$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Fluidic self-assembly for MicroLED displays by controlled viscosity

Nature, v.619 no.7971 = no.7971, 2023년, pp.755 - 760  

Lee, Daewon ,  Cho, Seongkyu ,  Park, Cheolheon ,  Park, Kyung Ryoul ,  Lee, Jongcheon ,  Nam, Jaewook ,  Ahn, Kwangguk ,  Park, Changseo ,  Jeon, Kiseong ,  Yuh, Hwankuk ,  Choi, Wonseok ,  Lim, Chung Hyun ,  Kwon, Taein ,  Min, Young Hwan ,  Joo, Minho ,  Choi, Yoon-Ho ,  Lee, Jeong Soo ,  Kim, Changsoon ,  Kwon, Sunghoon

초록이 없습니다.

참고문헌 (36)

  1. J. Soc. Inf. Disp. F Templier 24 669 2016 10.1002/jsid.516 Templier, F. GaN-based emissive microdisplays: a very promising technology for compact, ultra-high brightness display systems. J. Soc. Inf. Disp. 24, 669-675 (2016). 

  2. Appl. Sci. T Wu 8 1557 2018 10.3390/app8091557 Wu, T. et al. Mini-LED and micro-LED: promising candidates for the next generation display technology. Appl. Sci. 8, 1557 (2018). 

  3. Appl. Phys. Lett. CW Tang 51 913 1987 10.1063/1.98799 Tang, C. W. & VanSlyke, S. A. Organic electroluminescent diodes. Appl. Phys. Lett. 51, 913-915 (1987). 

  4. Nature MA Baldo 395 151 1998 10.1038/25954 Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151-154 (1998). 

  5. Chem. Rev. S Scholz 115 8449 2015 10.1021/cr400704v Scholz, S., Kondakov, D., Lussem, B. & Leo, K. Degradation mechanisms and reactions in organic light-emitting devices. Chem. Rev. 115, 8449-8503 (2015). 

  6. J. Soc. Inf. Disp. A Laaperi 16 11 1125 2008 10.1889/JSID16.11.1125 Laaperi, A. OLED lifetime issues from a mobile-phone-industry point of view. J. Soc. Inf. Disp. 16, 1125-1130 (2008). 

  7. J. Soc. Inf. Disp. K Zhang 25 240 2017 10.1002/jsid.550 Zhang, K., Peng, D., Lau, K. M. & Liu, Z. Fully-integrated active matrix programmable UV and blue micro-LED display system-on-panel (SoP). J. Soc. Inf. Disp. 25, 240-248 (2017). 

  8. IEEE Trans. Robot. Y Zhang 26 200 2010 10.1109/TRO.2009.2034831 Zhang, Y., Chen, B., Liu, X. & Sun, Y. Autonomous robotic pick-and-place of microobjects. IEEE Trans. Robot. 26, 200-207 (2010). 

  9. 10.1002/9780470634417 Gauthier, M. & Régnier, S. Robotic Microassembly (John Wiley & Sons, 2011). 

  10. Adv. Mater. A Carlson 24 5284 2012 10.1002/adma.201201386 Carlson, A., Bowen, A. M., Huang, Y., Nuzzo, R. G. & Rogers, J. A. Transfer printing techniques for materials assembly and micro/nanodevice fabrication. Adv. Mater. 24, 5284-5318 (2012). 

  11. Nat. Mater. MA Meitl 5 33 2005 10.1038/nmat1532 Meitl, M. A. et al. Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat. Mater. 5, 33-38 (2005). 

  12. IEEE Photonics Technol. Lett. H-J Yeh 6 706 1994 10.1109/68.300169 Yeh, H.-J. & Smith, J. S. Fluidic self-assembly for the integration of GaAs light-emitting diodes on Si substrates. IEEE Photonics Technol. Lett. 6, 706-708 (1994). 

  13. Soft Matter M Mastrangeli 13 304 2017 10.1039/C6SM02078J Mastrangeli, M., Zhou, Q., Sariola, V. & Lambert, P. Surface tension-driven self-alignment. Soft Matter 13, 304-327 (2017). 

  14. Science HO Jacobs 296 323 2002 10.1126/science.1069153 Jacobs, H. O., Tao, A. R., Schwartz, A., Gracias, D. H. & Whitesides, G. M. Fabrication of a cylindrical display by patterned assembly. Science 296, 323-325 (2002). 

  15. Proc. Natl Acad. Sci. USA W Zheng 101 12814 2004 10.1073/pnas.0404437101 Zheng, W., Buhlmann, P. & Jacobs, H. O. Sequential shape-and-solder-directed self-assembly of functional microsystems. Proc. Natl Acad. Sci. USA 101, 12814-12817 (2004). 

  16. J. Micromech. Microeng. CJ Morris 18 015022 2007 10.1088/0960-1317/18/1/015022 Morris, C. J. & Parviz, B. A. Micro-scale metal contacts for capillary force-driven self-assembly. J. Micromech. Microeng. 18, 015022 (2007). 

  17. J. Micromech. Microeng. E Saeedi 18 075019 2008 10.1088/0960-1317/18/7/075019 Saeedi, E., Kim, S. & Parviz, B. A. Self-assembled crystalline semiconductor optoelectronics on glass and plastic. J. Micromech. Microeng. 18, 075019 (2008). 

  18. Adv. Mater. S-C Park 26 5942 2014 10.1002/adma.201401573 Park, S.-C. et al. A first implementation of an automated reel-to-reel fluidic self-assembly machine. Adv. Mater. 26, 5942-5949 (2014). 

  19. Gengel, G. W. Integrated circuit packages assembled utilizing fluidic self-assembly. Google Patents https://patents.google.com/patent/US6417025B1/en (2002). 

  20. Proc. Natl Acad. Sci. USA RJ Knuesel 107 993 2010 10.1073/pnas.0909482107 Knuesel, R. J. & Jacobs, H. O. Self-assembly of microscopic chiplets at a liquid-liquid-solid interface forming a flexible segmented monocrystalline solar cell. Proc. Natl Acad. Sci. USA 107, 993-998 (2010). 

  21. Adv. Mater. RJ Knuesel 23 2727 2011 10.1002/adma.201004533 Knuesel, R. J. & Jacobs, H. O. Self-tiling monocrystalline silicon; a process to produce electrically connected domains of Si and microconcentrator solar cell modules on plastic supports. Adv. Mater. 23, 2727-2733 (2011). 

  22. Proc. Natl Acad. Sci. USA SA Stauth 103 13922 2006 10.1073/pnas.0602893103 Stauth, S. A. & Parviz, B. A. Self-assembled single-crystal silicon circuits on plastic. Proc. Natl Acad. Sci. USA 103, 13922-13927 (2006). 

  23. J. Vac. Sci. Technol. B M Rao 29 042003 2011 10.1116/1.3610977 Rao, M., Lusth, J. C. & Burkett, S. L. Analysis of a dip-solder process for self-assembly. J. Vac. Sci. Technol. B 29, 042003 (2011). 

  24. Langmuir J Tien 13 5349 1997 10.1021/la970454i Tien, J., Terfort, A. & Whitesides, G. M. Microfabrication through electrostatic self-assembly. Langmuir 13, 5349-5355 (1997). 

  25. Science GM Whitesides 295 2418 2002 10.1126/science.1070821 Whitesides, G. M. & Grzybowski, B Self-assembly at all scales. Science 295, 2418-2421 (2002). 

  26. Bird, R. B., Stewart, W. E. & Lightfoot, E. N.Transport Phenomena (John Wiley, 2007). 

  27. J. Polym. Sci. DK Thomas 42 195 1960 10.1002/pol.1960.1204213922 Thomas, D. K. & Charlesby, A. Viscosity relationship in solutions of polyethylene glycols. J. Polym. Sci. 42, 195-202 (1960). 

  28. J. Appl. Phys. TG Fox 21 581 1950 10.1063/1.1699711 Fox, T. G. & Flory, P. J. Second-order transition temperatures and related properties of polystyrene. i. Influence of molecular weight. J. Appl. Phys. 21, 581-591 (1950). 

  29. Appl. Rheol. A Franck 18 44 2008 10.1515/arh-2008-0024 Franck, A. ARES-G2: a new generation of separate motor and transducer rheometers. Appl. Rheol. 18, 44-47 (2008). 

  30. Sci. Rep. MQ Raza 6 2016 10.1038/srep19113 Raza, M. Q., Kumar, N. & Raj, R. Surfactants for bubble removal against buoyancy. Sci. Rep. 6, 19113 (2016). 

  31. ECS J. Solid State Sci. Technol. A Gowda 9 044013 2020 10.1149/2162-8777/ab8ffa Gowda, A., Seo, J., Ranaweera, C. K. & Babu, S. Cleaning solutions for removal of 30 nm ceria particles from proline and citric acid containing slurries deposited on silicon dioxide and silicon nitride surfaces. ECS J. Solid State Sci. Technol. 9, 044013 (2020). 

  32. J. J. Micromech. Microeng. J Fang 16 721 2006 10.1088/0960-1317/16/4/008 Fang, J. & Böhringer, K. F. Parallel micro component-to-substrate assembly with controlled poses and high surface coverage. J. J. Micromech. Microeng. 16, 721-730 (2006). 

  33. J. Micromech. Microeng. JH Hoo 24 045018 2014 10.1088/0960-1317/24/4/045018 Hoo, J. H., Park, K. S., Baskaran, R. & Böhringer, K. F. Template-based self-assembly for silicon chips and 01005 surface-mount components. J. Micromech. Microeng. 24, 045018 (2014). 

  34. 10.1109/ECTC.2011.5898656 Sun, F., Leblebici, Y. & Brunschwiler, T. Surface-tension-driven multi-chip self-alignment techniques for heterogeneous 3D integration. In Proc. 2011 IEEE 61st Electronic Components and Technology Conference (ECTC) 1153-1159 (IEEE, 2011); https://ieeexplore.ieee.org/document/5898656. 

  35. Adv. Mater. Interfaces PA Löthman 7 1900963 2020 10.1002/admi.201900963 Löthman, P. A. et al. A thermodynamic description of turbulence as a source of stochastic kinetic energy for 3D self-assembly. Adv. Mater. Interfaces 7, 1900963 (2020). 

  36. 10.1038/s41598-019-47690-8 Kaltwasser, M. et al. Fluidic self-assembly on electroplated multilayer solder bumps with tailored transformation imprinted melting points. Sci. Rep. 9, 11325 (2019). 

관련 콘텐츠

원문 URL 링크

*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로