$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Metastable h-WO3 nano-hemitubes: controllable synthesis and superior adsorption-photocatalysis-oxidation activity for high-concentrated MB

한국세라믹학회지 = Journal of the Korean Ceramic Society, v.60 no.2, 2023년, pp.227 - 237  

Hu, Hanmei ,  Ding, Kangzhe ,  Yu, Hong ,  He, Yunyun ,  Yang, Mingdi ,  Oh, Won-Chun

초록이 없습니다.

참고문헌 (49)

  1. Solar RRL. I Khan 5 2000741 2021 10.1002/solr.202000741 I. Khan, A. Jalilov, K. Fujii, A. Qurashi, Quasi-1D aligned nanostructures for solar-driven water splitting applications: challenges, promises, and perspectives. Solar RRL. 5, 2000741 (2021). https://doi.org/10.1002/solr.202000741 

  2. Ceram. Int. HS Han 47 3972 2021 10.1016/j.ceramint.2020.09.261 H.S. Han, W. Park, A. Sivanantharm, S.W. Hwang, S. Surendran, U. Sim, I.S. Cho, Facile fabrication of nanotubular heterostructure for enhanced photoelectrochemical performance. Ceram. Int. 47, 3972-3977 (2021). https://doi.org/10.1016/j.ceramint.2020.09.261 

  3. J. Powder Sour. L Vichard 506 2021 10.1016/j.jpowsour.2021.230071 L. Vichard, N.Y. Steiner, N. Zerhouni, D. Hissel, Hybrid fuel cell system degradation modeling methods: a comprehensive review. J. Powder Sour. 506, 230071 (2021). https://doi.org/10.1016/j.jpowsour.2021.230071 

  4. J. Korean Chem. Soc. DK Lee 58 679 2021 10.1007/s43207-021-00142-4 D.K. Lee, S.J. Wee, K.J. Jang, M.K. Han, S. Surendran, S.Y. Cho, J.Y. Kim, S.K. Lee, U. Sim, 3D-printed cobalt-rich tungsten carbide hierarchical electrode for efficient electrochemical ammonia production. J. Korean Chem. Soc. 58, 679-687 (2021). https://doi.org/10.1007/s43207-021-00142-4 

  5. Environ. Chem. Lett. JW Fu 20 243 2022 10.1007/s10311-021-01335-3 J.W. Fu, K. Liu, H.M. Li, J.H. Hu, M. Liu, Bimetallic atomic site catalysts for CO2 reduction reactions: a review. Environ. Chem. Lett. 20, 243-262 (2022). https://doi.org/10.1007/s10311-021-01335-3 

  6. Chemosphere L Yao 273 2021 10.1016/j.chemosphere.2020.128576 L. Yao, H. Yang, Z.S. Chen, M.Q. Qiu, B.W. Hu, X.X. Wang, Bismuth oychloride-based materials for the removal of organic pollutants in wastewater. Chemosphere 273, 128576 (2021). https://doi.org/10.1016/j.chemosphere.2020.128576 

  7. Environ. Technol. Inno. D Vaya 20 2020 10.1016/j.eti.2020.101128 D. Vaya, P.K. Surolia, Semiconductor based photocatalytic degradation of pesticides: an overview. Environ. Technol. Inno. 20, 101128 (2020). https://doi.org/10.1016/j.eti.2020.101128 

  8. Water Res. YJ Li 192 2021 10.1016/j.watres.2021.116850 Y.J. Li, H.R. Dong, L. Li, L. Tang, R. Tian, R. Li, J. Chen, Q.Q. Xie, Z.L. Jin, J.Y. Xiao, Recent advances in waste water treatment through transition metal sulfides-based advanced oxidation processes. Water Res. 192, 116850 (2021). https://doi.org/10.1016/j.watres.2021.116850 

  9. Mater. Lett. G Zeng 309 2022 10.1016/j.matlet.2021.131310 G. Zeng, M.H. Duan, J. He, F.H. Ge, W.G. Wang, Sulfate doped graphitic carbon nitride with enhanced photocatalytic activity towards degradation of methylene blue. Mater. Lett. 309, 131310 (2022). https://doi.org/10.1016/j.matlet.2021.131310 

  10. J. Mater. Chem. S Balaji 21 3940 2011 10.1039/C0JM03773G S. Balaji, Y. Djaoued, A.S. Albert, R. Bruening, N. Beaudoin, J. Robichaud, Porous orthorhombic tungsten oxide thin films: synthesis, characterization, and application in electrochromic and photochromic devices. J. Mater. Chem. 21, 3940-3948 (2011). https://doi.org/10.1039/C0JM03773G 

  11. J. Mater. Chem. T He 17 4547 2007 10.1039/B709380B T. He, J. Yao, Photochromic materials based on tungsten oxide. J. Mater. Chem. 17, 4547-4557 (2007). https://doi.org/10.1039/B709380B 

  12. Appl. Catal. A Martinez D Sanchez 398 179 2011 10.1016/j.apcata.2011.03.034 Martinez D. Sanchez, A. Martinez-de la Cruz, E. Lopez Cuellar, Photocatalytic properties of WO3 nanoparticles obtained by precipitation in presence of urea as complexing agent. Appl. Catal. A 398, 179-186 (2011). https://doi.org/10.1016/j.apcata.2011.03.034 

  13. J. Mater. Chem. JS Lee 1 9099 2013 10.1039/C3TA11658A J.S. Lee, O.S. Kwon, D.H. Shin, J. Jang, WO3 nanonodule-decorated hybride carbon nanofibers for NO2 gas sensor application. J. Mater. Chem. 1, 9099-9106 (2013). https://doi.org/10.1039/C3TA11658A 

  14. Electrochim. Acta F Zheng 334 2020 10.1016/j.electacta.2020.135641 F. Zheng, J. Wang, W.B. Liu, J.M. Zhou, H. Li, Y. Yu, P.F. Hu, W. Yan, Y. Liu, R. Li, Q. Zhen, J.J. Zhang, Novel diverse-structured h-WO3 nanoflake arrays as electrode materials for high performance supercapacitors. Electrochim. Acta 334, 135641 (2020). https://doi.org/10.1016/j.electacta.2020.135641 

  15. J. Catal. HS Han 389 328 2020 10.1016/j.jcat.2020.06.012 H.S. Han, W. Park, S.W. Hwang, H. Kim, Y. Sim, S. Surendran, U. Sim, I.S. Cho, (020)-Textured tungsten trioxide nanostructure with enhanced photoelectrochemical activity. J. Catal. 389, 328-336 (2020). https://doi.org/10.1016/j.jcat.2020.06.012 

  16. Solid State Ion. M Hibino 135 61 2000 10.1016/S0167-2738(00)00332-5 M. Hibino, W. Han, T. Kudo, Electrochemical lithium intercalation into a hexagonal WO3 framework and its structural change. Solid State Ion. 135, 61-69 (2000). https://doi.org/10.1016/S0167-2738(00)00332-5 

  17. J. Mater. Sci. MJ Liao 56 14416 2021 10.1007/s10853-021-06202-8 M.J. Liao, L. Su, Y.C. Deng, S. Xiong, R.D. Tang, Z.B. Wu, C.X. Ding, L.H. Ynag, D.X. Gong, Strategies to improve WO3-based photocatalysts for wastewater treatment: a review. J. Mater. Sci. 56, 14416-14447 (2021). https://doi.org/10.1007/s10853-021-06202-8 

  18. ACS Appl. Mater. Interfaces. DP DePuccio 7 1987 2015 10.1021/am507806a D.P. DePuccio, P. Botella, B. O’Rourte, C.C. Landry, Degradation of methylene blue using porous WO3, SiO2-WO3, and their Au-loaded analogs: adsorption and photocatalytic studies. ACS Appl. Mater. Interfaces. 7, 1987-1996 (2015). https://doi.org/10.1021/am507806a 

  19. Appl. Surf. Sci. JY Luo 287 270 2013 10.1016/j.apsusc.2013.09.139 J.Y. Luo, Z. Cao, F. Chen, L. Li, Y.R. Lin, B.W. Liang, Q.G. Zeng, M. Zhang, X. He, C. Li, Strong aggregation adsorption of methylene blue from water using amorphous WO3 nanosheets. Appl. Surf. Sci. 287, 270-275 (2013). https://doi.org/10.1016/j.apsusc.2013.09.139 

  20. Sep. Purif. Technol. F Wang 91 103 2012 10.1016/j.seppur.2011.12.001 F. Wang, C.H. Li, J. Yu, Hexagonal tungsten trioxide nanorods as a rapid adsorbent for methylene blue. Sep. Purif. Technol. 91, 103-107 (2012). https://doi.org/10.1016/j.seppur.2011.12.001 

  21. Front. Chem. TM Salama 7 722 2019 10.3389/fchem.2019.00722 T.M. Salama, M. Morsy, R.M.A. Shahba, S.H. Mohamed, M.M. Mohamed, Synthesis of graphene oxide interspersed in hexagonal WO3 nanorods for high-efficiency visible-light driven photocatalysis and NH3 gas sensing. Front. Chem. 7, 722 (2019). https://doi.org/10.3389/fchem.2019.00722 

  22. Appl. Surf. Sci. X Liu 405 359 2017 10.1016/j.apsusc.2017.02.025 X. Liu, A.L. Jin, Y.S. Jia, T.L. Xia, C.X. Deng, M.H. Zhu, C.F. Chen, X.S. Chen, Synergy of adsorption and visible-light photocatalytic degradation of methylene blue by a bifunctiobal Z-scheme heterojuncyion of WO3/g-C3N4. Appl. Surf. Sci. 405, 359-371 (2017). https://doi.org/10.1016/j.apsusc.2017.02.025 

  23. Kinet. Catal. DF Wu 58 710 2017 10.1134/S0023158418010159 D.F. Wu, X.X. Su, W.W. Guo, Enhanced photocatalytic degradation of methylene blue over hexagonal WO3/graphene under visiblr-light irradiation. Kinet. Catal. 58, 710-719 (2017). https://doi.org/10.1134/S0023158418010159 

  24. J. Mater. Sci.-Mater. Electron. YS Li 32 2268 2021 10.1007/s10854-020-04991-3 Y.S. Li, M.R. Ti, Z.Q. Li, Y. Zhang, L. Wu, Y.J. He, Comparative study on the removal of different-type organic pollutants on three-dimensional hexagonal-tungsten trioxide/reduced graphene oxide nanorod arrays: adsorption and visible light photodegradation. J. Mater. Sci.-Mater. Electron. 32, 2268-2282 (2021). https://doi.org/10.1007/s10854-020-04991-3 

  25. Adv. Powder Technol. S Nakakura 30 6 2019 10.1016/j.apt.2018.09.040 S. Nakakura, A.F. Arif, F.G. Rinaldi, T. Hirano, E. Tanabe, R. Balgis, T. Ogi, Direct synthesis of highly crystalline single-phase hexagonal tungsten oxide nanorods by spray pyrolysis. Adv. Powder Technol. 30, 6-12 (2019). https://doi.org/10.1016/j.apt.2018.09.040 

  26. Sensor. Actuat. B-Chem. D Zhang 293 23 2019 10.1016/j.snb.2019.04.110 D. Zhang, Y. Fan, G.J. Li, Z.H. Ma, X.H. Wang, Z.X. Cheng, J.Q. Xu, Highly sensitive BTEX sensors based on hexagonal WO3 nanosheets. Sensor. Actuat. B-Chem. 293, 23-30 (2019). https://doi.org/10.1016/j.snb.2019.04.110 

  27. Chem.-Asian J. YL Wang 12 387 2017 10.1002/asia.201601471 Y.L. Wang, X.L. Wang, Y.H. Li, L.J. Fang, J.J. Zhao, X.L. Du, A.P. Chen, H.G. Yang, Controllable synthesis of hexagonal WO3 nanoplates for efficient visible-light-driven photocatalytic oxygen production. Chem.-Asian J. 12, 387-391 (2017). https://doi.org/10.1002/asia.201601471 

  28. Nano Energy K Huang 1 172 2012 10.1016/j.nanoen.2011.08.005 K. Huang, Q. Zhang, Rechargeable lithium battery based on a single hexagonal tungsten trioxide nanowires. Nano Energy 1, 172-175 (2012). https://doi.org/10.1016/j.nanoen.2011.08.005 

  29. Nano Res. C Lian 9 435 2016 10.1007/s12274-015-0924-6 C. Lian, X.L. Xiao, Z. Chen, Y.X. Liu, E.Y. Zhao, D.S. Wang, C. Chen, Y.D. Li, Preparation of hexagonal ultrathin WO3 nano-ribbons and their electrochemical performance as an anode material in lithium ion batteries. Nano Res. 9, 435-441 (2016). https://doi.org/10.1007/s12274-015-0924-6 

  30. Mater. Lett. XG San 271 127716 2020 10.1016/j.matlet.2020.127716 X.G. San, Y.M. Lu, G.S. Wang, D. Meng, X.H. Gong, Q. Jin, In situ growth of WO3 nanotube arrays and their H2S gas sensing properties for reduced operating temperature. Mater. Lett. 271, 127716 (2020). https://doi.org/10.1016/j.matlet.2020.127716 

  31. J. Phys. Chem. B. ZJ Gu 110 23829 2006 10.1021/jp065170y Z.J. Gu, T.Y. Zhai, B.F. Gao, X.H. Sheng, Y.B. Wang, H.B. Fu, Y. Ma, J.N. Yao, Controllable assembly of WO3 nanorods/nanowires into hierarchical nanostructures. J. Phys. Chem. B. 110, 23829-23836 (2006). https://doi.org/10.1021/jp065170y 

  32. Langmuir JRG Navarro 30 10487 2014 10.1021/la5025907 J.R.G. Navarro, A. Mayence, J. Andrade, F. Lerouge, F. Chaput, P. Oleynikov, L. Bergstrom, S. Parola, A. Pawlicka, WO3 nanorods created by self-assembly of highly crystalline nanowires under hydrothermal conditions. Langmuir 30, 10487-10492 (2014). https://doi.org/10.1021/la5025907 

  33. Nano Res. K Huang 3 281 2010 10.1007/s12274-010-1031-3 K. Huang, Q. Zhang, F. Yang, D.Y. He, Ultraviolet photoconductance of a single hexagonal WO3 nanowire. Nano Res. 3, 281-287 (2010). https://doi.org/10.1007/s12274-010-1031-3 

  34. Chem. Mater. IM Szilagyi 20 4116 2008 10.1021/cm800668x I.M. Szilagyi, J. Madarasz, G. Pokol, P. Kiraly, G. Tarkanyi, S. Saukko, J. Mizsei, A.L. Toth, A. Szabo, K. Varga-Josepovitso, Stability and controlled composition of hexagonal WO3. Chem. Mater. 20, 4116-4125 (2008). https://doi.org/10.1021/cm800668x 

  35. J. Phys. Chem. C. L Chen 116 11722 2012 10.1021/jp301210q L. Chen, S. Lam, Q.H. Zeng, R. Amal, A.B. Yu, Effect of cation on the growth of hexagonal WO3 nanorods. J. Phys. Chem. C. 116, 11722-11727 (2012). https://doi.org/10.1021/jp301210q 

  36. Appl. Catal. B: Environ. K Sayama 94 150 2010 10.1016/j.apcatb.2009.11.003 K. Sayama, H. Hayashi, T. Arai, M. Yanagida, T. Gunji, H. Sugihara, Highly active WO3 semiconductor photocatalyst prepared from amorphous peroxo-tungstic acid for the degradation of various organic compounds. Appl. Catal. B: Environ. 94, 150-157 (2010). https://doi.org/10.1016/j.apcatb.2009.11.003 

  37. Phys. Today. T Tauc 20 105 1967 10.1063/1.3033945 T. Tauc, T.A. Scott, The optical properties of solids. Phys. Today. 20, 105-106 (1967). https://doi.org/10.1063/1.3033945 

  38. Mater. Chem. Phys. A Sonia 136 80 2012 10.1016/j.matchemphys.2012.06.034 A. Sonia, Y. Djaoued, B. Subramanian, R. Jacques, M. Eric, B. Ralf, B. Achour, Synthesis and characterization of novel nanorod superstructures and twin octahedral morphologies of WO3 by hydrothermal treatment. Mater. Chem. Phys. 136, 80-89 (2012). https://doi.org/10.1016/j.matchemphys.2012.06.034 

  39. ACS Catal. LJ Zhang 4 3724 2014 10.1021/cs500794j L.J. Zhang, S. Li, B.K. Liu, D.J. Wang, T.F. Xie, Highly efficient CdS/WO3 photocatalysts: Z-scheme photocatalytic mechanism for their enhanced photocatalytic H2 evolution under visible light. ACS Catal. 4, 3724-3729 (2014). https://doi.org/10.1021/cs500794j 

  40. Rare Met. YS Fan 40 1738 2021 10.1007/s12598-020-01490-6 Y.S. Fan, X.L. Xi, Y.S. Liu, Z.R. Nie, L.Y. Zhao, Q.H. Zhang, Regulation of morphology and visible light-driven photocatalysis of WO3 nanostructures by changing pH. Rare Met. 40, 1738-1745 (2021). https://doi.org/10.1007/s12598-020-01490-6 

  41. J. Mater. Chem. S Jeon 20 10146 2010 10.1039/C0JM01644F S. Jeon, K. Yong, Morphology-controlled synthesis of highly adsorptive tungsten oxide nanostructures and their application to water treatment. J. Mater. Chem. 20, 10146-10151 (2010). https://doi.org/10.1039/C0JM01644F 

  42. ChemistrySelect M Farjood 4 3042 2019 10.1002/slct.201804007 M. Farjood, M.A. Zanjanchi, Template-free synthesis of mesoporous tungsten oxide nanostructures and its application in photocatalysis and adsorption reactions. ChemistrySelect 4, 3042-3046 (2019). https://doi.org/10.1002/slct.201804007 

  43. Phys. Rev. Lett. AH Nethercot 33 1088 1974 10.1103/PhysRevLett.33.1088 A.H. Nethercot, Prediction of Fermi energies and photoelecctric thresholds based on electronegativity concepts. Phys. Rev. Lett. 33, 1088-1091 (1974). https://doi.org/10.1103/PhysRevLett.33.1088 

  44. Environ. Sci. LQ Ye 1 90 2014 10.1039/C3EN00098B L.Q. Ye, Y.R. Su, X.L. Jin, H.Q. Xie, C. Zhang, Recent advances in BiOX (X= Cl, Br and I) photocatalysts: synthesis, modification, facet effects and mechanisms. Environ. Sci. 1, 90-112 (2014). https://doi.org/10.1039/C3EN00098B 

  45. Environ. Sci. PY Dong 4 539 2017 10.1039/C6EN00478D P.Y. Dong, G.H. Hou, X. Xi, R. Shao, F. Dong, WO3-based photocatalysts: morphology control, activity enhancement and multifunctional applications. Environ. Sci. 4, 539-557 (2017). https://doi.org/10.1039/C6EN00478D 

  46. J. Mol. Catal. A DQ Bi 367 103 2013 10.1016/j.molcata.2012.09.031 D.Q. Bi, Y.M. Xu, Synergism between Fe2O3 and WO3 particles: photocatalytic activity enhancement and reaction mechanism. J. Mol. Catal. A 367, 103-107 (2013). https://doi.org/10.1016/j.molcata.2012.09.031 

  47. J. Am. Chem. Soc. R Abe 130 7780 2008 10.1021/ja800835q R. Abe, H. Takami, N. Murakami, B. Ohtani, Pristine simple oxides as visible light driven photocatalysts: highly efficient decomposition of organic compounds over platinum-loaded tungsten oxide. J. Am. Chem. Soc. 130, 7780-7781 (2008). https://doi.org/10.1021/ja800835q 

  48. Langmuir DQ Bi 27 9359 2011 10.1021/la2012793 D.Q. Bi, Y.M. Xu, Improved photocatalytic activity of WO3 through clustered Fe2O3 for organic degradation in the presence of H2O2. Langmuir 27, 9359-9366 (2011). https://doi.org/10.1021/la2012793 

  49. Mater. Res. Bull. J Pan 103 216 2018 10.1016/j.materresbull.2018.03.043 J. Pan, J. Liu, S. Zuo, U.A. Khan, Y. Yu, B. Li, Synthesis of cuboid BiOCl nanosheets coupled with CdS quantum dots by region-selective deposition process with enhanced photocatalytic activity. Mater. Res. Bull. 103, 216-224 (2018). https://doi.org/10.1016/j.materresbull.2018.03.043 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로