$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] High‐Performance Ammonia Protonic Ceramic Fuel Cells Using a Pd Inter‐Catalyst

Small, v.19 no.22, 2023년, pp.2208149 -   

Jeong, Heon Jun (School of Mechanical Engineering Korea University Seoul 02841 South Korea) ,  Chang, Wanhyuk (School of Mechanical Engineering Korea University Seoul 02841 South Korea) ,  Seo, Beum Geun (School of Mechanical Engineering Korea University Seoul 02841 South Korea) ,  Choi, Yun Sung (School of Mechanical Engineering Korea University Seoul 02841 South Korea) ,  Kim, Keun Hee (School of Mechanical Engineering Korea University Seoul 02841 South Korea) ,  Kim, Dong Hwan (School of Mechanical Engineering Korea University Seoul 02841 South Korea) ,  Shim, Joon Hyung (School of Mechanical Engineering Korea University Seoul 02841 South Korea)

Abstract AI-Helper 아이콘AI-Helper

AbstractThis study reports the performance and durability of a protonic ceramic fuel cells (PCFCs) in an ammonia fuel injection environment. The low ammonia decomposition rate in PCFCs with lower operating temperatures is improved relative to that of solid oxide fuel cells by treatment with a cataly...

참고문헌 (47)

  1. Jacobson, Allan J.. Materials for Solid Oxide Fuel Cells. Chemistry of materials : a publication of the American Chemical Society, vol.22, no.3, 660-674.

  2. Singhal, S.C. Advances in solid oxide fuel cell technology. Solid state ionics, vol.135, no.1, 305-313.

  3. Park, Seungdoo, Vohs, John M., Gorte, Raymond J.. Direct oxidation of hydrocarbons in a solid-oxide fuel cell. Nature, vol.404, no.6775, 265-267.

  4. Elishav, Oren, Mosevitzky Lis, Bar, Miller, Elisa M., Arent, Douglas J., Valera-Medina, Agustin, Grinberg Dana, Alon, Shter, Gennady E., Grader, Gideon S.. Progress and Prospective of Nitrogen-Based Alternative Fuels. Chemical reviews, vol.120, no.12, 5352-5436.

  5. Zamfirescu, C., Dincer, I.. Using ammonia as a sustainable fuel. Journal of power sources, vol.185, no.1, 459-465.

  6. Aziz, Muhammad, Wijayanta, Agung Tri, Nandiyanto, Asep Bayu Dani. Ammonia as Effective Hydrogen Storage: A Review on Production, Storage and Utilization. Energies, vol.13, no.12, 3062-.

  7. Vojvodic, Aleksandra, Medford, Andrew James, Studt, Felix, Abild-Pedersen, Frank, Khan, Tuhin Suvra, Bligaard, T., Nørskov, J.K.. Exploring the limits: A low-pressure, low-temperature Haber-Bosch process. Chemical physics letters, vol.598, 108-112.

  8. Kyriakou, Vasileios, Garagounis, Ioannis, Vourros, Anastasios, Vasileiou, Eirini, Stoukides, Michael. An Electrochemical Haber-Bosch Process. Joule, vol.4, no.1, 142-158.

  9. Bicer, Yusuf, Khalid, Farrukh. Life cycle environmental impact comparison of solid oxide fuel cells fueled by natural gas, hydrogen, ammonia and methanol for combined heat and power generation. International journal of hydrogen energy, vol.45, no.5, 3670-3685.

  10. Han, Gao-Feng, Li, Feng, Chen, Zhi-Wen, Coppex, Claude, Kim, Seok-Jin, Noh, Hyuk-Jun, Fu, Zhengping, Lu, Yalin, Singh, Chandra Veer, Siahrostami, Samira, Jiang, Qing, Baek, Jong-Beom. Mechanochemistry for ammonia synthesis under mild conditions. Nature nanotechnology, vol.16, no.3, 325-330.

  11. Hansson, Julia, Brynolf, Selma, Fridell, Erik, Lehtveer, Mariliis. The Potential Role of Ammonia as Marine Fuel-Based on Energy Systems Modeling and Multi-Criteria Decision Analysis. Sustainability, vol.12, no.8, 3265-.

  12. Hochman, Gal, Goldman, Alan S., Felder, Frank A., Mayer, James M., Miller, Alexander J. M., Holland, Patrick L., Goldman, Leo A., Manocha, Patricia, Song, Ze, Aleti, Saketh. Potential Economic Feasibility of Direct Electrochemical Nitrogen Reduction as a Route to Ammonia. ACS sustainable chemistry et engineering, vol.8, no.24, 8938-8948.

  13. Cheliotis, Michail, Boulougouris, Evangelos, Trivyza, Nikoletta L, Theotokatos, Gerasimos, Livanos, George, Mantalos, George, Stubos, Athanasios, Stamatakis, Emmanuel, Venetsanos, Alexandros. Review on the Safe Use of Ammonia Fuel Cells in the Maritime Industry. Energies, vol.14, no.11, 3023-.

  14. Ding, Dong, Li, Xiaxi, Lai, Samson Yuxiu, Gerdes, Kirk, Liu, Meilin. Enhancing SOFC cathode performance by surface modification through infiltration. Energy & environmental science, vol.7, no.2, 552-575.

  15. Int. J. Precis. Eng. Manuf. Karimaghaloo A. 611 6 2019 

  16. Chao, Cheng‐Chieh, Motoyama, Munekazu, Prinz, Fritz B.. Nanostructured Platinum Catalysts by Atomic‐Layer Deposition for Solid‐Oxide Fuel Cells. Advanced energy materials, vol.2, no.6, 651-654.

  17. Ni, Meng, Leung, Michael K. H., Leung, Dennis Y. C.. Ammonia-fed solid oxide fuel cells for power generation—A review. International journal of energy research, vol.33, no.11, 943-959.

  18. Norby, Truls. Solid-state protonic conductors: principles, properties, progress and prospects. Solid state ionics, vol.125, no.1, 1-11.

  19. Fabbri, Emiliana, Pergolesi, Daniele, Traversa, Enrico. Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chemical Society reviews, vol.39, no.11, 4355-4369.

  20. Kosaka, Fumihiko, Noda, Naoto, Nakamura, Takehisa, Otomo, Junichiro. In situ formation of Ru nanoparticles on La1−x Sr x TiO3-based mixed conducting electrodes and their application in electrochemical synthesis of ammonia using a proton-conducting solid electrolyte. Journal of materials science, vol.52, no.5, 2825-2835.

  21. Rouwenhorst, Kevin H.R., Van der Ham, Aloijsius G.J., Mul, Guido, Kersten, Sascha R.A.. Islanded ammonia power systems: Technology review & conceptual process design. Renewable & sustainable energy reviews, vol.114, 109339-.

  22. Pan, Yuxin, Zhang, Hua, Xu, Kang, Zhou, Yucun, Zhao, Bote, Yuan, Wei, Sasaki, Kotaro, Choi, YongMan, Chen, Yu, Liu, Meilin. A high-performance and durable direct NH3 tubular protonic ceramic fuel cell integrated with an internal catalyst layer. Applied catalysis. B, Environmental, vol.306, 121071-.

  23. Zhu, Liangzhu, Cadigan, Chris, Duan, Chuancheng, Huang, Jake, Bian, Liuzhen, Le, Long, Hernandez, Carolina H., Avance, Victoria, O’Hayre, Ryan, Sullivan, Neal P.. Ammonia-fed reversible protonic ceramic fuel cells with Ru-based catalyst. Communications chemistry, vol.4, no.1, 121-.

  24. Zhang, Hua, Zhou, Yucun, Pei, Kai, Pan, Yuxin, Xu, Kang, Ding, Yong, Zhao, Bote, Sasaki, Kotaro, Choi, YongMan, Chen, Yu, Liu, Meilin. An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy & environmental science, vol.15, no.1, 287-295.

  25. Hou, Mingyang, Pan, Yuxin, Chen, Yu. Enhanced electrochemical activity and durability of a direct ammonia protonic ceramic fuel cell enabled by an internal catalyst layer. Separation and purification technology, vol.297, 121483-.

  26. G.Fournier Loughborough University2006. 

  27. Park, Jong Seon, Choi, Hyung Jong, Han, Gwon Deok, Koo, Junmo, Kang, Eun Heui, Kim, Dong Hwan, Bae, Kiho, Shim, Joon Hyung. High–performance protonic ceramic fuel cells with a PrBa0.5Sr0.5Co1.5Fe0.5O5+δ cathode with palladium–rich interface coating. Journal of power sources, vol.482, 229043-.

  28. Zhang, L., Lee, K., Zhang, J.. The effect of heat treatment on nanoparticle size and ORR activity for carbon-supported Pd-Co alloy electrocatalysts. Electrochimica acta, vol.52, no.9, 3088-3094.

  29. He, Fan, Gao, Qinning, Liu, Zuoqing, Yang, Meiting, Ran, Yang, Guangming, Wang, Wei, Zhou, Wei, Shao, Zongping. A New Pd Doped Proton Conducting Perovskite Oxide with Multiple Functionalities for Efficient and Stable Power Generation from Ammonia at Reduced Temperatures. Advanced energy materials, vol.11, no.19, 2003916-.

  30. Itoh, N., Oshima, A., Suga, E., Sato, T.. Kinetic enhancement of ammonia decomposition as a chemical hydrogen carrier in palladium membrane reactor. Catalysis today, vol.236, no.1, 70-76.

  31. Buyukaksoy, Aligul, Kammampata, Sanoop P., Birss, Viola I.. Effect of porous YSZ scaffold microstructure on the long-term performance of infiltrated Ni-YSZ anodes. Journal of power sources, vol.287, 349-358.

  32. Sholklapper, T. Z., Jacobson, C. P., Visco, S. J., De Jonghe, L. C.. Synthesis of Dispersed and Contiguous Nanoparticles in Solid Oxide Fuel Cell Electrodes. Fuel cells, vol.8, no.5, 303-312.

  33. Sievers, G., Mueller, S., Quade, A., Steffen, F., Jakubith, S., Kruth, A., Brueser, V.. Mesoporous Pt-Co oxygen reduction reaction (ORR) catalysts for low temperature proton exchange membrane fuel cell synthesized by alternating sputtering. Journal of power sources, vol.268, 255-260.

  34. Choi, Hyung Jong, Bae, Kiho, Grieshammer, Steffen, Han, Gwon Deok, Park, Suk Won, Kim, Jun Woo, Jang, Dong Young, Koo, Junmo, Son, Ji‐Won, Martin, Manfred, Shim, Joon Hyung. Surface Tuning of Solid Oxide Fuel Cell Cathode by Atomic Layer Deposition. Advanced energy materials, vol.8, no.33, 1802506-.

  35. Farr, Roger D., Vayenas, Costas G.. Ammonia High Temperature Solid Electrolyte Fuel Cell. Journal of the Electrochemical Society : JES, vol.127, no.7, 1478-1483.

  36. Militello, Maria C., Simko, Steven J.. Elemental Palladium by XPS. Surface science spectra, vol.3, no.4, 387-394.

  37. Brun, M, Berthet, A, Bertolini, J.C. XPS, AES and Auger parameter of Pd and PdO. Journal of electron spectroscopy and related phenomena, vol.104, no.1, 55-60.

  38. Voogt, E.H., Mens, A.J.M., Gijzeman, O.L.J., Geus, J.W.. XPS analysis of palladium oxide layers and particles. Surface science, vol.350, no.1, 21-31.

  39. Alesker, Maria, Page, Miles, Shviro, Meital, Paska, Yair, Gershinsky, Gregory, Dekel, Dario R., Zitoun, David. Palladium/nickel bifunctional electrocatalyst for hydrogen oxidation reaction in alkaline membrane fuel cell. Journal of power sources, vol.304, 332-339.

  40. Yang, Jun, Molouk, Ahmed Fathi Salem, Okanishi, Takeou, Muroyama, Hiroki, Matsui, Toshiaki, Eguchi, Koichi. Electrochemical and Catalytic Properties of Ni/BaCe0.75Y0.25O3−δ Anode for Direct Ammonia-Fueled Solid Oxide Fuel Cells. ACS applied materials & interfaces, vol.7, no.13, 7406-7412.

  41. Hashinokuchi, Michihiro, Yokochi, Ryuji, Akimoto, Wataru, Doi, Takayuki, Inaba, Minoru, Kugai, Junichiro. Enhancement of anode activity at Ni/Sm-doped CeO2 cermet anodes by Mo addition in NH3-fueled solid oxide fuel cells. Solid state ionics, vol.285, 222-226.

  42. Zhang, L., Yang, W.. Direct ammonia solid oxide fuel cell based on thin proton-conducting electrolyte. Journal of power sources, vol.179, no.1, 92-95.

  43. Xie, Kui, Ma, Qianli, Lin, Bin, Jiang, Yinzhu, Gao, Jianfeng, Liu, Xingqin, Meng, Guangyao. An ammonia fuelled SOFC with a BaCe0.9Nd0.1O3−δ thin electrolyte prepared with a suspension spray. Journal of power sources, vol.170, no.1, 38-41.

  44. Lin, Ye, Ran, Ran, Guo, Youmin, Zhou, Wei, Cai, Rui, Wang, Jun, Shao, Zongping. Proton-conducting fuel cells operating on hydrogen, ammonia and hydrazine at intermediate temperatures. International journal of hydrogen energy, vol.35, no.7, 2637-2642.

  45. Miyazaki, Kazunari, Muroyama, Hiroki, Matsui, Toshiaki, Eguchi, Koichi. Impact of the ammonia decomposition reaction over an anode on direct ammonia-fueled protonic ceramic fuel cells. Sustainable energy & fuels, vol.4, no.10, 5238-5246.

  46. Aoki, Yoshitaka, Yamaguchi, Tomoyuki, Kobayashi, Shohei, Kowalski, Damian, Zhu, Chunyu, Habazaki, Hiroki. High‐Efficiency Direct Ammonia Fuel Cells Based on BaZr0.1Ce0.7Y0.2O3−δ/Pd Oxide‐Metal Junctions. Global challenges, vol.2, no.1, 1700088-.

  47. Zhang, Hua, Zhou, Yucun, Pei, Kai, Pan, Yuxin, Xu, Kang, Ding, Yong, Zhao, Bote, Sasaki, Kotaro, Choi, YongMan, Chen, Yu, Liu, Meilin. An efficient and durable anode for ammonia protonic ceramic fuel cells. Energy & environmental science, vol.15, no.1, 287-295.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로