https://doi.org/10.1038/nature14539
IEEE Geoscience and Remote Sensing Letters Z Zhang 15 5 749 2018 10.1109/LGRS.2018.2802944 Zhang Z, Liu Q, Wang Y (2018) Road extraction by deep residual u-net. IEEE Geoscience and Remote Sensing Letters 15(5):749-753, DOI: https://doi.org/10.1109/LGRS.2018.2802944
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.