$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Stability and Formation of the Li3PS4/Li, Li3PS4/Li2S, and Li2S/Li Interfaces: A Theoretical Study 원문보기

Langmuir : the ACS journal of surfaces and colloids, v.39 no.51, 2023년, pp.18797 - 18806  

Marana, Naiara Leticia (Theoretical Group of Chemistry, Chemistry Department , Torino University , 10124 Torino , Italy) ,  Casassa, Silvia (Theoretical Group of Chemistry, Chemistry Department , Torino University , 10124 Torino , Italy) ,  Sgroi, Mauro Francesco (Department of Chemistry and NIS , University of Turin , 10125 , Torino , Italy) ,  Maschio, Lorenzo (Gemmate Technologies s.r.l. , Buttigliera Alta , Torino , 10090 Italy) ,  Silveri, Fabrizio (Theoretical Group of Chemistry, Chemistry Department , Torino University , 10124 Torino , Italy) ,  D’Amore, Maddalena ,  Ferrari, Anna Maria

Abstract AI-Helper 아이콘AI-Helper

Solid electrolytes have shown superior behavior and many advantages over liquid electrolytes, including simplicity in battery design. However, some chemical and structural instability problems arise when solid electrolytes form a direct interface with the negative Li-metal electrode. In particular, ...

참고문헌 (48)

  1. Choi S. ; Wang G. ; Choi S. ; Wang G. Advanced Lithium-Ion Batteries for Practical Applications: Technology, Development, and Future Perspectives Lithium-Ion Batteries . Adv. Mater. Technol. 2018 , 3 , 1700376 10.1002/admt.201700376 . 

  2. Du M. ; Liao K. ; Lu Q. ; Shao Z. Recent Advances in the Interface Engineering of Solid-State Li-Ion Batteries with Artificial Buffer Layers: Challenges, Materials, Construction, and Characterization . Energy Environ. Sci. 2019 , 12 , 1780 10.1039/C9EE00515C . 

  3. Tarascon J. M. ; Armand M. Issues and Challenges Facing Rechargeable Lithium Batteries . Nat. 2001 , 414 ( 6861 ), 359 – 367 . 10.1038/35104644 . 

  4. Holekevi Chandrappa M. L. ; Qi J. ; Chen C. ; Banerjee S. ; Ong S. P. Thermodynamics and Kinetics of the Cathode-Electrolyte Interface in All-Solid-State Li-S Batteries . J. Am. Chem. Soc. 2022 , 144 ( 39 ), 18009 – 18022 . 10.1021/jacs.2c07482 . 36150188 

  5. Rocca R. ; Sgroi M. F. ; Camino B. ; D’Amore M. ; Ferrari A. M. Disordered Rock-Salt Type Li2TiS3 as Novel Cathode for LIBs: A Computational Point of View . Nanomaterials. 2022 , 12 , 1832 10.3390/nano12111832 . 35683690 

  6. D’Amore M. ; Daga L. E. ; Rocca R. ; Sgroi M. F. ; Marana N. L. ; Casassa S. M. ; Maschio L. ; Ferrari A. M. From Symmetry Breaking in the Bulk to Phase Transitions at the Surface: A Quantum-Mechanical Exploration of Li6PS5Cl Argyrodite Superionic Conductor . Phys. Chem. Chem. Phys. 2022 , 24 ( 37 ), 22978 – 22986 . 10.1039/D2CP03599E . 36125328 

  7. Zheng F. ; Kotobuki M. ; Song S. ; Lai M. O. ; Lu L. Review on Solid Electrolytes for All-Solid-State Lithium-Ion Batteries . J. Power Sources 2018 , 389 , 198 – 213 . 10.1016/j.jpowsour.2018.04.022 . 

  8. Homma K. ; Yonemura M. ; Kobayashi T. ; Nagao M. ; Hirayama M. ; Kanno R. Crystal Structure and Phase Transitions of the Lithium Ionic Conductor Li3PS4 . Solid State Ionics 2011 , 182 ( 1 ), 53 – 58 . 10.1016/j.ssi.2010.10.001 . 

  9. Cheng X.-B. ; Zhang R. ; Zhao C.-Z. ; Wei F. ; Zhang J.-G. ; Zhang Q. ; Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Wei F. ; Zhang Q. ; Zhang J.-G. A Review of Solid Electrolyte Interphases on Lithium Metal Anode . Adv. Sci. 2016 , 3 ( 3 ), 1500213 10.1002/advs.201500213 . 

  10. Ji X. ; Hou S. ; Wang P. ; He X. ; Piao N. ; Chen J. ; Fan X. ; Wang C. Solid-State Electrolyte Design for Lithium Dendrite Suppression . Adv. Mater. 2020 , 32 ( 46 ), 2002741 10.1002/adma.202002741 . 

  11. Kong L.-L. ; Wang L. ; Ni Z.-C. ; Liu S. ; Li G.-R. ; Gao X.-P. ; Kong L.-L. ; Wang L. ; Ni Z.-C. ; Liu S. ; Li G.-R. X. ; Gao P. Lithium–Magnesium Alloy as a Stable Anode for Lithium–Sulfur Battery . Adv. Funct. Mater. 2019 , 29 ( 13 ), 1808756 10.1002/adfm.201808756 . 

  12. Kato A. ; Kowada H. ; Deguchi M. ; Hotehama C. ; Hayashi A. ; Tatsumisago M. XPS and SEM Analysis between Li/Li3PS4 Interface with Au Thin Film for All-Solid-State Lithium Batteries . Solid State Ionics 2018 , 322 , 1 – 4 . 10.1016/j.ssi.2018.04.011 . 

  13. Xu R. ; Han F. ; Ji X. ; Fan X. ; Tu J. ; Wang C. Interface Engineering of Sulfide Electrolytes for All-Solid-State Lithium Batteries . Nano Energy 2018 , 53 , 958 – 966 . 10.1016/j.nanoen.2018.09.061 . 

  14. Fan X. ; Ji X. ; Han F. ; Yue J. ; Chen J. ; Chen L. ; Deng T. ; Jiang J. ; Wang C. Fluorinated Solid Electrolyte Interphase Enables Highly Reversible Solid-State Li Metal Battery . Sci. Adv. 2018 , 4 ( ( 12 ), ), 10.1126/sciadv.aau9245 . 

  15. Liu F. ; Wang L. ; Zhang Z. ; Shi P. ; Feng Y. ; Yao Y. ; Ye S. ; Wang H. ; Wu X. ; Yu Y. ; Liu F. ; Wang L. ; Zhang Z. ; Shi P. ; Yao Y. ; Ye S. ; Wang H. ; Wu X. ; Yu Y. ; Feng Y. A Mixed Lithium-Ion Conductive Li2S/Li2Se Protection Layer for Stable Lithium Metal Anode . Adv. Funct. Mater. 2020 , 30 ( 23 ), 2001607 10.1002/adfm.202001607 . 

  16. Lai C. ; Shu C. ; Li W. ; Wang L. ; Wang X. ; Zhang T. ; Yin X. ; Ahmad I. ; Li M. ; Tian X. ; Yang P. ; Tang W. ; Miao N. ; Zheng G. W. Stabilizing a Lithium Metal Battery by an in Situ Li2S-Modified Interfacial Layer via Amorphous-Sulfide Composite Solid Electrolyte . Nano Lett. 2020 , 20 ( 11 ), 8273 – 8281 . 10.1021/acs.nanolett.0c03395 . 33108209 

  17. Choi S. J. ; Choi S. H. ; Bui A. D. ; Lee Y. J. ; Lee S. M. ; Shin H. C. ; Ha Y. C. LiI-Doped Sulfide Solid Electrolyte: Enabling a High-Capacity Slurry-Cast Electrode by Low-Temperature Post-Sintering for Practical All-Solid-State Lithium Batteries . ACS Appl. Mater. Interfaces 2018 , 10 ( 37 ), 31404 – 31412 . 10.1021/acsami.8b11244 . 30148608 

  18. Marana N. L. ; Sgroi M. F. ; Maschio L. ; Ferrari A. M. ; D’Amore M. ; Casassa S. Computational Characterization of β-Li3PS4 Solid Electrolyte: From Bulk and Surfaces to Nanocrystals . Nanomaterials 2022 , 12 ( 16 ), 2795 10.3390/nano12162795 . 36014660 

  19. Lepley N. D. ; Holzwarth N. A. W. ; Du Y. A. Structures, Li+ Mobilities, and Interfacial Properties of Solid Electrolytes Li3PS4 and Li3PO4 from First Principles . Phys. Rev. B 2013 , 88 ( 10 ), 104103 10.1103/PhysRevB.88.104103 . 

  20. Wei C. ; Xue H. ; Li Z. ; Zhao F. ; Tang F. Reconstruction and Electronic Properties of β-Li3PS4|Li2S Interface . J. Phys. D. Appl. Phys. 2022 , 55 ( 10 ), 105305 10.1088/1361-6463/ac3c75 . 

  21. Xiang J. ; Zhao Y. ; Wang L. ; Zha C. The Presolvation Strategy of Li 2 S Cathodes for Lithium-Sulfur Batteries: A Review . J. Mater. Chem. A 2022 , 10 , 10326 – 10341 . 10.1039/d2ta01008a . 

  22. Chen H. ; Pei A. ; Lin D. ; Xie J. ; Yang A. ; Xu J. ; Lin K. ; Wang J. ; Wang H. ; Shi F. ; Boyle D. ; Cui Y. ; Chen H. ; Pei A. ; Lin D. ; Xie J. ; Yang A. ; Xu J. ; Lin K. ; Wang J. ; Wang H. ; Shi F. ; Boyle D. ; Cui Y. Uniform High Ionic Conducting Lithium Sulfide Protection Layer for Stable Lithium Metal Anode . Adv. Energy Mater. 2019 , 9 ( 22 ), 1900858 10.1002/aenm.201900858 . 

  23. Huggins R. A. Recent Results on Lithium Ion Conductors . Electrochim. Acta 1977 , 22 ( 7 ), 773 – 781 . 10.1016/0013-4686(77)80034-0 . 

  24. Jiang H. ; Han Y. ; Wang H. ; Guo Q. ; Zhu Y. ; Xie W. ; Zheng C. ; Xie K. In Situ Generated Li2S-LPS Composite for All-Solid-State Lithium-Sulfur Battery . Ionics (Kiel). 2020 , 26 ( 5 ), 2335 – 2342 . 10.1007/s11581-019-03287-9 . 

  25. Erba A. ; Desmarais J. ; Casassa S. ; Civalleri B. ; Donà L. ; Bush I. ; Searle B. ; Maschio L. ; Daga L. E. ; Cossard A. ; Ribaldone C. ; Ascrizzi E. ; Marana N. ; Flament J.-P. ; Kirtman B. CRYSTAL23: A Program for Computational Solid State Physics and Chemistry . J. Chem. Theory Comput. 2023 , 19 , 6891 – 6932 . 10.1021/acs.jctc.2c00958 . 36502394 

  26. Perdew J. P. ; Wang Y. Accurate and Simple Analytic Representation of the Electron-Gas Correlation Energy . Phys. Rev. B 1992 , 45 ( 23 ), 13244 10.1103/PhysRevB.45.13244 . 

  27. Adamo C. ; Barone V. Toward Reliable Density Functional Methods without Adjustable Parameters: The PBE0Model . J. Chem. Phys. 1999 , 110 ( 13 ), 6158 10.1063/1.478522 . 

  28. Ojamäe L. ; Hermansson K. ; Pisani C. ; Causà M. ; Roetti C. Structural, Vibrational and Electronic Properties of a Crystalline Hydrate from Ab Initio Periodic Hartree–Fock Calculations . Acta Crystallogr. Sect. B 1994 , 50 ( 3 ), 268 – 279 . 10.1107/S0108768193010390 . 

  29. Lichanot A. ; Aprà E. ; Dovesi R. Quantum Mechnical Hartree-Fock Study of the Elastic Properties of Li2S and Na2S . Phys. status solidi 1993 , 177 ( 1 ), 157 – 163 . 10.1002/pssb.2221770111 . 

  30. Zicovich-Wilson C. M. ; Bert A. ; Roetti C. ; Dovesi R. ; Saunders V. R. Characterization of the Electronic Structure of Crystalline Compounds through Their Localized Wannier Functions . J. Chem. Phys. 2002 , 116 ( 3 ), 1120 10.1063/1.1425406 . 

  31. van Duijneveldt F. B. ; van Duijneveldt-van de Rijdt J. G. C. M. ; van Lenthe J. H. State of the Art in Counterpoise Theory . Chem. Rev. 1994 , 94 ( 7 ), 1873 – 1885 . 10.1021/cr00031a007 . 

  32. Bader R. F. W. Atoms in Molecules: A Quantum Theory ; Oxford University Press , 1990 ; p 438 . 

  33. Buehrer W. ; Altorfer F. ; Mesot J. ; Bill H. ; Carron P. ; Smith H. G. Lattice Dynamics and the Diffuse Phase Transition of Lithium Sulphide Investigated by Coherent Neutron Scattering . J. Phys.: Condens. Matter 1991 , 3 ( 9 ), 1055 10.1088/0953-8984/3/9/002 . 

  34. Perlitz H. ; Aruja E. V. A Redetermination of the Crystal Structure of Lithium . The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2009 , 30 ( 198 ), 55 – 63 . 10.1080/14786444008520697 . 

  35. Liu Z. ; Hubble D. ; Balbuena P. B. ; Mukherjee P. P. Adsorption of Insoluble Polysulfides Li2Sx (x = 1, 2) on Li2S Surfaces . Phys. Chem. Chem. Phys. 2015 , 17 ( 14 ), 9032 – 9039 . 10.1039/C4CP06118G . 25752296 

  36. Ebadi M. ; Brandell D. ; Araujo C. M. Electrolyte Decomposition on Li-Metal Surfaces from First-Principles Theory . J. Chem. Phys. 2016 , 145 ( 20 ), 204701 10.1063/1.4967810 . 27908145 

  37. Richards W. D. ; Miara L. J. ; Wang Y. ; Kim J. C. ; Ceder G. Interface Stability in Solid-State Batteries . Chem. Mater. 2016 , 28 ( 1 ), 266 – 273 . 10.1021/acs.chemmater.5b04082 . 

  38. Zhu Y. ; He X. ; Mo Y. Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from Thermodynamic Analyses Based on First-Principles Calculations . ACS Appl. Mater. Interfaces 2015 , 7 ( 42 ), 23685 – 23693 . 10.1021/acsami.5b07517 . 26440586 

  39. Wang J. ; Panchal A. A. ; Sai Gautam G. ; Canepa P. The Resistive Nature of Decomposing Interfaces of Solid Electrolytes with Alkali Metal Electrodes . J. Mater. Chem. A 2022 , 10 ( 37 ), 19732 – 19742 . 10.1039/D2TA02202H . 

  40. Gorai P. ; Famprikis T. ; Singh B. ; Stevanović V. ; Canepa P. Devil Is in the Defects: Electronic Conductivity in Solid Electrolytes . Chem. Mater. 2021 , 33 ( 18 ), 7484 – 7498 . 10.1021/acs.chemmater.1c02345 . 

  41. Camacho-Forero L. E. ; Balbuena P. B. Exploring Interfacial Stability of Solid-State Electrolytes at the Lithium-Metal Anode Surface . J. Power Sources 2018 , 396 , 782 – 790 . 10.1016/j.jpowsour.2018.06.092 . 

  42. Sang L. ; Bassett K. L. ; Castro F. C. ; Young M. J. ; Chen L. ; Haasch R. T. ; Elam J. W. ; Dravid V. P. ; Nuzzo R. G. ; Gewirth A. A. Understanding the Effect of Interlayers at the Thiophosphate Solid Electrolyte/Lithium Interface for All-Solid-State Li Batteries . Chem. Mater. 2018 , 30 ( 24 ), 8747 – 8756 . 10.1021/acs.chemmater.8b02368 . 

  43. Ji W. ; Liu L. ; Xing Z. ; Zhang D. ; Wang Y. ; Chen L. ; Chen Y. ; Sun X. ; Du Y. Total-Focus Ultrasonic Imaging of Defects in Solids Using a PZT Piezoelectric Micromachined Ultrasonic Transducer Array . IEEE Trans. Ultrason. Ferroelectr. Freq. Control 2021 , 68 , 1380 10.1109/TUFFC.2020.3032988 . 33090950 

  44. Camacho-Forero L. E. ; Balbuena P. B. Elucidating Interfacial Phenomena between Solid-State Electrolytes and the Sulfur-Cathode of Lithium-Sulfur Batteries . Chem. Mater. 2020 , 32 ( 1 ), 360 – 373 . 10.1021/acs.chemmater.9b03880 . 

  45. Zhou L. ; Tufail M. K. ; Ahmad N. ; Song T. ; Chen R. ; Yang W. Strong Interfacial Adhesion between the Li2S Cathode and a Functional Li7P2.9Ce0.2S10.9Cl0.3 Solid-State Electrolyte Endowed Long-Term Cycle Stability to All-Solid-State Lithium-Sulfur Batteries . ACS Appl. Mater. Interfaces 2021 , 13 ( 24 ), 28270 – 28280 . 10.1021/acsami.1c06328 . 34121381 

  46. Liu Z. ; Bertolini S. ; Balbuena P. B. ; Mukherjee P. P. Li2S Film Formation on Lithium Anode Surface of Li-S Batteries . ACS Appl. Mater. Interfaces 2016 , 8 ( 7 ), 4700 – 4708 . 10.1021/acsami.5b11803 . 26836249 

  47. Goodenough J. B. ; Park K. S. The Li-Ion Rechargeable Battery: A Perspective . J. Am. Chem. Soc. 2013 , 135 ( 4 ), 1167 – 1176 . 10.1021/ja3091438 . 23294028 

  48. Palumbo M. ; Kisu K. ; Gulino V. ; Nervi C. ; Maschio L. ; Casassa S. ; Orimo S. I. ; Baricco M. Ion Conductivity in a Magnesium Borohydride Ammonia Borane Solid-State Electrolyte . J. Phys. Chem. C 2022 , 126 ( 36 ), 15118 – 15127 . 10.1021/acs.jpcc.2c04934 . 

관련 콘텐츠

오픈액세스(OA) 유형

GOLD(Hybrid)

저자가 APC(Article Processing Charge)를 지불한 논문에 한하여 자유로운 이용이 가능한, hybrid 저널에 출판된 논문

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로