$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The Growth Characteristics and the Active Compounds of Cudrania tricuspidata Fruits in Different Cultivation Environments in South Korea 원문보기

Plants, v.12 no.11, 2023년, pp.2107 -   

Lee, Dong-Hwan ,  Son, Yong-Hwan ,  Jang, Jun-Hyuk ,  Lee, Sun-Young ,  Kim, Hyun-Jun

Abstract AI-Helper 아이콘AI-Helper

Cudrania tricuspidata is a traditional medicinal herb in East Asia. The compounds of plants vary depending on environmental factors, such as soil, temperature, drainage, and so on. However, few to no studies have been done on the correlation among environment, growth, and compounds in C. tricuspidat...

주제어

참고문헌 (64)

  1. 1. Kim D.-C. Yoon C.-S. Quang T.H. Ko W. Kim J.-S. Oh H. Kim Y.-C. Prenylated Flavonoids from Cudrania tricuspidata Suppress Lipopolysaccharide-Induced Neuroinflammatory Activities in BV2 Microglial Cells Int. J. Mol. Sci. 2016 17 255 10.3390/ijms17020255 26907256 

  2. 2. Jeong G.-S. Lee D.-S. Kim Y.-C. Cudratricusxanthone A from Cudrania tricuspidata suppresses pro-inflammatory mediators through expression of anti-inflammatory heme oxygenase-1 in RAW264.7 macrophages Int. Immunopharmacol. 2009 9 241 246 10.1016/j.intimp.2008.11.008 19084080 

  3. 3. Hano Y. Matsumoto Y. Sun J.-Y. Nomura T. Structure of three new isoprenylated xanthones, cudraxanthones E, F, and G1,2 Planta Med. 1990 56 399 402 10.1055/s-2006-960993 17221436 

  4. 4. Ko W. Kim N. Lee H. Woo E.-R. Kim Y.-C. Oh H. Lee D.-S. Anti-Inflammatory Effects of Compounds from Cudrania tricuspidata in HaCaT Human Keratinocytes Int. J. Mol. Sci. 2021 22 7472 10.3390/ijms22147472 34299094 

  5. 5. Heo J. Herbs/Acupuncture and Moxibustion Donguibogam: Treasured Mirror of Eastern Medicine Part 7 Ahn S.W. Kwon O. Ministry of Health & Welfare Seoul, Republic of Korea 2013 3696 3697 

  6. 6. Xin L.-T. Yue S.-J. Fan Y.-C. Wu J.-S. Yan D. Guan H.-S. Wang C.-Y. Cudrania tricuspidata : An updated review on eth-nomedicine, phytochemistry and pharmacology RSC Adv. 2017 7 31807 31832 10.1039/C7RA04322H 

  7. 7. Nam S. Jang H.W. Shibamoto T. Antioxidant Activities of Extracts from Teas Prepared from Medicinal Plants, Morus alba L., Camellia sinensis L., and Cudrania tricuspidata , and Their Volatile Components J. Agric. Food Chem. 2012 60 9097 9105 10.1021/jf301800x 22871255 

  8. 8. Seo W.-G. Pae H.-O. Oh G.-S. Chai K.-Y. Yun Y.-G. Chung H.-T. Jang K.K. Kwon T.-O. Ethyl Acetate Extract of the Stem Bark of Cudrania Tricuspidata Induces Apoptosis in Human Leukemia HL-60 Cells Am. J. Chin. Med. 2001 29 313 320 10.1142/S0192415X01000332 11527073 

  9. 9. Zou Y.-S. Hou A.-J. Zhu G.-F. Chen Y.-F. Sun H.-D. Zhao Q.-S. Cytotoxic isoprenylated xanthones from Cudrania tri-cuspidata Bioorg. Med. Chem. 2004 12 1947 1953 10.1016/j.bmc.2004.01.030 15051062 

  10. 10. Zhang P. Feng Z. Wang Y. Flavonoids, including an unusual flavonoid-Mg 2+ salt, from roots of Cudrania tricuspidata Phytochemistry 2005 66 2759 2765 10.1016/j.phytochem.2005.09.015 16274710 

  11. 11. Kim T.-J. Han H.-J. Lim Y. Song M.-C. Kim J. Hong J.-T. Yoo H.-S. Pyo M.-Y. Hwang B.-Y. Lee M.-K. Antiproliferative action of Cudraflavone B, isolated from Cudrania tricuspidata , through the downregulation of pRb phosphorylation in aortic smooth muscle cell proliferation signaling J. Cardiovasc. Pharmacol. 2009 53 341 348 10.1097/FJC.0b013e31819fd4cb 19295442 

  12. 12. Jeon S.-M. Lee D.-S. Jeong G.-S. Cudraticusxanthone A isolated from the roots of Cudrania tricuspidata inhibits metastasis and induces apoptosis in breast cancer cells J. Ethnopharmacol. 2016 194 57 62 10.1016/j.jep.2016.08.042 27586822 

  13. 13. Kwon S.-B. Kim M.-J. Yang J.M. Lee H.-P. Hong J.T. Jeong H.-S. Kim E.S. Yoon D.-Y. Cudrania tricuspidata Stem Extract Induces Apoptosis via the Extrinsic Pathway in SiHa Cervical Cancer Cells PLoS ONE 2016 11 e0150235 10.1371/journal.pone.0150235 26960190 

  14. 14. Jiang X. Cao C. Sun W. Chen Z. Li X. Nahar L. Sarker S.D. Georgiev M.I. Bai W. Scandenolone from Cudrania tricuspidata fruit extract suppresses the viability ot breast cancer cells (MCF-7) in vitro and in vivo Food Chem. Toxicol. 2019 126 56 66 10.1016/j.fct.2019.02.020 30753858 

  15. 15. Nile S.H. Kim D.H. HPLC Analysis, Antioxidant, Anti-inflammatory and Xanthine Oxidase Inhibitory Activity of Cudrania tricuspidata Nat. Prod. Commun. 2015 10 1839 1842 10.1177/1934578X1501001112 26749810 

  16. 16. Shin G.R. Lee S. Lee S. Do S.-G. Shin E. Lee C.H. Maturity stage-specific metabolite profiling of Cudrania tricuspidata and its correlation with antioxidant activity Ind. Crop. Prod. 2015 70 322 331 10.1016/j.indcrop.2015.01.048 

  17. 17. Song S.-H. Ki S.H. Park D.-H. Moon H.-S. Lee C.-D. Yoon I.-S. Cho S.-S. Quantitative analysis, extraction optimization, and biological evaluation of Cudrania tricuspidata leaf and fruit extracts Molecules 2017 22 1489 10.3390/molecules22091489 28880226 

  18. 18. Yong G.-R. Gebru Y.A. Kim D.-W. Kim D.-H. Han H.-A. Kim Y.-H. Kim M.-K. Chemical Composition and Antioxidant Activity of Steam-Distilled Essential Oil and Glycosidically Bound Volatiles from Maclura Tricuspidata Fruit Foods 2019 8 659 10.3390/foods8120659 31835417 

  19. 19. Yoon C.-S. Kim D.-C. Quang T.H. Seo J. Kang D.G. Lee H.S. Oh H. Kim Y.-C. A prenylated xanthone, cudra-tricusxanthone A, isolated from Cudrania tricuspidata inhibits lipopolysaccharide-induced neuroinflammation through inhibition of NF-κB and p38 MAPK pathway in BV2 microglia Molecules 2016 21 1240 10.3390/molecules21091240 27649130 

  20. 20. Choi J.-H. Park S.-E. Yeo S.-H. Kim S. Anti-inflammatory and cytotoxicity effects of Cudrania tricuspidata fruits vinegar in a co-culture system with RAW264.7 macrophages and 3T3-L1 adipocytes Foods 2020 9 1232 10.3390/foods9091232 32899648 

  21. 21. Lee T. Kwon J. Lee D. Mar W. Effects of Cudrania tricuspidata Fruit Extract and Its Active Compound, 5,7,3′,4′-Tetrahydroxy-6,8-diprenylisoflavone, on the High-Affinity IgE Receptor-Mediated Activation of Syk in Mast Cells J. Agric. Food Chem. 2015 63 5459 5467 10.1021/acs.jafc.5b00903 25989241 

  22. 22. Jo Y.H. Choi K.-M. Liu Q. Kim S.B. Ji H.-J. Kim M. Shin S.-K. Do S.-G. Shin E. Jung G. Anti-obesity effect of 6, 8-diprenylgenistein, an isoflavonoid of Cudrania tricuspidata fruits in high-fat diet-induced obese mice Nutrients 2015 7 10480 10490 10.3390/nu7125544 26694457 

  23. 23. Jo Y.H. Kim S.B. Liu Q. Do S.-G. Hwang B.Y. Lee M.K. Comparison of pancreatic lipase inhibitory isoflavonoids from unripe and ripe fruits of Cudrania tricuspidata PLoS ONE 2017 12 e0172069 10.1371/journal.pone.0172069 28253267 

  24. 24. Bajpai V.K. Sharma A. Baek K.-H. Antibacterial mode of action of Cudrania tricuspidata fruit essential oil, affecting mem-brane permeability and surface characteristics of food-borne pathogens Food Control 2013 32 582 590 10.1016/j.foodcont.2013.01.032 

  25. 25. Lim J.-W. Jo Y.H. Choi J.-S. Lee M.K. Lee K.Y. Kang S.Y. Antibacterial Activities of Prenylated Isoflavones from Maclura tricuspidata against Fish Pathogenic Streptococcus : Their Structure-Activity Relationships and Extraction Optimization Molecules 2021 26 7451 10.3390/molecules26247451 34946533 

  26. 26. Jeong J.Y. Jo Y.H. Lee K.Y. Do S.-G. Hwang B.Y. Lee M.K. Optimization of pancreatic lipase inhibition by Cudrania tricuspidata fruits using response surface methodology Bioorganic Med. Chem. Lett. 2014 24 2329 2333 10.1016/j.bmcl.2014.03.067 

  27. 27. Park Y. Park P.S. Jeong D.H. Sim S. Kim N. Park H. Jeon K.S. Kim M.-J. The characteristics of the growth and the acitive compounds of Angelica gigas Nakai in cultivation sites Plants 2020 9 823 10.3390/plants9070823 32630052 

  28. 28. Wink M. Schimmer O. Molecular modes of action of defensive secondary metabolites Annual Plant Reviews, Functions and Biotechnology of Plant Secondary Metabolites 2nd ed. Wink M. John Wiley & Sons Ltd. Chichester, UK 2010 Volume 39 157 158 

  29. 29. Afendi F.M. Okada T. Yamazaki M. Hirai-Morita A. Nakamura Y. Nakamura K. Ikeda S. Takahashi H. Altaf-Ul-Amin M. Darusman L.K. KNApAScK family databases: Intergrated metabolite-plant species databases for multifaceted plant research Plant Cell Physiol. 2012 53 e1 10.1093/pcp/pcr165 22123792 

  30. 30. Williams C.A. Grayer R.J. Anthocyanins and Other Flavonoids Nat. Prod. Rep. 2004 21 539 573 10.1039/b311404j 15282635 

  31. 31. Yonekura-Sakakibara K. Higashi Y. Nakabayashi R. The Origin and Evolution of Plant Flavonoid Metabolism Front. Plant Sci. 2019 10 943 10.3389/fpls.2019.00943 31428108 

  32. 32. Gould K.S. Lister C. Flavonoid functions in plants Flavonoids: Chemistry, Biochemistry and Applications Andersen Ø.M. Markham K.R. CRC Press Boca Raton, FL, USA 2006 397 398 

  33. 33. Jeon J.-S. Kim S.-M. Lee H.J. Um B.H. Kim H.K. Kim C.Y. Preparative isolation and purification of prenylated iosfla-vonoids from Cudrania tricuspidata fruits using centrifugal partition chromatography J. Liq. Chromatogr. Relat. Technol. 2012 35 1607 1615 10.1080/10826076.2011.621151 

  34. 34. Lee J. Kim B.Y. Son Y. Giang D.H. Lee D. Eo S.-K. Kim K. 4´-O-methylalpinumisoflavone inhibits the activation of monocyes/macrophages to an immunostimulatory phenotype induced by 27-hydroxycholesterol Int. J. Mol. Med. 2019 43 2177 2186 30896858 

  35. 35. Liu Y. Veena C.K. Morgan J.B. Mohammed K.A. Jekabsons M.B. Nagle D.G. Zhou Y.-D. Methylalpinumisoflavone Inhibits Hypoxia-inducible Factor-1 (HIF-1) Activation Simultaneously Targeting Multiple Pathways J. Biol. Chem. 2009 284 5859 5868 10.1074/jbc.M806744200 19091749 

  36. 36. Dridi N. Ferreira R. Bouslimi H. Brito P. Martins-Dias S. Caçador I. Sleimi N. Assessment of tolerance to lanthanum and cerium in Helianthus Annuus plant: Effect on growth, mineral nutririon, and secondary metabolism Plants 2022 11 988 10.3390/plants11070988 35406967 

  37. 37. Li G. Lu Q. Wang J. Hu Q. Liu P. Yang Y. Li Y. Tang H. Xie H. Correlation analysis of compounds in essential oil of Amomum tsaoko seed and fruit morphological characteristics, geographical conditions, locality of growth Agronomy 2021 11 744 10.3390/agronomy11040744 

  38. 38. Zhang X.-D. Yu Y.-G. Yang D.-F. Qi Z.-C. Liu R.-Z. Deng F.-T. Cai Z.-X. Li Y. Sun Y.-F. Liang Z.-S. Chemotaxonomic variation in secondary metabolites contents and their correlation between environmental factors in Salvia miltiorrhiza Bunge from natural habitat of China Ind. Crop. Prod. 2018 113 335 347 10.1016/j.indcrop.2018.01.043 

  39. 39. Kandimalla R. Das M. Barge S.R. Sarma P.P. Koiri D.J. Devi A. Karki A.K. Kumar A. Devi R. Pal B.C. Variation in biosynthesis of an effective anticancer secondary metabolite, mahanine in Murraya koenigii, conditional on soil physicochemistry and weather suitability Sci. Rep. 2020 10 20096 10.1038/s41598-020-77113-y 33208840 

  40. 40. National Institute of Forest Science Forest Soil Acidification Status in Korea National Institute of Forest Science Seoul, Republic of Korea 2021 23 (In Korean) 

  41. 41. Lee A.L. Koo N. Comparison of soil physicochemical properties according to the sensitivity of forest soil to acidification in the Republic of Korea J. Korean Soc. For. Sci. 2020 109 157 168 (In Korean) 10.17548/ksaf.2020.01.30.157 

  42. 42. Kinraide T.B. Toxicity factors in acidic forest soils: Attempts to evaluate separately the toxic effects of excessive Al3+ and H+ and insufficient Ca2+ and Mg2+ upon root elongation Eur. J. Soil Sci. 2003 54 323 333 10.1046/j.1365-2389.2003.00538.x 

  43. 43. de Wit H.A. Eldhuset T.D. Mulderm J. Dissolved Al reduces Mg uptake in norway spruce forest: Results from a long-term field manipulation experiment in Norway For. Ecol. Manag. 2010 259 2072 2082 10.1016/j.foreco.2010.02.018 

  44. 44. Zama N. Kirkman K. Mkhize N. Tedder M. Magadlela A. Soil Acidification in Nutrient-Enriched Soils Reduces the Growth, Nutrient Concentrations, and Nitrogen-Use Efficiencies of Vachellia sieveriana (DC.) Kyal. & Boate Saplings Plants 2022 11 3564 10.3390/plants11243564 36559678 

  45. 45. King A.E. Ali G.A. Gillespie A.W. Wagner-Riddle C. Soil Organic Matter as Catalyst of Crop Resource Capture Front. Environ. Sci. 2020 8 50 10.3389/fenvs.2020.00050 

  46. 46. Song Y. Hyun B. Lee Y. Assessment of Correlation between Soil Chemical Properties and Plant Nutrient Contents: Silkworn Thorn ( Cudrania tricuspidata ) On-Farm Survey Korean J. Soil Sci. Fertil. 2022 55 533 540 (In Korean) 10.7745/KJSSF.2022.55.4.533 

  47. 47. Ko S.-C. Paik W.-K. Oh B.-U. Yoon C.-Y. Jang C.-G. Chung K.-S. Chung G.-Y. Chung Y. Choi H.-J. 17. Cudrania tricuspidata (Carrière) Bureau ex Lavallèe Silvics of Korea 1 Oh B.-U. Oh S.-H. Korea National Arboretum Pocheon, Republic of Korea 2017 187 199 (In Korean) 

  48. 48. Koch A.S. Matzner E. Heterogeneity of soil and soil solution chemistry under Norway spruce (Picea abies Karst.) and European beech ( Fagus silvatica L.) as influenced by distance from the stem basis Plant Soil 1993 151 227 237 10.1007/BF00016288 

  49. 49. Bazihizina N. Barrett-Lennard E.G. Colmer T.D. Plant growth and physiology under heterogeneous salinity Plant Soil 2012 354 1 19 10.1007/s11104-012-1193-8 

  50. 50. Passioura J.B. Soil condition and plant growth Plant Cell Environ. 2002 25 311 318 10.1046/j.0016-8025.2001.00802.x 11841672 

  51. 51. Ahmed H.A. Yu-Xin T. Qi-Chang Y. Optimal control of environmental conditions affecting lettuce plant growth in a con-trolled environment with artificial lighting: A review S. Afr. J. Bot. 2020 130 75 89 10.1016/j.sajb.2019.12.018 

  52. 52. Münzbergová Z. Determinants of species rarity: Population growth rates of species sharing the same habitat Am. J. Bot. 2005 92 1987 1994 10.3732/ajb.92.12.1987 21646117 

  53. 53. Bourgaud F. Hehn A. Larbat R. Doerper S. Gontier E. Kellner S. Matern U. Biosynthesis of coumarins in plants: A major pathway still to be unravelled for cytochrome P450 enzymes Phytochem. Rev. 2006 5 293 308 (In Korean) 10.1007/s11101-006-9040-2 

  54. 54. Kwon Y.-S. Park B.-R. Lee S. Yu H.-C. Baek S.-J. Oh C.-J. A Study on the Morphological Characteristics of Leaves and Fruit of Cudrania tricuspidata in Korea Korean J. Plant Resour. 2014 27 337 343 10.7732/kjpr.2014.27.4.337 

  55. 55. Hautier Y. Randin C.F. Stöcklin J. Guisan A. Changes in reproductive investment with altitude in an alpine plant J. Plant Ecol. 2009 2 125 134 10.1093/jpe/rtp011 

  56. 56. Kirnak H. Higgs D. Kaya C. Tas I. Effects of Irrigation and Nitrogen Rates on Growth, Yield, and Quality of Muskmelon in Semiarid Regions J. Plant Nutr. 2005 28 621 638 10.1081/PLN-200052635 

  57. 57. Hong S. Kwon J. Hiep N.T. Sim S.J. Kim N.H. Kim K.H. Lee D. Mar W. The isoflavones and extracts from Maclura tricuspidata fruit protect against neuronal cell death in ischemic injury via induction of Nox4-targeting miRNA-25, miRNA-92a, and miRNA-146a J. Funct. Foods 2018 40 785 797 10.1016/j.jff.2017.12.011 

  58. 58. Ogle D. St. John L. Plants for Saline to Sodic Soil Conditions Plant Materials Technical Note Natural Resources Conservation Service Boise, ID, USA 2010 Volume 9A 10150 

  59. 59. Kim K. Samaddar S. Chatterjee P. Krishnamoorthy R. Jeon S. Sa T. Structural and functional responses of microbial community with respect to salinity levels in a coastal reclamation land Appl. Soil Ecol. 2019 137 96 105 10.1016/j.apsoil.2019.02.011 

  60. 60. Lim S.U. Plant growth and nutrients Fertilizer Ilsin Seoul, Republic of Korea 2006 143 151 (In Korean) 

  61. 61. Zhang Q. Zhou B.-B. Li M.-J. Wei Q.-P. Han Z.-H. Multivariate analysis between meteorological factor and fruit quality of Fuji apple at different locations in China J. Integr. Agric. 2018 17 1338 1347 10.1016/S2095-3119(17)61826-4 

  62. 62. Trujillo-Mayol I. Badillo-Muñoz G. Céspedes-Acuña C. Alarcón-Enos J. The relationship between fruit size and phenolic and enzymatic composition of avocado byproducts ( Persea americana Mill ): The importance for biorefinery applications Hor-Ticulturae 2020 6 91 10.3390/horticulturae6040091 

  63. 63. Cunha M.L.O. de Oliveira L.C.A. Mendes N.A.C. Silva V.M. Vicente E.F. dos Reis A.R. Selenium increases photo-synthetic pigments, flavonoid biosynthesis, nodulation, and growth of soybean plants ( Glycine max L.) J. Soil Sci. Plant Nutr. 2023 23 1397 1407 10.1007/s42729-023-01131-8 

  64. 64. Wu Y. Yang H. Huang Z. Zhang C. Lyu L. Li W. Wu W. Metabolite Profiling and Classification of Highbush Blueberry Leaves under Different Shade Treatments Metabolites 2022 12 79 10.3390/metabo12010079 35050200 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD

오픈액세스 학술지에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로