$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[국내논문] Two types of morphing wing designs based on multistage displacement amplification mechanisms

Journal of mechanical science and technology, v.37 no.6, 2023년, pp.2993 - 3004  

Jo, Yehrin ,  Kim, Yongdae

초록이 없습니다.

참고문헌 (22)

  1. N I Ismail 2015 Aerodynamic performances of twist morphing MAV wing N. I. Ismail, Aerodynamic performances of twist morphing MAV wing, Ph.D. Thesis, Universiti Teknologi MARA (2015). 

  2. J. Intell. Mater. Syst. Struct. J Sun 27 17 2289 2016 10.1177/1045389X16629569 J. Sun, Q. Guan, Y. Liu and J. Leng, Morphing aircraft based on smart materials and structures: A state-of-the-art review, J. Intell. Mater. Syst. Struct., 27 (17) (2016) 2289-2312, doi: https://doi.org/10.1177/1045389X16629569. 

  3. J. Intell. Mater. Syst. Struct. S Barbarino 22 9 823 2011 10.1177/1045389X11414084 S. Barbarino, O. Bilgen, R. M. Ajaj, M. I. Friswell and D. J. Inman, A review of morphing aircraft, J. Intell. Mater. Syst. Struct., 22 (9) (2011) 823-877, doi: https://doi.org/10.1177/1045389X11414084. 

  4. Energy Procedia A Suman 82 273 2015 10.1016/j.egypro.2015.12.033 A. Suman, A. Fortini and M. Merlin, A shape memory alloy-based morphing axial fan blade: functional characterization and perspectives, Energy Procedia, 82 (2015) 273-279, doi: https://doi.org/10.1016/j.egypro.2015.12.033. 

  5. Smart Mater. Struct. D J Hartl 19 1 15020 2009 10.1088/0964-1726/19/1/015020 D. J. Hartl, D. C. Lagoudas, F. T. Calkins and J. H. Mabe, Use of a Ni60Ti shape memory alloy for active jet engine chevron application: I. Thermomechanical characterization, Smart Mater. Struct., 19 (1) (2009) 15020, doi: https://doi.org/10.1088/0964-1726/19/1/015020. 

  6. Sensors Actuators A Phys. A Nespoli 158 1 149 2010 10.1016/j.sna.2009.12.020 A. Nespoli, S. Besseghini, S. Pittaccio, E. Villa and S. Viscuso, The high potential of shape memory alloys in developing miniature mechanical devices: A review on shape memory alloy mini-actuators, Sensors Actuators A Phys., 158 (1) (2010) 149-160, doi: https://doi.org/10.1016/j.sna.2009.12.020. 

  7. Prog. Mater. Sci. J Leng 56 7 1077 2011 10.1016/j.pmatsci.2011.03.001 J. Leng, X. Lan, Y. Liu and S. Du, Shape-memory polymers and their composites: Stimulus methods and applications, Prog. Mater. Sci., 56 (7) (2011) 1077-1135, doi: https://doi.org/10.1016/j.pmatsci.2011.03.001. 

  8. Smart Mater. Struct. Y Liu 23 2 23001 2014 10.1088/0964-1726/23/2/023001 Y. Liu, H. Du, L. Liu and J. Leng, Shape memory polymers and their composites in aerospace applications: A review, Smart Mater. Struct., 23 (2) (2014) 23001, doi: https://doi.org/10.1088/0964-1726/23/2/023001. 

  9. 10.1117/12.475159 Y. Bar-Cohen, Electroactive polymers: current capabilities and challenges, Proc. SPIE 4695, Smart Structures and Materials 2002: Electroactive Polymer Actuators and Devices (EAPAD), San Diego, USA (2002) doi: https://doi.org/10.1117/12.475159. 

  10. Smart Mater. Struct. M Shahinpoor 7 6 R15 1998 10.1088/0964-1726/7/6/001 M. Shahinpoor, Y. Bar-Cohen, J. O. Simpson and J. Smith, Ionic polymer-metal composites (IPMCs) as biomimetic sensors, actuators and artificial muscles: A review, Smart Mater. Struct., 7 (6) (1998) R15-R30, doi: https://doi.org/10.1088/0964-1726/7/6/001. 

  11. 10.1117/12.562645 F. K. Straub, D. K. Kennedy, A. D. Stemple, V. R. Anand and T. S. Birchette, Development and whirl tower test of the SMART active flap rotor, Proc. SPIE 5388, Smart Structures and Materials 2004: Industrial and Commercial Applications of Smart Structures Technologies (2004) https://doi.org/10.1117/12.562645. 

  12. ICAS-Secretariat - 25th Congr. Int. Counc. Aeronaut. Sci. 2006 B Grohmann 4 2199 2006 B. Grohmann, C. Maucher and P. Jänker, Actuation concepts for morphing helicopter rotor blades, ICAS-Secretariat - 25th Congr. Int. Counc. Aeronaut. Sci. 2006, 4 (2006) 2199-2208. 

  13. J. Intell. Mater. Syst. Struct. F K Straub 15 4 249 2004 10.1177/1045389X04042795 F. K. Straub et al., Smart material-actuated rotor technolnnogy - SMART, J. Intell. Mater. Syst. Struct., 15 (4) (2004) 249-260, doi: https://doi.org/10.1177/1045389X04042795. 

  14. J. Intell. Mater. Syst. Struct. A M Pankonien 26 10 1179 2014 10.1177/1045389X14538530 A. M. Pankonien, C. T. Faria and D. J. Inman, Synergistic smart morphing aileron: experimental quasi-static performance characterization, J. Intell. Mater. Syst. Struct., 26 (10) (2014) 1179-1190, doi: https://doi.org/10.1177/1045389X14538530. 

  15. 10.2514/6.2014-0924 A. M. Pankonien, K. Duraisamy, C. T. Faria and D. Inman, Synergistic smart morphing aileron: aero-structural performance analysis, 22nd AIAA/ASME/AHS Adaptive Structures Conference, American Institute of Aeronautics and Astronautics (2014). 

  16. J. L. Pinkerton and R. W. Moses, A Feasibility Study to Control Airfoil Shape Using THUNDER, NASA Technical Memorandum 4767, NASA (1997). 

  17. 10.2514/6.1998-2034 R. Barrett and J. Stutts, Development of a piezoceramic flight control surface actuator for highly compressed munitions, 39th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, American Institute of Aeronautics and Astronautics (1998). 

  18. Mech. Syst. Signal Process. S Shao 75 631 2016 10.1016/j.ymssp.2015.12.007 S. Shao, M. Xu, S. Zhang and S. Xie, Stroke maximizing and high efficient hysteresis hybrid modeling for a rhombic piezoelectric actuator, Mech. Syst. Signal Process., 75 (2016) 631-647, doi: https://doi.org/10.1016/j.ymssp.2015.12.007. 

  19. Rev. Sci. Instrum. J Park 87 3 36112 2016 10.1063/1.4945307 J. Park, H. Lee, H. Kim, H. Kim and D. Gweon, Note: development of a compact aperture-type XYθz positioning stage, Rev. Sci. Instrum., 87 (3) (2016) 36112, doi: https://doi.org/10.1063/1.4945307. 

  20. Sensors Actuators A Phys. M Muraoka 157 1 84 2010 10.1016/j.sna.2009.10.024 M. Muraoka and S. Sanada, Displacement amplifier for piezoelectric actuator based on honeycomb link mechanism, Sensors Actuators A Phys., 157 (1) (2010) 84-90, doi: https://doi.org/10.1016/j.sna.2009.10.024. 

  21. 10.3390/ACT8040069 A. Potekhina and C. Wang, Review of electrothermal actuators and applications, Actuators, 8 (4) (2019) doi: https://doi.org/10.3390/ACT8040069. 

  22. J. Aircr. A V Popov 47 4 1309 2010 10.2514/1.47281 A. V Popov, L. T. Grigorie, R. Botez, M. Mamou and Y. Mébarki, Closed-loop control validation of a morphing wing using wind tunnel tests, J. Aircr., 47 (4) (2010) 1309-1317, doi: https://doi.org/10.2514/1.47281. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로