$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] A storage-efficient SNN-CNN hybrid network with RRAM-implemented weights for traffic signs recognition

Engineering applications of artificial intelligence, v.123 pt.A, 2023년, pp.106232 -   

Zhang, Yufei ,  Xu, Hui ,  Huang, Lixing ,  Chen, Changlin

초록이 없습니다.

참고문헌 (59)

  1. 10.1109/IJCNN48605.2020.9207702 Abderrahmane, N., Miramond, B., 2020. Neural coding: Adapting spike generation for embedded hardware classification. In: 2020 International Joint Conference on Neural Networks. IJCNN, pp. 1-8. 

  2. Expert Syst. Appl. Affonso 42 24 9482 2015 10.1016/j.eswa.2015.07.075 Biological image classification using rough-fuzzy artificial neural network 

  3. 10.1109/IJCNN.2011.6033503 Boi, F., Gagliardini, L., 2011. A Support Vector Machines network for traffic sign recognition. In: The 2011 International Joint Conference on Neural Networks. pp. 2210-2216. 

  4. IEEE J. Solid-State Circuits Brandli 49 10 2333 2014 10.1109/JSSC.2014.2342715 A 240× 180 130 db 3 μs latency global shutter spatiotemporal vision sensor 

  5. Sci. Rep. Chang 8 1 12324 2018 10.1038/s41598-018-30619-y Hybrid optical-electronic convolutional neural networks with optimized diffractive optics for image classification 

  6. 10.1109/ACPR.2017.12 Chen, L., Zhao, G., Zhou, J., Kuang, L., 2017. Real-Time Traffic Sign Classification Using Combined Convolutional Neural Networks. In: 2017 4th IAPR Asian Conference on Pattern Recognition. ACPR, pp. 399-404. 

  7. 10.1109/IJCNN52387.2021.9534111 Chowdhury, S.S., Garg, I., Roy, K., 2021. Spatio-Temporal Pruning and Quantization for Low-latency Spiking Neural Networks. In: 2021 International Joint Conference on Neural Networks. IJCNN, pp. 1-9. 

  8. IEEE Trans. Circuit Theory Chua 18 5 507 1971 10.1109/TCT.1971.1083337 Memristor-the missing circuit element 

  9. 10.1109/CVPR.2012.6248110 Ciregan, D., Meier, U., Schmidhuber, J., 2012. Multi-column deep neural networks for image classification. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition. pp. 3642-3649. 

  10. Courbariaux, M., Bengio, Y., David, J.P., 2015. BinaryConnect: Training Deep Neural Networks with binary weights during propagations. In: International Conference on Neural Information Processing Systems. 

  11. IEEE J. Solid-State Circuits Deng 55 8 2228 2020 10.1109/JSSC.2020.2970709 Tianjic: A unified and scalable chip bridging spike-based and continuous neural computation 

  12. IEEE Consum. Electron. Mag. Dong 2022 Memristor-based hierarchical attention network for multimodal affective computing in mental health monitoring 

  13. Sensors Furmonas 22 3 1201 2022 10.3390/s22031201 Analytical review of event-based camera depth estimation methods and systems 

  14. 10.1109/ISCAS.2015.7168841 Georgiou, P.S., Köymen, I., Drakakis, E.M., 2015. Noise properties of ideal memristors. In: 2015 IEEE International Symposium on Circuits and Systems. ISCAS, pp. 1146-1149. 

  15. Transp. Res. Interdisc. Perspect. Gouribhatla 13 2022 Drivers’ behavior when driving vehicles with or without advanced driver assistance systems: A driver simulator-based study 

  16. 10.1109/CAC51589.2020.9327830 He, Z., Xiao, Z., Yan, Z., 2020. Traffic Sign Recognition Based on Convolutional Neural Network Model. In: 2020 Chinese Automation Congress. CAC, pp. 155-158. 

  17. 10.1109/ISSCC.2014.6757323 Horowitz, M., 2014. 1.1 Computing’s energy problem (and what we can do about it). In: 2014 IEEE International Solid- State Circuits Conference. ISSCC. 

  18. Front. Neurosci. Huang 15 328 2021 10.3389/fnins.2021.639526 Memristor based binary convolutional neural network architecture with configurable neurons 

  19. Ivanov 2022 Neuromorphic artificial intelligence systems 

  20. Adv. Sci. Jang 9 22 2022 10.1002/advs.202201117 A learning-rate modulable and reliable TiOx memristor array for robust, fast, and accurate neuromorphic computing 

  21. 10.1109/ICMLA.2019.00018 Johner, F.M., Wassner, J., 2019. Efficient Evolutionary Architecture Search for CNN Optimization on GTSRB. In: 2019 18th IEEE International Conference on Machine Learning and Applications. ICMLA, pp. 56-61. 

  22. 10.1109/ICEIC51217.2021.9369724 Kwak, M., Lee, J., Seo, H., Sung, M., Kim, Y., 2021. Training and Inference using Approximate Floating-Point Arithmetic for Energy Efficient Spiking Neural Network Processors. In: 2021 International Conference on Electronics, Information, and Communication. ICEIC, pp. 1-2. 

  23. 10.1109/PATMOS.2019.8862166 Kyriakos, A., Kitsakis, V., Louropoulos, A., Papatheofanous, E.-A., Patronas, I., Reisis, D., 2019. High Performance Accelerator for CNN Applications. In: 2019 29th International Symposium on Power and Timing Modeling, Optimization and Simulation. PATMOS, pp. 135-140. 

  24. 10.1109/ITC-CSCC52171.2021.9501427 Lee, K., Choi, S., Lew, D., Park, J., 2021. Optimization Techniques for Conversion of Quantization Aware Trained Deep Neural Networks to Lightweight Spiking Neural Networks. In: 2021 36th International Technical Conference on Circuits/Systems, Computers and Communications. ITC-CSCC, pp. 1-3. 

  25. Front. Neurosci. Lele 16 2022 10.3389/fnins.2022.1010302 Bio-mimetic high-speed target localization with fused frame and event vision for edge application 

  26. Li 2017 Traffic Sign Recognition Based on Combined CNN with Color and Hierarchical Dataset 

  27. Front. Neurosci. Li 1055 2022 Quantization framework for fast spiking neural networks 

  28. IEEE Trans. Cogn. Dev. Syst. Li PP 99 1 2021 In-situ learning in hardware compatible multi-layer memristive spiking neural network 

  29. 10.1109/ISNE48910.2021.9493630 Liu, J., Zhang, Z., Zheng, L., Wen, Y., Bin, F., Tang, L., 2021. Traffic Sign Recognition Based on ZYNQ. In: 2021 9th International Symposium on Next Generation Electronics. ISNE, pp. 1-3. 

  30. ACS Appl. Mater. Interfaces Ma 14 42 47941 2022 10.1021/acsami.2c14809 Analog tunnel memory based on programmable metallization for passive neuromorphic circuits 

  31. 10.1109/ICESC48915.2020.9155705 Majumder, D., Singh, A., Ghosh, P., Phadikar, S., 2020. A Novel SNN-ANN based IDS in Cloud Environment. In: 2020 International Conference on Electronics and Sustainable Communication Systems. ICESC, pp. 913-918. 

  32. 10.1109/IVS.2016.7535376 Mao, X., Hijazi, S., Casas, R., Kaul, P., Kumar, R., Rowen, C., 2016. Hierarchical CNN for traffic sign recognition. In: 2016 IEEE Intelligent Vehicles Symposium (IV). pp. 130-135. 

  33. Int. J. Transp. Sci. Technol. Megalingam 2022 Indian traffic sign detection and recognition using deep learning 

  34. Comput. Geosci. Ngo 83 1 2015 10.1016/j.cageo.2015.06.011 Semi-supervising interval type-2 fuzzy C-means clustering with spatial information for multi-spectral satellite image classification and change detection 

  35. IEEE Signal Process. Lett. Pei 20 3 241 2013 10.1109/LSP.2013.2241760 Supervised low-rank matrix recovery for traffic sign recognition in image sequences 

  36. 10.1109/FSKD.2016.7603237 Qian, R., Yue, Y., Coenen, F., Zhang, B., 2016. Traffic sign recognition with convolutional neural network based on max pooling positions. In: 2016 12th International Conference on Natural Computation, Fuzzy Systems and Knowledge Discovery. ICNC-FSKD, pp. 578-582. 

  37. Pattern Recognit. Qin 105 2020 10.1016/j.patcog.2020.107281 Binary neural networks: A survey 

  38. 10.1109/INAPR.2018.8627008 Rachmadi, R.F., Koutaki, G., Ogata, K., 2018. Lightweight Spatial Pyramid Convolutional Neural Network for Traffic Sign Classification. In: 2018 Indonesian Association for Pattern Recognition International Conference. INAPR, pp. 23-28. 

  39. 10.1109/IJCNN.2011.6033589 Sermanet, P., LeCun, Y., 2011. Traffic sign recognition with multi-scale Convolutional Networks. In: The 2011 International Joint Conference on Neural Networks. pp. 2809-2813. 

  40. IEEE Trans. Neural Netw. Learn. Syst. Shen 1 2021 HybridSNN: Combining bio-machine strengths by boosting adaptive spiking neural networks 

  41. Shouyi 124 2020 Design of Artificial Intelligence Chip Chapter 8 - software and hardware co-design of artificial intelligence chip 

  42. 10.1109/RusAutoCon52004.2021.9537445 Sichkar, V.N., Lyamin, A.V., 2021. Design of Deep CNN Model for Effective Traffic Signs Recognition. In: 2021 International Russian Automation Conference. RusAutoCon, pp. 367-373. 

  43. 10.1109/YAC51587.2020.9337571 Song, X., You, H., Zhou, S., Xie, W., 2020. Traffic Sign Recognition with Binarized Multi-Scale Neural Networks. In: 2020 35th Youth Academic Annual Conference of Chinese Association of Automation. YAC, pp. 116-121. 

  44. Neural Netw. Stallkamp 32 323 2012 10.1016/j.neunet.2012.02.016 Man vs. computer: Benchmarking machine learning algorithms for traffic sign recognition 

  45. Sun 574 2018 2018 23rd Asia and South Pacific Design Automation Conference Fully parallel RRAM synaptic array for implementing binary neural network with (+ 1,- 1) weights and (+ 1, 0) neurons 

  46. 10.1109/SIU.2018.8404702 Sürücü, E.A., Doğan, H., 2018. Traffic sign recognition with hierarchical Convolutional Neural Network. In: 2018 26th Signal Processing and Communications Applications Conference. SIU, pp. 1-4. 

  47. Open Phys. Versaci 18 1 230 2020 10.1515/phys-2020-0159 Joint use of eddy current imaging and fuzzy similarities to assess the integrity of steel plates 

  48. Nature Wan 608 7923 504 2022 10.1038/s41586-022-04992-8 A compute-in-memory chip based on resistive random-access memory 

  49. IEEE Trans. Neural Netw. Learn. Syst. Wang 2022 Efficient spiking neural networks with radix encoding 

  50. Wang 255 2022 2022 IEEE Biomedical Circuits and Systems Conference MorphBungee: An edge neuromorphic chip for high-accuracy on-chip learning of multiple-layer spiking neural networks 

  51. Nat. Nanotechnol. Wedig 11 67 2016 10.1038/nnano.2015.221 Nanoscale cation motion in TaOx, HfOx and TiOx memristive systems 

  52. Int. J. Comput. Vis. Y. Cao 113 54 2015 10.1007/s11263-014-0788-3 Spiking deep convolutional neural networks for energy-efficient object recognition 

  53. 10.1109/IJCNN.2015.7280813 Yakopcic, C., Hasan, R., Taha, T.M., 2015. Memristor based neuromorphic circuit for ex-situ training of multi-layer neural network algorithms. In: 2015 International Joint Conference on Neural Networks. IJCNN, pp. 1-7. 

  54. 10.1109/ICCV.2015.314 Yan, Z., Zhang, H., Piramuthu, R., Jagadeesh, V., DeCoste, D., Di, W., Yu, Y., 2015. HD-CNN: Hierarchical deep convolutional neural networks for large scale visual recognition. In: Proceedings of the IEEE International Conference on Computer Vision. pp. 2740-2748. 

  55. Nature Yao 577 641 2020 10.1038/s41586-020-1942-4 Fully hardware-implemented memristor convolutional neural network 

  56. Heliyon Youssouf 8 12 2022 10.1016/j.heliyon.2022.e11792 Traffic sign classification using CNN and detection using faster-RCNN and YOLOV4 

  57. 10.1109/IJCNN.2011.6033494 Zaklouta, F., Stanciulescu, B., Hamdoun, O., 2011. Traffic sign classification using K-d trees and Random Forests. In: The 2011 International Joint Conference on Neural Networks. pp. 2151-2155. 

  58. Zhao 2021 A battle of network structures: An empirical study of cnn, transformer, and mlp 

  59. Zhou 111 2022 Deep Learning on Edge Computing Devices Chapter 7 - algorithm and hardware codesign of sparse binary network on-chip 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로