$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Investigating mixing patterns of suspended sediment in a river confluence using high-resolution hyperspectral imagery

Journal of hydrology, v.620 pt.B, 2023년, pp.129505 -   

Kwon, Siyoon ,  Seo, Il Won ,  Lyu, Siwan

초록이 없습니다.

참고문헌 (94)

  1. Opt. Express Albert 11 2873 2003 10.1364/OE.11.002873 An analytical model for subsurface irradiance and remote sensing reflectance in deep and shallow case-2 waters 

  2. Adv. Water Resour. Baek 33 1551 2010 10.1016/j.advwatres.2010.09.005 Routing procedures for observed dispersion coefficients in two-dimensional river mixing 

  3. Adv. Water Resour. Baek 127 76 2019 10.1016/j.advwatres.2019.03.007 UAV-based measurements of spatio-temporal concentration distributions of fluorescent tracers in open channel flows 

  4. Remote Sens. Environ. Balasubramanian 246 2020 10.1016/j.rse.2020.111768 Robust algorithm for estimating total suspended solids (TSS) in inland and nearshore coastal waters 

  5. Remote Sens. Environ. Binding 94 373 2005 10.1016/j.rse.2004.11.002 Estimating suspended sediment concentrations from ocean colour measurements in moderately turbid waters; The impact of variable particle scattering properties 

  6. Earth Surf. Process. Landforms Biron 44 3042 2019 10.1002/esp.4718 Three-dimensional turbulent structures at a medium-sized confluence with and without an ice cover 

  7. Mach. Learn. Breiman 24 123 1996 10.1007/BF00058655 Bagging predictors 

  8. Mach. Learn. Breiman 45 5 2001 10.1023/A:1010933404324 Random forests 

  9. Int. J. Remote Sens. Chen 12 215 1991 10.1080/01431169108929647 The form of the relationship between suspended sediment concentration and spectral reflectance-Its implications for the use of Daedalus 1268 data 

  10. J. Fluid Mech. Cheng 904 2020 10.1017/jfm.2020.638 Near-and far-field structure of shallow mixing layers between parallel streams 

  11. J. Geophys. Res. Earth Surf. Constantinescu 117 2012 10.1029/2012JF002452 Numerical analysis of the effect of momentum ratio on the dynamics and sediment-entrainment capacity of coherent flow structures at a stream confluence 

  12. J. Geophys. Res. Earth Surf. Constantinescu 119 2079 2014 10.1002/2014JF003244 Numerical evaluation of the effects of planform geometry and inflow conditions on flow, turbulence structure, and bed shear velocity at a stream confluence with a concordant bed George 

  13. Geomorphology De Serres 26 313 1999 10.1016/S0169-555X(98)00064-6 Three-dimensional structure of flow at a confluence of river channels with discordant beds 

  14. J. Geophys. Res. Earth Surf. Dethier 125 2020 10.1029/2019JF005033 Toward improved accuracy of remote sensing approaches for quantifying suspended sediment: Implications for suspended-sediment monitoring 

  15. Edwards, T.K., Glysson, G.D., 1999. Field Methods for Measurement of Fluvial Sediment: U.S. geological survey techniques of water-resources investigations. In: Book 3, Applications of Hydraulics. 

  16. Opt. Express Fan 23 A987 2015 10.1364/OE.23.00A987 Inferring inherent optical properties and water constituent profiles from apparent optical properties 

  17. Nat. Hazards Fattahi Nafchi 2021 Investigation on the effect of inclined crest step pool on scouring protection in erodible river beds 

  18. J. Sanit. Engng. Div. ASCE Fischer 94 927 1968 10.1061/JSEDAI.0000900 Dispersion Predictions in Natural Streams 

  19. 10.21236/ADA137303 Ford, D.E., Johnson, M.C., 1983. An Assessment of Reservoir Density Currents and Inflow Processes, Tech. Rep. E-83-7. Mississippi, USA. 

  20. C. R. Geosci. Gualtieri 350 31 2018 10.1016/j.crte.2017.09.015 A field study of the confluence between Negro and Solimões Rivers. Part 1: Hydrodynamics and sediment transport 

  21. J. Hydrol. Gualtieri 578 2019 10.1016/j.jhydrol.2019.124029 On the mixing of rivers with a difference in density: The case of the Negro/Solimões confluence, Brazil 

  22. J. Geophys. Res. Earth Surf. Guillén Ludeña 122 901 2017 10.1002/2016JF004122 Hydrodynamics of mountain-river confluences and its relationship to sediment transport 

  23. Remote Sens. Gwon 15 2023 10.3390/rs15020477 A standardized procedure to build a spectral library for hazardous chemicals mixed in river flow using hyperspectral image 

  24. Water Resour. Res. Horna-Munoz 56 2020 10.1029/2019WR026217 Density effects at a concordant bed natural river confluence 

  25. Korean J. Remote Sens. Jeon 35 203 2019 A Comparative Study of Absolute Radiometric Correction Methods for Drone-borne Hyperspectral Imagery 

  26. Remote Sens. Environ. Jiang 258 2021 10.1016/j.rse.2021.112386 Remotely estimating total suspended solids concentration in clear to extremely turbid waters using a novel semi-analytical method 

  27. J. Hydraul. Eng. Jung 145 04019040 2019 10.1061/(ASCE)HY.1943-7900.0001638 Feasibility of velocity-based method for transverse mixing coefficients in river mixing analysis 

  28. Limnol. Oceanogr. Koestner 65 173 2020 10.1002/lno.11259 Assessing the effects of particle size and composition on light scattering through measurements of size-fractionated seawater samples 

  29. Environ. Fluid Mech. Konsoer 14 1043 2014 10.1007/s10652-013-9304-5 Spatial-temporal structure of mixing interface turbulence at two large river confluences 

  30. Water Resour. Res. Kwak 56 1 2020 10.1029/2019WR026825 Field measurement of spatiotemporal algae distribution using in situ optical particle size sensor 

  31. Int. J. Environ. Res. Public Health Kwon 18 1 2021 10.3390/ijerph18031023 Identification framework of contaminant spill in rivers using machine learning with breakthrough curve analysis 

  32. Remote Sens. Environ. Kwon 236 111517 2020 10.1016/j.rse.2019.111517 Drone-based hyperspectral remote sensing of cyanobacteria using vertical cumulative pigment concentration in a deep reservoir 

  33. Sci. Total Environ. Kwon 833 2022 10.1016/j.scitotenv.2022.155168 Hyperspectral retrievals of suspended sediment using cluster-based machine learning regression in shallow waters 

  34. Adv. Water Resour. Kwon 159 2022 10.1016/j.advwatres.2021.104076 Measurement of suspended sediment concentration in open channel flows based on hyperspectral imagery from UAVs 

  35. J. Geophys. Res. Earth Surf. Lane 113 2008 10.1029/2006JF000745 Causes of rapid mixing at a junction of two large rivers: Río Paraná and Río Paraguay, Argentina 

  36. J. Hydraul. Eng. Latosinski 140 04014023 2014 10.1061/(ASCE)HY.1943-7900.0000859 Estimation of concentration and load of suspended bed sediment in a large river by means of acoustic doppler technology 

  37. Appl. Opt. Lee 38 3831 1999 10.1364/AO.38.003831 Hyperspectral remote sensing for shallow waters: 2 Deriving bottom depths and water properties by optimization 

  38. Appl. Opt. Lee 41 5755 2002 10.1364/AO.41.005755 Deriving inherent optical properties from water color: a multiband quasi-analytical algorithm for optically deep waters 

  39. Water Resour. Res. Legleiter 55 2142 2019 10.1029/2018WR023586 Remote sensing of river bathymetry: evaluating a range of sensors, platforms, and algorithms on the upper Sacramento River, California, USA 

  40. Hydrol. Process. Lewis 29 4442 2015 10.1002/hyp.10496 Rates and patterns of thermal mixing at a small stream confluence under variable incoming flow conditions 

  41. Water Resour. Res. Lewis 56 1 2020 10.1029/2019WR026817 Advective lateral transport of streamwise momentum governs mixing at small river confluences 

  42. 10.3390/rs13204069 Liu, H., Yu, T., Hu, B., Hou, X., Zhang, Z., Liu, X., 2021. UAV-borne hyperspectral imaging remote sensing system based on acousto-optic tunable filter for water quality monitoring. 

  43. Löffler, M., Zhang, A.Y., Zhou, H.H., 2019. Optimality of spectral clustering for gaussian mixture model. 

  44. Appl. Opt. Mobley 38 7442 1999 10.1364/AO.38.007442 Estimation of the remote-sensing reflectance from above-surface measurements 

  45. MOLIT, 2016. Reports for Management of Hwang River. 

  46. Earth Surf. Process. Landforms Moradi 44 2903 2019 10.1002/esp.4719 Evaluation of aDcp processing options for secondary flow identification at river junctions 

  47. Remote Sens. Environ. Niroumand-Jadidi 218 132 2018 10.1016/j.rse.2018.09.022 Multiple Optimal Depth Predictors Analysis (MODPA) for river bathymetry: Findings from spectroradiometry, simulations, and satellite imagery 

  48. Remote Sens. Environ. Olmanson 130 254 2013 10.1016/j.rse.2012.11.023 Airborne hyperspectral remote sensing to assess spatial distribution of water quality characteristics in large rivers: The Mississippi River and its tributaries in Minnesota 

  49. Appl. Water Sci. Ostad-Ali-Askari 12 1 2022 Investigation of meteorological variables on runoff archetypal using SWAT: basic concepts and fundamentals 

  50. Appl. Water Sci. Ostad-Ali-Askari 12 1 2022 10.1007/s13201-022-01718-z Arrangement of watershed from overflowing lookout applying the SWAT prototypical and SUFI-2 (case study: Kasiliyan watershed, Mazandaran Province, Iran) 

  51. Earth Surf. Process. Landforms Overstreet 42 318 2017 10.1002/esp.4063 Removing sun glint from optical remote sensing images of shallow rivers 

  52. Earth Surf. Process. Landforms Parsons 38 1244 2013 10.1002/esp.3367 Velocity Mapping Toolbox (VMT): A processing and visualization suite for moving-vessel ADCP measurements 

  53. Remote Sens. Peterson 10 2018 10.3390/rs10101503 Suspended sediment concentration estimation from landsat imagery along the lower missouri and middle Mississippi Rivers using an extreme learning machine 

  54. Opt. Express Pinet 25 A283 2017 10.1364/OE.25.00A283 Variability of apparent and inherent optical properties of sediment-laden waters in large river basins - lessons from in situ measurements and bio-optical modeling 

  55. Water Resour. Res. Pouchoulin 56 1 2020 10.1029/2019WR026367 Predicting transverse mixing efficiency downstream of a river confluence 

  56. Wiley Interdiscip. Rev. Data Min. Knowl. Discov. Probst 1-18 2019 Hyperparameters and tuning strategies for random forest 

  57. Surv. Geophys. Rast 40 303 2019 10.1007/s10712-019-09517-z Earth observation imaging spectroscopy for terrestrial systems: an overview of its history, techniques, and applications of its missions 

  58. Geomorphology Rhoads 323 51 2018 10.1016/j.geomorph.2018.09.009 Three-dimensional flow structure, morphodynamics, suspended sediment, and thermal mixing at an asymmetrical river confluence of a straight tributary and curving main channel 

  59. Geomorphology Rhoads 11 273 1995 10.1016/0169-555X(94)00069-4 Flow structure at an asymmetrical stream confluence 

  60. Water Resour. Res. Rhoads 44 1 2008 10.1029/2007WR006634 Lateral momentum flux and the spatial evolution of flow within a confluence mixing interface 

  61. Earth Surf. Process. Landforms Riley 40 252 2015 10.1002/esp.3624 Influence of junction angle on three-dimensional flow structure and bed morphology at confluent meander bends during different hydrological conditions 

  62. Rozovskii 1957 Flow of Water in Bendsof Open Channels 

  63. Rutherford 1994 River Mixing 

  64. Water Resour. Res. Sabrina 57 1 2021 10.1029/2021WR029662 Large-scale particle image velocimetry reveals pulsing of incoming flow at a stream confluence 

  65. Geophys. Res. Lett. Sassi 40 5692 2013 10.1002/2013GL058299 Quantified turbulent diffusion of suspended sediment using acoustic Doppler current profilers 

  66. 10.3133/pp433E Sayre, W.W., Chang, F.M., 1968. A Laboratory Investigation of Open Channel Dispersion Processes for Dissolved, Suspended, and Floating Dispersants. Reston. 

  67. J. Hydraul. Res. Seo 44 350 2006 10.1080/00221686.2006.9521687 Analysis of transverse mixing in natural streams under slug tests 

  68. J. Korean Soc. Civ. Eng. Seo 26 469 2006 Flow structure and turbulence characteristics in meandering channel 

  69. Int. J. Remote Sens. Shen 31 2639 2010 10.1080/01431160903085610 Remote-sensing reflectance characteristics of highly turbid estuarine waters - a comparative experiment of the yangtze river and the yellow river 

  70. J. Hydrol. Shin 583 2020 10.1016/j.jhydrol.2019.124302 Longitudinal and transverse dispersion coefficients of 2D contaminant transport model for mixing analysis in open channels 

  71. J. Geophys. Res. Ocean. Simmons 125 1 2020 10.1029/2019JC015904 Novel acoustic method provides first detailed measurements of sediment concentration structure within submarine turbidity currents 

  72. Int. J. Remote Sens. Smith 20 2653 1999 10.1080/014311699211994 The use of the empirical line method to calibrate remotely sensed data to reflectance 

  73. Son, G., Kim, D., Kwak, S., Kim, Y. Do, Lyu, S., 2021. Characterizing three-dimensional mixing process in river confluence using acoustical backscatter as surrogate of suspended sediment 54, 167-179. doi: 10.3741/JKWRA.2021.54.3.167. 

  74. SonTek, 2014. RiverSurveyor S5 and M9 System Manual, Firmware Version 3.80 191. 

  75. 10.1002/lno.10674 Spyrakos, E., O’Donnell, R., Hunter, P.D., Miller, C., Scott, M., Simis, S.G.H., Neil, C., Barbosa, C.C.F., Binding, C.E., Bradt, S., Bresciani, M., Dall’Olmo, G., Giardino, C., Gitelson, A.A., Kutser, T., Li, L., Matsushita, B., Martinez-Vicente, V., Matthews, M.W., Ogashawara, I., Ruiz-Verdú, A., Schalles, J.F., Tebbs, E., Zhang, Y., Tyler, A.N., 2018. Optical types of inland and coastal waters. Limnol. Oceanogr. 63, 846-870. doi: 10.1002/lno.10674. 

  76. J. Geophys. Res. Earth Surf. Sukhodolov 122 1278 2017 10.1002/2016JF004126 Turbulent flow structure at a discordant river confluence: Asymmetric jet dynamics with implications for channel morphology 

  77. Nat. Geosci. Sukhodolov 16 2022 Mixing dynamics at river confluences governed by intermodal behaviour 

  78. Water Resour. Res. Szupiany 45 1 2009 10.1029/2008WR007428 Morphology, flow structure, and suspended bed sediment transport at two large braid-bar confluences 

  79. Earth Surf. Process. Landforms Szupiany 44 1295 2019 10.1002/esp.4572 Estimating sand concentrations using ADCP-based acoustic inversion in a large fluvial system characterized by bi-modal suspended-sediment distributions 

  80. Phys. Fluids Uijttewaal 12 392 2000 10.1063/1.870317 Effects of shallowness on the development of free-surface mixing layers 

  81. J. Hydrol. Umar 556 325 2018 10.1016/j.jhydrol.2017.11.026 Use of multispectral satellite remote sensing to assess mixing of suspended sediment downstream of large river confluences 

  82. Water (Switzerland) van Rooijen 12 1 2020 The effect of small density differences at river confluences 

  83. Appl. Opt. Wong 58 2671 2019 10.1364/AO.58.002671 Modeling the remote-sensing reflectance of highly turbid waters 

  84. Water Resour. Res. Xu 58 2022 10.1029/2022WR032195 Mixing dynamics at the large confluence between the Yangtze River and Poyang Lake 

  85. Int. J. Sediment Res. Yang 34 262 2019 10.1016/j.ijsrc.2018.11.005 The ratio of measured to total sediment discharge 

  86. J. Hydrol. Yuan 573 568 2019 10.1016/j.jhydrol.2019.02.036 Phosphorus contamination of the surface sediment at a river confluence 

  87. Water Resour. Res. Yuan 57 2021 10.1029/2020WR028284 Hydrodynamics, sediment transport and morphological features at the confluence between the Yangtze River and the Poyang Lake 

  88. Geomorphology Zhang 356 2020 10.1016/j.geomorph.2020.107066 Hydrodynamic characteristics and channel morphodynamics at a large asymmetrical confluence with a high sediment-load main channel 

  89. Remote Sens. Environ. Zhang 240 2020 10.1016/j.rse.2020.111682 Determining the drivers of suspended sediment dynamics in tidal marsh-influenced estuaries using high-resolution ocean color remote sensing 

  90. Geophys. Res. Lett. Zhang 47 2020 Experimental estimates of optical backscattering associated with submicron particles in clear oceanic waters 

  91. Water Res. Zhang 204 2021 10.1016/j.watres.2021.117618 Retrieval of water quality parameters from hyperspectral images using a hybrid feedback deep factorization machine model 

  92. Remote Sens. Zhou 9 2017 10.3390/rs9040393 Hyperspectral and multispectral retrieval of suspended sediment in shallow coastal waters using semi-analytical and empirical methods 

  93. IEEE Trans. Image Process. Zhou 27 2242 2018 10.1109/TIP.2018.2795744 A Gaussian mixture model representation of endmember variability in hyperspectral unmixing 

  94. J. Geophys. Res. Earth Surf. Zinger 118 2468 2013 10.1002/jgrf.20155 Flow structure and channel morphodynamics of meander bend chute cutoffs: A case study of the Wabash River, USA 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로