$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Transcriptome analyses show changes in heat-stress related gene expression in tomato cultivar ‘Moneymaker’ under high temperature

Journal of plant biochemistry and biotechnology, v.32 no.2, 2023년, pp.328 - 337  

Su, Hai-Zhe ,  Ma, Si-Ya ,  Ma, Xiao-Hong ,  Song, Yu ,  Wang, Xiao-Min ,  Cheng, Guo-Xin

초록이 없습니다.

참고문헌 (48)

  1. Method Enzymol H Aebi 105 121 1984 10.1016/S0076-6879(84)05016-3 Aebi H (1984) Catalase in vitro. Method Enzymol 105:121. DOI:https://doi.org/10.1016/S0076-6879(84)05016-3 

  2. Horticulturae MM Ali 7 21 2021 10.3390/horticulturae7020021 Ali MM, Shafique MW, Gull S, Naveed WA, Javed T, Yousef AF, Mauro RP (2021) Alleviation of heat stress in tomato by exogenous application of sulfur. Horticulturae 7:21. DOI:https://doi.org/10.3390/horticulturae7020021 

  3. Front Plant Sci CE Bita 4 273 2013 10.3389/fpls.2013.00273 Bita CE, Gerats (2013) Plant tolerance to high temperature in a changing environment: scientific fundamentals and production of heat stress-tolerant crops. Front Plant Sci 4:273. DOI: https://doi.org/10.3389/fpls.2013.00273 

  4. 10.1111/pce.13854 Almeida J, Perez-Fons L, Fraser PD (2020) A transcriptomic, metabolomic and cellular approach to the physiological adaptation of tomato fruit to high temperature. Plant Cell Environ 44:2211-2229. DOI:https://doi.org/10.1111/pce.13854 

  5. Bhadwal D (2017) Differential expression profiling of heat shock proteins (hsps) and heat shock factors (hsfs) genes in tomato under drought stress 

  6. Anal Biochem B Charles 44 276 1971 10.1016/0003-2697(71)90370-8 Charles B, Irwin F (1971) Superoxide dismutase: Improved assays and an assay applicable to acrylamide gels. Anal Biochem 44:276-287. DOI:https://doi.org/10.1016/0003-2697(71)90370-8 

  7. J Integr Plant Biol L Cheng 2009 1 2009 10.1111/j.1744-7909.2009.00816.x Cheng L et al (2009) Polyamine accumulation in transgenic tomato enhances the tolerance to high temperature stress. J Integr Plant Biol 2009:1-11. DOI:https://doi.org/10.1111/j.1744-7909.2009.00816.x 

  8. 10.1016/j.pbi.2020.02.008 Cohen SP, Leach JE (2020) High temperature-induced plant disease susceptibility: more than the sum of its parts. Curr Opin Plant Biol 56:235-241. DOI:0.1111/j.1744-7909.2009.00816.x 

  9. PLoS ONE JE Crawford 5 12 e14202 2010 10.1371/journal.pone.0014202 Crawford JE, Guelbeogo WM, Antoine S, Alphonse T, Vernick KD, N’Fale S et al (2010) De novo transcriptome sequencing in Anopheles funestus using Illumina RNA-Seq technology. PLoS ONE 5(12):e14202. DOI:https://doi.org/10.1371/journal.pone.0014202 

  10. Cui L, Lei H, Li R, Ye Z, Zheng Y, Wang XJ (2015) Cloning and expression analysis of AhHSP70 and Ah HSF genes in Arachis hypogaea L. Shandong Agricultural Sciences. (in Chinese) 

  11. Plant Sci ML Dionisio-Sese 135 1 1 1998 10.1016/S0168-9452(98)00025-9 Dionisio-Sese ML, Tobita SJ (1998) Antioxidant responses of rice seedlings to salinity stress. Plant Sci 135(1):1-9. DOI:https://doi.org/10.1016/S0168-9452(98)00025-9 

  12. Du Y, Mao S, Wang X et al (2003) The different changes of endogenous polyamines in tomato plants with different heat-tolerance under high temperatures. Acta Horticulturae Sinica 

  13. 10.1016/j.jfoodeng.2021.110736 Fang F, Reuhs BL, Xu QJ (2021) Short-term high temperature with shear produces tomato suspensions with desirable rheological properties. J Food Eng 311:110736. DOI:0.1016/j.jfoodeng.2021.110736 

  14. Plant Physiol Biochem XH Feng 142 151 2019 10.1016/j.plaphy.2019.07.001 Feng XH, Zhang HX, Ali M, Gai WX, Gong ZH (2019) A small heat shock protein cahsp25.9 positively regulates heat, salt, and drought stress tolerance in pepper (Capsicum annuum l.). Plant Physiol Biochem 142:151-162. https://doi.org/10.1016/j.plaphy.2019.07.001 

  15. Plant Growth Regul T Gaspar 37 263 2002 10.1023/A:1020835304842 Gaspar T, Franck T, Bisbis B, Kevers C, Jouve L, Hausman JF, Dommes J (2002) Concepts in plant stress physiology. application to plant tissue cultures. Plant Growth Regul 37:263-285. DOI:https://doi.org/10.1023/A:1020835304842 

  16. 10.3390/ijms20235858 González-García Y, López-Vargas ER, Cadenas-Pliego G et al (2019) Impact of carbon nanomaterials on the antioxidant system of tomato seedlings. Int J Mol Sci 20. DOI:https://doi.org/10.3390/ijms20235858 

  17. PLoS ONE S Gul 16 8 e0255847 2021 10.1371/journal.pone.0255847 Gul S, Shah KN, Rana RM, Khan MA, Elseehy MM (2021) Phylogenetic and expression dynamics of tomato ClpB/Hsp100 gene under heat stress. PLoS ONE 16(8):e0255847. DOI:https://doi.org/10.1371/journal.pone.0255847 

  18. P Natl Acad Sci USA NE Havko 117 201913885 2020 10.1073/pnas.1913885117 Havko NE, Das MR, Mcclain AM, Kapali G, Howe GA (2020) Insect herbivory antagonizes leaf cooling responses to elevated temperature in tomato. P Natl Acad Sci USA 117:201913885. DOI:https://doi.org/10.1073/pnas.1913885117 

  19. Field Crops Res M Hlaváčová 221 182 2018 10.1016/j.fcr.2018.02.022 Hlaváčová M, Klem K, Rapantová B et al (2018) Interactive effects of high temperature and drought stress during stem elongation, anthesis and early grain filling on the yield formation and photosynthesis of winter wheat. Field Crops Res 221:182-195. DOI:https://doi.org/10.1016/j.fcr.2018.02.022 

  20. J Plant Biochem Biot H Hsin 25 87 2016 10.1007/s13562-015-0314-x Hsin H, Lin K, Lin J et al (2016) Physiological and proteomic analysis in two wild tomato lines under waterlogging and high temperature stress. J Plant Biochem Biot 25:87-96. DOI:https://doi.org/10.1007/s13562-015-0314-x 

  21. Bullet Natl Res Ctr SK Ibrahim 43 126 2019 10.1186/s42269-019-0106-x Ibrahim SK, El-Muqadam LAJBotNRC (2019) Enhancing thermotolerance of tomato plants (Lycopersieon esculentum Mill.) by heat hardening of seeds. Bullet Natl Res Ctr 43:126. DOI:https://doi.org/10.1186/s42269-019-0106-x 

  22. Biotech SG Karkute 11 45 2021 10.1007/s13205-020-02587-6 Karkute SG, Ansari WA, Singh AK et al (2021) Characterization of high-temperature stress-tolerant tomato (Solanum lycopersicum L.) genotypes by biochemical analysis and expression profiling of heat-responsive genes. Biotech 11:45. DOI:https://doi.org/10.1007/s13205-020-02587-6 

  23. Plant AU Khan 9 1477 2020 10.3390/plants9111477 Khan AU, Jalil S, Cao H, Chare YT, Jin XJ (2020) The purple leaf (pl6) mutation regulates leaf color by altering the anthocyanin and chlorophyll contents in rice. Plant 9:1477. DOI:https://doi.org/10.3390/plants9111477 

  24. 10.1128/MCB.18.4.2240 Klaus-Dieter S, Harald H, Ingo H, Ruth L, Enrico S, Lutz N (1998) The tomato hsf system: hsfa2 needs interaction with hsfa1 for efficient nuclear import and may be localized in cytoplasmic heat stress granules. Mol Cell Biol 18:2240-2251. DOI: 0270-7306/98/$04.0010 

  25. 10.1002/9780813809380.ch2 Koiwa H (2009) Pathways and genetic determinants for cell wall-based osmotic stress tolerance in the Arabidopsis thaliana root system. Wiley-Blackwell 

  26. Koornneef M, Hanhart CJ (1990) The genetics of regeneration capacity in tomato. Abstract Int 

  27. Arch Toxicol BJ Lang 95 1943 2021 10.1007/s00204-021-03070-8 Lang BJ, Guerrero ME, Prince TL, Okusha Y, Calderwood SK (2021) The functions and regulation of heat shock proteins; key orchestrators of proteostasis and the heat shock response. Arch Toxicol 95:1943-1970. DOI:https://doi.org/10.1007/s00204-021-03070-8 

  28. Plant Mol Biol Rep M Li 32 42 2014 10.1007/s11105-013-0594-z Li M, Li Z, Li S et al (2014) Genetic engineering of glycine betaine biosynthesis reduces heat-enhanced photoinhibition by enhancing antioxidative defense and alleviating lipid peroxidation in tomato. Plant Mol Biol Rep 32:42-51. DOI:https://doi.org/10.1007/s11105-013-0594-z 

  29. Environ Sci Pollut Res Y Li 20 1117 2013 10.1007/s11356-012-1054-2 Li Y, Zhang S, Jiang W, Liu D (2013) Cadmium accumulation, activities of antioxidant enzymes, and malondialdehyde (MDA) content in Pistia stratiotes L. Environ Sci Pollut Res 20:1117-1123. DOI:https://doi.org/10.1007/s11356-012-1054-2 

  30. Front Plant Sci JS Lin 9 68 2018 10.3389/fpls.2018.00068 Lin JS, Chia-Chia K, Yang IC, Wei-An T, Shen YH, Lin CC, Liang YC, Li YC, Yun-fei K, Yu-Chi K (2018) Microrna160 modulates plant development and heat shock protein gene expression to mediate heat tolerance in arabidopsis. Front Plant Sci 9:68. DOI:https://doi.org/10.3389/fpls.2018.00068 

  31. J Am Soc Hortic Sci AG Litvin 141 591 2016 10.21273/JASHS03913-16 Litvin AG, Van Iersel MW, Malladi A (2016) Drought stress reduces stem elongation and alters gibberellin-related gene expression during vegetative growth of tomato. J Am Soc Hortic Sci 141:591-597. DOI:https://doi.org/10.21273/JASHS03913-16 

  32. Crop Sci X Liu 42 457 2002 Liu X, Huang B, Banowetz, Science G (2002) Cytokinin effects on creeping bentgrass responses to heat stress: i. shoot and root growth. Crop Sci 42:457-465 

  33. Traffic DT Luu 14 629 2013 10.1111/tra.12062 Luu DT, Maurel C (2013) Aquaporin trafficking in plant cells: an emerging membrane-protein model. Traffic 14:629-635. DOI:https://doi.org/10.1111/tra.12062 

  34. BMC Genomics P Mario 12 384 2011 10.1186/1471-2164-12-384 Mario P, Vriezen WH, Celestina M, Sara Z, Bita CE, Tom G (2011) Temperature stress differentially modulates transcription in meiotic anthers of heat-tolerant and heat-sensitive tomato plants. BMC Genomics 12:384. https://doi.org/10.1186/1471-2164-12-384 

  35. Plant Cell Physiol Y Nakano 22 867 1980 10.1093/oxfordjournals.pcp.a076232 Nakano Y, Asada KJP, Physiology C (1980) Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867-880. DOI:https://doi.org/10.1093/oxfordjournals.pcp.a076232 

  36. Plant Sci J Piterková 207 57 2013 10.1016/j.plantsci.2013.02.010 Piterková J, Luhová L, Mieslerová B, Lebeda A, Petrivalsky M (2013) Nitric oxide and reactive oxygen species regulate the accumulation of heat shock proteins in tomato leaves in response to heat shock and pathogen infection. Plant Sci 207:57-65. DOI:https://doi.org/10.1016/j.plantsci.2013.02.010 

  37. Biochem Biophys Res Commun AL Qu 432 203 2013 10.1016/j.bbrc.2013.01.104 Qu AL, Ding YF, Jiang Q, Zhu C (2013) Molecular mechanisms of the plant heat stress response. Biochem Biophys Res Commun 432:203-207. DOI: https://doi.org/10.1016/j.bbrc.2013.01.104 

  38. Int J Mol Sci I Sadura 21 1889 2020 10.3390/ijms21051889 Sadura I, Libikkonieczny M, Jurczyk B, Gruszka D, Janeczko A (2020) Hsp transcript and protein accumulation in brassinosteroid barley mutants acclimated to low and high temperatures. Int J Mol Sci 21:1889. https://doi.org/10.3390/ijms21051889 

  39. 10.1134/S1021443716050113 Sang QQ, Shu S, Shan X, Guo SR, Sun JJ (2016) Effects of exogenous spermidine on antioxidant system of tomato seedlings exposed to high temperature stress. Russ J Plant Physl + 63 5645-655. DOI:https://doi.org/10.1134/S1021443716050113 

  40. Cell Stress Chaperon JG SøRensen 10 312 2005 10.1379/CSC-128R1.1 SøRensen JG, Nielsen MM, Kruhøffer M, Loeschcke JV (2005) Full genome gene expression analysis of the heat stress response in Drosophila melanogaster. Cell Stress Chaperon 10:312-328. DOI:https://doi.org/10.1379/CSC-128R1.1 

  41. Plant Growth Regul Q Wang 75 3 615 2015 10.1007/s10725-014-9964-2 Wang Q, Guan C, Wang P, Lv M, Ma Q, Wu G, Bao AK, Zhang, Jl, Wang S (2015) Athkt1;1 and athak5 mediate low-affinity Na + uptake in arabidopsis thaliana under mild salt stress. Plant Growth Regul 75(3):615-623. https://doi.org/10.1007/s10725-014-9964-2 

  42. PLoS ONE W Xiao 12 5 e0177641 2017 10.1371/journal.pone.0177641 Xiao W, Peng C, Xiao J, Wang L, Lu C (2017) Comparative transcriptome profiling of a thermal resistant vs. sensitive silkworm strain in response to high temperature under stressful humidity condition. PLoS ONE 12(5):e0177641. DOI:https://doi.org/10.1371/journal.pone.0177641 

  43. Natl Acad Sciences U Yamanouchi 99 7530 2002 10.1073/pnas.112209199 Yamanouchi U, Yano M, Lin H, Ashikari M, Yamada K (2002) A rice spotted leaf gene, SpI7, encodes a heat stress transcription factor protein. Natl Acad Sciences 99:7530-7535. DOI:https://doi.org/10.1073/pnas.112209199 

  44. IEEE Trans Autom Sci Eng C Yang 99 1 2020 10.1109/TASE.2020.2977944 Yang C, Gunay B, Shi Z, Shen W (2020) Machine learning-based prognostics for central heating and cooling plant equipment health monitoring. IEEE Trans Autom Sci Eng 99:1-10 

  45. Plant Physiol CH Yeh 128 661 2002 10.2307/4280333 Yeh CH, Chen YM, Lin CY (2002) Functional regions of rice heat shock protein, oshsp16.9, required for conferring thermotolerance in escherichia coli. Plant Physiol 128:661-668. DOI: https://doi.org/10.2307/4280333 

  46. Nucleic Acids Res B Yuval 40 e72 2012 10.1093/nar/gks001 Yuval B, Speed TPJNAR (2012) Summarizing and correcting the GC content bias in high-throughput sequencing. Nucleic Acids Res 40:e72-e72. DOI:https://doi.org/10.1093/nar/gks001 

  47. Environ Exp Bot YF Zhai 141 10 2017 10.1016/j.envexpbot.2017.06.009 Zhai YF, Wang H, Liang MM, Lu MH (2017) Both silencing- and over-expression of pepper caatg8c gene compromise plant tolerance to heat and salt stress. Environ Exp Bot 141:10-18. https://doi.org/10.1016/j.envexpbot.2017.06.009 

  48. HortSci Y Zheng 53 1575 2020 10.21273/HORTSCI15145-20 Zheng Y, Yang Z, Xu C, Wang L, Huang H, Yang S (2020) The interactive effects of daytime high temperature and humidity on growth and endogenous hormone concentration of tomato seedlings. HortSci 53:1575-1583. DOI:https://doi.org/10.21273/HORTSCI15145-20 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로