최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Journal of cheminformatics, v.15 no.1, 2023년, pp.51 -
Schicker, Doris (Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany) , Singh, Satnam (Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany) , Freiherr, Jessica (Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany) , Grasskamp, Andreas T. (Sensory Analytics and Technologies, Fraunhofer Institute for Process Engineering and Packaging IVV, Giggenhauser Straße 35, 85354 Freising, Germany)
We derived and implemented a linear classification algorithm for the prediction of a molecule’s odor, called Olfactory Weighted Sum (OWSum). Our approach relies solely on structural patterns of the molecules as features for algorithmic treatment and uses conditional probabilities combined with...
1. Varendi H Porter RH Winberg J Does the newborn baby find the nipple by smell? The Lancet 1994 344 989 990 10.1016/S0140-6736(94)91645-4
2. Havlicek J Roberts SC MHC-correlated mate choice in humans: a review Psychoneuroendocrinology 2009 34 497 512 10.1016/j.psyneuen.2008.10.007 19054623
3. Morquecho-Campos P de Graaf K Boesveldt S Smelling our appetite? The influence of food odors on congruent appetite, food preferences and intake Food Qual Prefer 2020 85 103959 10.1016/j.foodqual.2020.103959
4. Fine LG Riera CE Sense of Smell as the Central Driver of Pavlovian Appetite Behavior in Mammals Front Physiol 2019 10 1151 10.3389/fphys.2019.01151 31620009
5. Taylor JE Lau H Seymour B An evolutionarily threat-relevant odor strengthens human fear memory Front Neurosci 2020 14 255 10.3389/fnins.2020.00255 32425741
6. Majid A Burenhult N Odors are expressible in language, as long as you speak the right language Cognition 2014 130 266 270 10.1016/j.cognition.2013.11.004 24355816
7. Kaeppler K Mueller F Odor classification: a review of factors influencing perception-based odor arrangements Chem Senses 2013 38 189 209 10.1093/chemse/bjs141 23329731
8. Gawel R The use of language by trained and untrained expereinced wine tasters J Sensory Studies 1997 12 267 284 10.1111/j.1745-459X.1997.tb00067.x
9. Lawless HT Flavor Description of White Wine by "Expert" and Nonexpert Wine Consumers J Food Science 1984 49 120 123 10.1111/j.1365-2621.1984.tb13686.x
10. Keller A Gerkin RC Guan Y Predicting human olfactory perception from chemical features of odor molecules Science 2017 355 820 826 10.1126/science.aal2014 28219971
11. Li H Panwar B Omenn GS Accurate prediction of personalized olfactory perception from large-scale chemoinformatic features Gigascience 2018 10.1093/gigascience/gix127 30521034
12. Shang L Liu C Tomiura Y Machine-learning-based olfactometer: prediction of odor perception from physicochemical features of odorant molecules Anal Chem 2017 89 11999 12005 10.1021/acs.analchem.7b02389 29027463
13. Snitz K Yablonka A Weiss T Predicting odor perceptual similarity from odor structure PLoS Comput Biol 2013 9 e1003184 10.1371/journal.pcbi.1003184 24068899
14. Tran N, Kepple D, Shuvaev SA et al. (2018) DeepNose: Using artificial neural networks to represent the space of odorants
15. Zhang X Zhang K Lin D Artificial intelligence deciphers codes for color and odor perceptions based on large-scale chemoinformatic data Gigascience 2020 9 giaa011 10.1093/gigascience/giaa011 32101298
16. Sharma A Kumar R Ranjta S SMILES to smell: decoding the structure-odor relationship of chemical compounds using the deep neural network approach J Chem Inf Model 2021 61 676 688 10.1021/acs.jcim.0c01288 33449694
17. Chacko R Jain D Patwardhan M Data based predictive models for odor perception Sci Rep 2020 10 1 13 10.1038/s41598-020-73978-1 31913322
18. Bo W Yu Y He R Insight into the structure-odor relationship of molecules: a computational study based on deep learning Foods 2022 11 2033 10.3390/foods11142033 35885276
19. Chastrette M Cretin D Aïdi E Structure− Odor relationships: using neural networks in the estimation of camphoraceous or fruity odors and olfactory thresholds of aliphatic alcohols J Chem Inf Comput Sci 1996 36 108 113 10.1021/ci950154b 8576286
20. Marquardt W, Pantelides C (2006) 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering. Elsevier
21. Sell CS On the unpredictability of odor Angew Chem Int Ed Engl 2006 45 6254 6261 10.1002/anie.200600782 16983730
22. Genva M Kenne Kemene T Deleu M Is it possible to predict the odor of a molecule on the basis of its structure? Int J Mol Sci 2019 20 6254 10.3390/ijms20123018 31835815
23. Rossiter KJ Structure-odor relationships Chem Rev 1996 96 3201 3240 10.1021/cr950068a 11848858
24. Licon CC Bosc G Sabri M Chemical features mining provides new descriptive structure-odor relationships PLoS Comput Biol 2019 15 e1006945 10.1371/journal.pcbi.1006945 31022180
25. Mourad Korichi, Vincent Gerbaud, Pascal Floquet et al. (2006) Quantitative structure—Odor relationship: Using of multidimensional data analysis and neural network approaches. In: W. Marquardt, C. Pantelides (eds) 16th European Symposium on Computer Aided Process Engineering and 9th International Symposium on Process Systems Engineering, vol 21. Elsevier, pp 895–900
26. Zheng X Tomiura Y Hayashi K Investigation of the structure-odor relationship using a transformer model J Cheminform 2022 14 88 10.1186/s13321-022-00671-y 36581889
27. Mayhew EJ Arayata CJ Gerkin RC Transport features predict if a molecule is odorous Proc Natl Acad Sci U S A 2022 119 e2116576119 10.1073/pnas.2116576119 35377807
28. Kumar R Kaur R Auffarth B Understanding the odour spaces: a step towards solving olfactory stimulus-percept problem PLoS One. 2015 10 e0141263 10.1371/journal.pone.0141263 26484763
29. Koulakov AA Kolterman BE Enikolopov AG In search of the structure of human olfactory space Front Syst Neurosci 2011 5 65 10.3389/fnsys.2011.00065 21954378
30. ZARZO M Psychologic dimensions in the perception of everyday odors: pleasantness and edibility J Sensory Stud 2008 23 354 376 10.1111/j.1745-459X.2008.00160.x
31. Khan RM Luk C-H Flinker A Predicting odor pleasantness from odorant structure: pleasantness as a reflection of the physical world J Neurosci 2007 27 10015 10023 10.1523/JNEUROSCI.1158-07.2007 17855616
32. Haddad R Medhanie A Roth Y Predicting odor pleasantness with an electronic nose PLoS Comput Biol 2010 6 e1000740 10.1371/journal.pcbi.1000740 20418961
33. Lapid H Harel D Sobel N Prediction models for the pleasantness of binary mixtures in olfaction Chem Senses 2008 33 599 609 10.1093/chemse/bjn026 18534998
34. Ma Y Tang K Thomas-Danguin T Pleasantness of binary odor mixtures: rules and prediction Chem Senses 2020 45 303 311 10.1093/chemse/bjaa020 32188973
35. Lötsch J Kringel D Hummel T Machine learning in human olfactory research Chem Senses 2019 44 11 22 10.1093/chemse/bjy067 30371751
36. Wu D Luo D Wong K-Y POP-CNN: predicting odor pleasantness with convolutional neural network IEEE Sensors J 2019 19 11337 11345 10.1109/JSEN.2019.2933692
37. Guo J Cheng Y Luo D ODRP: a deep learning framework for odor descriptor rating prediction using electronic nose IEEE Sensors J 2021 21 15012 15021 10.1109/JSEN.2021.3074173
38. Chang F Heinemann PH Prediction of human assessments of dairy odor utilizing a fast gas chromatograph and neural networks Comput Electron Agric 2019 157 541 548 10.1016/j.compag.2019.01.037
39. Nozaki Y Nakamoto T Odor impression prediction from mass spectra PLoS One 2016 11 e0157030 10.1371/journal.pone.0157030 27326765
40. Debnath T Nakamoto T Predicting human odor perception represented by continuous values from mass spectra of essential oils resembling chemical mixtures PLoS One 2020 15 e0234688 10.1371/journal.pone.0234688 32559255
41. Saini K Ramanathan V Predicting odor from molecular structure: a multi-label classification approach Sci Rep 2022 12 13863 10.1038/s41598-022-18086-y 35974078
42. Yap CW PaDEL-descriptor: an open source software to calculate molecular descriptors and fingerprints J Comput Chem 2011 32 1466 1474 10.1002/jcc.21707 21425294
43. Moriwaki H Tian Y-S Kawashita N Mordred: a molecular descriptor calculator J Cheminform 2018 10 4 10.1186/s13321-018-0258-y 29411163
44. Liu C, Shang L, Hayashi K (2019) Co-occurrence-based clustering of odor descriptors for predicting structure-odor relationship, 2019 IEEE International Symposium on Olfaction and Electronic Nose (ISOEN), Fukuoka, Japan 2019:1–4. 10.1109/ISOEN.2019.8823446
45. Gutiérrez ED Dhurandhar A Keller A Predicting natural language descriptions of mono-molecular odorants Nat Commun 2018 9 4979 10.1038/s41467-018-07439-9 30478272
46. Xu H Kitai K Minami K Determination of quasi-primary odors by endpoint detection Sci Rep 2021 11 12070 10.1038/s41598-021-91210-6 34103566
47. Quinn A Stranieri A Yearwood J AWSum-combining classification with knowledge aquisition Int J Softw Inform 2008 2 199 214
48. Buck L Axel R A novel multigene family may encode odorant receptors: a molecular basis for odor recognition Cell 1991 65 175 187 10.1016/0092-8674(91)90418-X 1840504
49. Malnic B Hirono J Sato T Combinatorial receptor codes for odors Cell 1999 96 713 723 10.1016/S0092-8674(00)80581-4 10089886
50. Dravnieks A Atlas of odor character profiles, Online-Ausg. ASTM data series, DS61 1985 Philadelphia American Society for Testing and Materials
51. Dravnieks A Masurat T Lamm RA Hedonics of odors and odor descriptors J Air Pollut Control Assoc 1984 34 752 755 10.1080/00022470.1984.10465810
52. Iatropoulos G Herman P Lansner A The language of smell: connecting linguistic and psychophysical properties of odor descriptors Cognition 2018 178 37 49 10.1016/j.cognition.2018.05.007 29763790
53. Keller A Vosshall LB Olfactory perception of chemically diverse molecules BMC Neurosci 2016 17 55 10.1186/s12868-016-0287-2 27502425
55. Chicco D, Jurman G (2020) The advantages of the Matthews correlation coefficient (MCC) over F1 score and accuracy in binary classification evaluation. BMC Genomics 21:6. 10.1186/s12864-019-6413-7
56. Daylight Chemical Information Systems, Inc. Daylight Theory Manual. https://www.daylight.com/dayhtml/doc/theory/theory.smiles.html . Accessed 15 Jun 2022
57. Weininger D SMILES, a chemical language and information system. 1. introduction to methodology and encoding rules J Chem Inf Model 1988 28 31 36 10.1021/ci00057a005
58. Daylight Chemical Information Systems, Inc. Daylight Theory Manual. https://www.daylight.com/dayhtml/doc/theory/theory.smarts.html . Accessed 15 Jun 2022
60. Pedregosa F Varoquaux G Gramfort A Scikit-learn: machine learning in Python J Mach Learn Res 2011 12 2825 2830
61. Szymański P, Kajdanowicz T (2017) A scikit-based Python environment for performing multi-label classification. ArXiv e-prints
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.