$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] OWSum: algorithmic odor prediction and insight into structure-odor relationships 원문보기

Journal of cheminformatics, v.15 no.1, 2023년, pp.51 -   

Schicker, Doris (Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany) ,  Singh, Satnam (Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany) ,  Freiherr, Jessica (Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany) ,  Grasskamp, Andreas T. (Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany)

Abstract AI-Helper 아이콘AI-Helper

We derived and implemented a linear classification algorithm for the prediction of a molecule’s odor, called Olfactory Weighted Sum (OWSum). Our approach relies solely on structural patterns of the molecules as features for algorithmic treatment and uses conditional probabilities combined with...

Keyword

참고문헌 (61)

  1. 1. Varendi H Porter RH Winberg J Does the newborn baby find the nipple by smell? The Lancet 1994 344 989 990 10.1016/S0140-6736(94)91645-4 

  2. 2. Havlicek J Roberts SC MHC-correlated mate choice in humans: a review Psychoneuroendocrinology 2009 34 497 512 10.1016/j.psyneuen.2008.10.007 19054623 

  3. 3. Morquecho-Campos P de Graaf K Boesveldt S Smelling our appetite? The influence of food odors on congruent appetite, food preferences and intake Food Qual Prefer 2020 85 103959 10.1016/j.foodqual.2020.103959 

  4. 4. Fine LG Riera CE Sense of Smell as the Central Driver of Pavlovian Appetite Behavior in Mammals Front Physiol 2019 10 1151 10.3389/fphys.2019.01151 31620009 

  5. 5. Taylor JE Lau H Seymour B An evolutionarily threat-relevant odor strengthens human fear memory Front Neurosci 2020 14 255 10.3389/fnins.2020.00255 32425741 

  6. 6. Majid A Burenhult N Odors are expressible in language, as long as you speak the right language Cognition 2014 130 266 270 10.1016/j.cognition.2013.11.004 24355816 

  7. 7. Kaeppler K Mueller F Odor classification: a review of factors influencing perception-based odor arrangements Chem Senses 2013 38 189 209 10.1093/chemse/bjs141 23329731 

  8. 8. Gawel R The use of language by trained and untrained expereinced wine tasters J Sensory Studies 1997 12 267 284 10.1111/j.1745-459X.1997.tb00067.x 

  9. 9. Lawless HT Flavor Description of White Wine by "Expert" and Nonexpert Wine Consumers J Food Science 1984 49 120 123 10.1111/j.1365-2621.1984.tb13686.x 

  10. 10. Keller A Gerkin RC Guan Y Predicting human olfactory perception from chemical features of odor molecules Science 2017 355 820 826 10.1126/science.aal2014 28219971 

  11. 11. Li H Panwar B Omenn GS Accurate prediction of personalized olfactory perception from large-scale chemoinformatic features Gigascience 2018 10.1093/gigascience/gix127 30521034 

  12. 12. Shang L Liu C Tomiura Y Machine-learning-based olfactometer: prediction of odor perception from physicochemical features of odorant molecules Anal Chem 2017 89 11999 12005 10.1021/acs.analchem.7b02389 29027463 

  13. 13. Snitz K Yablonka A Weiss T Predicting odor perceptual similarity from odor structure PLoS Comput Biol 2013 9 e1003184 10.1371/journal.pcbi.1003184 24068899 

  14. 14. Tran N, Kepple D, Shuvaev SA et al. (2018) DeepNose: Using artificial neural networks to represent the space of odorants 

  15. 15. Zhang X Zhang K Lin D Artificial intelligence deciphers codes for color and odor perceptions based on large-scale chemoinformatic data Gigascience 2020 9 giaa011 10.1093/gigascience/giaa011 32101298 

  16. 16. Sharma A Kumar R Ranjta S SMILES to smell: decoding the structure-odor relationship of chemical compounds using the deep neural network approach J Chem Inf Model 2021 61 676 688 10.1021/acs.jcim.0c01288 33449694 

  17. 17. Chacko R Jain D Patwardhan M Data based predictive models for odor perception Sci Rep 2020 10 1 13 10.1038/s41598-020-73978-1 31913322 

  18. 18. Bo W Yu Y He R Insight into the structure-odor relationship of molecules: a computational study based on deep learning Foods 2022 11 2033 10.3390/foods11142033 35885276 

  19. 19. Chastrette M Cretin D Aïdi E Structure− Odor relationships: using neural networks in the estimation of camphoraceous or fruity odors and olfactory thresholds of aliphatic alcohols J Chem Inf Comput Sci 1996 36 108 113 10.1021/ci950154b 8576286 

  20. 20. Marquardt W, Pantelides C (2006) 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering. Elsevier 

  21. 21. Sell CS On the unpredictability of odor Angew Chem Int Ed Engl 2006 45 6254 6261 10.1002/anie.200600782 16983730 

  22. 22. Genva M Kenne Kemene T Deleu M Is it possible to predict the odor of a molecule on the basis of its structure? Int J Mol Sci 2019 20 6254 10.3390/ijms20123018 31835815 

  23. 23. Rossiter KJ Structure-odor relationships Chem Rev 1996 96 3201 3240 10.1021/cr950068a 11848858 

  24. 24. Licon CC Bosc G Sabri M Chemical features mining provides new descriptive structure-odor relationships PLoS Comput Biol 2019 15 e1006945 10.1371/journal.pcbi.1006945 31022180 

  25. 25. Mourad Korichi, Vincent Gerbaud, Pascal Floquet et al. (2006) Quantitative structure—Odor relationship: Using of multidimensional data analysis and neural network approaches. In: W. Marquardt, C. Pantelides (eds) 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, vol 21. Elsevier, pp 895–900 

  26. 26. Zheng X Tomiura Y Hayashi K Investigation of the structure-odor relationship using a transformer model J Cheminform 2022 14 88 10.1186/s13321-022-00671-y 36581889 

  27. 27. Mayhew EJ Arayata CJ Gerkin RC Transport features predict if a molecule is odorous Proc Natl Acad Sci U S A 2022 119 e2116576119 10.1073/pnas.2116576119 35377807 

  28. 28. Kumar R Kaur R Auffarth B Understanding the odour spaces: a step towards solving olfactory stimulus-percept problem PLoS One. 2015 10 e0141263 10.1371/journal.pone.0141263 26484763 

  29. 29. Koulakov AA Kolterman BE Enikolopov AG In search of the structure of human olfactory space Front Syst Neurosci 2011 5 65 10.3389/fnsys.2011.00065 21954378 

  30. 30. ZARZO M Psychologic dimensions in the perception of everyday odors: pleasantness and edibility J Sensory Stud 2008 23 354 376 10.1111/j.1745-459X.2008.00160.x 

  31. 31. Khan RM Luk C-H Flinker A Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world J Neurosci 2007 27 10015 10023 10.1523/JNEUROSCI.1158-07.2007 17855616 

  32. 32. Haddad R Medhanie A Roth Y Predicting odor pleasantness with an electronic nose PLoS Comput Biol 2010 6 e1000740 10.1371/journal.pcbi.1000740 20418961 

  33. 33. Lapid H Harel D Sobel N Prediction models for the pleasantness of binary mixtures in olfaction Chem Senses 2008 33 599 609 10.1093/chemse/bjn026 18534998 

  34. 34. Ma Y Tang K Thomas-Danguin T Pleasantness of binary odor mixtures: rules and prediction Chem Senses 2020 45 303 311 10.1093/chemse/bjaa020 32188973 

  35. 35. Lötsch J Kringel D Hummel T Machine learning in human olfactory research Chem Senses 2019 44 11 22 10.1093/chemse/bjy067 30371751 

  36. 36. Wu D Luo D Wong K-Y POP-CNN: predicting odor pleasantness with convolutional neural network IEEE Sensors J 2019 19 11337 11345 10.1109/JSEN.2019.2933692 

  37. 37. Guo J Cheng Y Luo D ODRP: a deep learning framework for odor descriptor rating prediction using electronic nose IEEE Sensors J 2021 21 15012 15021 10.1109/JSEN.2021.3074173 

  38. 38. Chang F Heinemann PH Prediction of human assessments of dairy odor utilizing a fast gas chromatograph and neural networks Comput Electron Agric 2019 157 541 548 10.1016/j.compag.2019.01.037 

  39. 39. Nozaki Y Nakamoto T Odor impression prediction from mass spectra PLoS One 2016 11 e0157030 10.1371/journal.pone.0157030 27326765 

  40. 40. Debnath T Nakamoto T Predicting human odor perception represented by continuous values from mass spectra of essential oils resembling chemical mixtures PLoS One 2020 15 e0234688 10.1371/journal.pone.0234688 32559255 

  41. 41. Saini K Ramanathan V Predicting odor from molecular structure: a multi-label classification approach Sci Rep 2022 12 13863 10.1038/s41598-022-18086-y 35974078 

  42. 42. Yap CW PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints J Comput Chem 2011 32 1466 1474 10.1002/jcc.21707 21425294 

  43. 43. Moriwaki H Tian Y-S Kawashita N Mordred: a molecular descriptor calculator J Cheminform 2018 10 4 10.1186/s13321-018-0258-y 29411163 

  44. 44. Liu C, Shang L, Hayashi K (2019) Co-occurrence-based clustering of odor descriptors for predicting structure-odor relationship, 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan 2019:1–4. 10.1109/ISOEN.2019.8823446 

  45. 45. Gutiérrez ED Dhurandhar A Keller A Predicting natural language descriptions of mono-molecular odorants Nat Commun 2018 9 4979 10.1038/s41467-018-07439-9 30478272 

  46. 46. Xu H Kitai K Minami K Determination of quasi-primary odors by endpoint detection Sci Rep 2021 11 12070 10.1038/s41598-021-91210-6 34103566 

  47. 47. Quinn A Stranieri A Yearwood J AWSum-combining classification with knowledge aquisition Int J Softw Inform 2008 2 199 214 

  48. 48. Buck L Axel R A novel multigene family may encode odorant receptors: a molecular basis for odor recognition Cell 1991 65 175 187 10.1016/0092-8674(91)90418-X 1840504 

  49. 49. Malnic B Hirono J Sato T Combinatorial receptor codes for odors Cell 1999 96 713 723 10.1016/S0092-8674(00)80581-4 10089886 

  50. 50. Dravnieks A Atlas of odor character profiles, Online-Ausg. ASTM data series, DS61 1985 Philadelphia American Society for Testing and Materials 

  51. 51. Dravnieks A Masurat T Lamm RA Hedonics of odors and odor descriptors J Air Pollut Control Assoc 1984 34 752 755 10.1080/00022470.1984.10465810 

  52. 52. Iatropoulos G Herman P Lansner A The language of smell: connecting linguistic and psychophysical properties of odor descriptors Cognition 2018 178 37 49 10.1016/j.cognition.2018.05.007 29763790 

  53. 53. Keller A Vosshall LB Olfactory perception of chemically diverse molecules BMC Neurosci 2016 17 55 10.1186/s12868-016-0287-2 27502425 

  54. 54. Xia T Chai Y An improvement to TF-IDF: term distribution based term weight algorithm JSW 2011 6 413 10.4304/jsw.6.3.413-420 

  55. 55. Chicco D, Jurman G (2020) The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21:6. 10.1186/s12864-019-6413-7 

  56. 56. Daylight Chemical Information Systems, Inc. Daylight Theory Manual. https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html . Accessed 15 Jun 2022 

  57. 57. Weininger D SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules J Chem Inf Model 1988 28 31 36 10.1021/ci00057a005 

  58. 58. Daylight Chemical Information Systems, Inc. Daylight Theory Manual. https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html . Accessed 15 Jun 2022 

  59. 59. Irwin JJ Shoichet BK ZINC–a free database of commercially available compounds for virtual screening J Chem Inf Model 2005 45 177 182 10.1021/ci049714 15667143 

  60. 60. Pedregosa F Varoquaux G Gramfort A Scikit-learn: machine learning in Python J Mach Learn Res 2011 12 2825 2830 

  61. 61. Szymański P, Kajdanowicz T (2017) A scikit-based Python environment for performing multi-label classification. ArXiv e-prints 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로