$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Microstructure and physical properties of SiCf/SiC composites fabricated by the CVI/LSI/PIP hybrid process

한국세라믹학회지 = Journal of the Korean Ceramic Society, v.61 no.1, 2024년, pp.161 - 169  

Jeong, Young-Seok ,  Jang, Min-Ho ,  Kim, Jung-Won ,  Choi, Kyoon ,  Yoon, Ho Gyu

초록이 없습니다.

참고문헌 (41)

  1. J. mater. sci. technol. P Wang 35 2743 2019 10.1016/j.jmst.2019.07.020 P. Wang, F. Liu, H. Wang, H. Li, Y. Gou, A review of third generation SiC fibers and SiCf/SiC composites. J. mater. sci. technol. 35, 2743-2750 (2019). https://doi.org/10.1016/j.jmst.2019.07.020 

  2. Appl. Therm. Eng. D Wei 199 2021 10.1016/j.applthermaleng.2021.117614 D. Wei, L. Lei, J. Yinghou, W. Sontao, L. Xingchen, B. Sunden, Heat transfer in the trailing region of gas turbines - A state-of-the-art review. Appl. Therm. Eng. 199, 117614 (2021). https://doi.org/10.1016/j.applthermaleng.2021.117614 

  3. IOP Conf Ser Mater Sci Eng M Chen 678 012043 2019 10.1088/1757-899X/678/1/012043 M. Chen, H. Qiu, W. Xie, B. Zhang, S. Liu, W. Luo, X. Ma, Research progress of continuous fiber reinforced ceramic matrix composite in hot section components of aero engine. IOP Conf Ser Mater Sci Eng 678, 012043 (2019). https://doi.org/10.1088/1757-899X/678/1/012043 

  4. J. Am. Ceram. PG Karandikar 76 1720 1993 10.1111/j.1151-2916.1993.tb06640.x P.G. Karandikar, T.-W. Chou, Damage Development and Moduli Reductions in Nicalon-Calcium Aluminosilicate Composites under Static Fatigue and Cyclic Fatigue. J. Am. Ceram. 76, 1720-1728 (1993). https://doi.org/10.1111/j.1151-2916.1993.tb06640.x 

  5. J. Mater. Sci. AG Evans 29 3857 1994 10.1007/BF00355946 A.G. Evans, F.W. Zok, The physics and mechanics of fibre-reinforced brittle matrix composites. J. Mater. Sci. 29, 3857-3896 (1994). https://doi.org/10.1007/BF00355946 

  6. Compos. B Eng. JD Arregui-Mena 238 2022 10.1016/j.compositesb.2022.109896 J.D. Arregui-Mena, T. Koyanagi, E. Cakmak, C.M. Petrie, W.-J. Kim, D.J. Kim, C.P. Deck, C. Sauder, J. Braun, Y. Katoh, Qualitative and quantitative analysis of neutron irradiation effects in SiC/SiC composites using X-ray computed tomography. Compos. B Eng. 238, 109896 (2022). https://doi.org/10.1016/j.compositesb.2022.109896 

  7. Mater. Sci. Eng. C W Yang 345 28 2003 10.1016/S0921-5093(02)00468-9 W. Yang, T. Noda, H. Araki, J. Yu, A. Kohyama, Mechanical properties of several advanced Tyranno-SA fiber-reinforced CVI-SiC matrix composites. Mater. Sci. Eng. C 345, 28-35 (2003). https://doi.org/10.1016/S0921-5093(02)00468-9 

  8. Mater. Des. SY Kim 44 107 2013 10.1016/j.matdes.2012.07.064 S.Y. Kim, I.S. Han, S.K. Woo, K.S. Lee, D.K. Kim, Wear-mechanical properties of filler-added liquid silicon infiltration C/C-SiC composites. Mater. Des. 44, 107-113 (2013). https://doi.org/10.1016/j.matdes.2012.07.064 

  9. 10.1007/s43207-022-00260-7 J. W. Han, D. J. Kim, S.-Y. KIM, W.-J. Kim, C. Park, J. Y. Park, Influence of CVI process time on the C-ring strength of hybrid SiCf/SiC composites fabricated by CVI-LSI. J Korean Ceram. 60 261-271 (2023). https://doi.org/10.1007/s43207-022-00260-7 

  10. J. Korean Ceram. Soc. K-M Kim 55 392 2018 10.4191/kcers.2018.55.4.11 K.-M. Kim, Y.S. Hahn, S.-M. Lee, K. Choi, J.-H. Lee, Mechanical properties of Cf/SiC composite using a combined process of chemical vapor infiltration and precursor infiltration pyrolysis. J. Korean Ceram. Soc. 55, 392-399 (2018). https://doi.org/10.4191/kcers.2018.55.4.11 

  11. J. Korean Ceram. Soc. YS Jeong 56 291 2019 10.4191/kcers.2019.56.3.09 Y.S. Jeong, K. Choi, H.G. Yoon, Microstructural control of pyrolytic carbon layer deposited from methane by isotropic chemical vapor infiltration. J. Korean Ceram. Soc. 56, 291-297 (2019). https://doi.org/10.4191/kcers.2019.56.3.09 

  12. Compos. B Eng. N Orlovskaya 37 524 2006 10.1016/j.compositesb.2006.02.022 N. Orlovskaya, M. Lugovy, F. Ko, S. Yarmolenko, J. Sankar, J. Kuebler, SiC/SiCwf Laminates: design, manufacturing, mechanical PROPERTIES. Compos. B Eng. 37, 524-529 (2006). https://doi.org/10.1016/j.compositesb.2006.02.022 

  13. Int. J. Nanotechnol. KM Kim 15 555 2018 10.1504/IJNT.2018.096346 K.M. Kim, J.-W. Seo, K. Choi, Improvement of densification uniformity of carbon/silicon carbide composites during chemical vapour infiltration. Int. J. Nanotechnol. 15, 555-567 (2018). https://doi.org/10.1504/IJNT.2018.096346 

  14. J. Korean Ceram. J-W Seo 58 184 2021 10.1007/s43207-020-00082-5 J.-W. Seo, K. Choi, Application of CFD simulation to silicon carbide deposition for nozzles with funnel. J. Korean Ceram. 58, 184-191 (2021). https://doi.org/10.1007/s43207-020-00082-5 

  15. J. Korean Inst. Surf. Eng. J-M Koo 50 523 2017 10.5695/JKISE.2017.50.6.523 J.-M. Koo, K.H. Kim, Y.S. Han, Fabrication and characterization of Cf/SiC composite with bn interphase coated by wet chemical process. J. Korean Inst. Surf. Eng. 50, 523-530 (2017). https://doi.org/10.5695/JKISE.2017.50.6.523 

  16. 10.32908/hthp.v50.1139 K. H. Kim, K. Choi, Y. S. Han, S. Nahm, S.-M. Lee, High-temperature cyclic fatigue in air of SiCf/SiC ceramic matrix composite with a pyrolytic carbon interface. HTHP. 50, 325-334 (2021). https://doi.org/10.32908/hthp.v50.1139 

  17. Ceram. Int. R Liu 47 26971 2021 10.1016/j.ceramint.2021.06.110 R. Liu, F. Wang, J. Zhang, J. Chen, F. Wan, Y. Wang, Effects of CVI SiC amount and deposition rates on properties of SiCf/SiC composites fabricated by hybrid chemical vapor infiltration (CVI) and precursor infiltration and pyrolysis (PIP) routes. Ceram. Int. 47, 26971-26977 (2021). https://doi.org/10.1016/j.ceramint.2021.06.110 

  18. J. Mater. Res. JC Margiotta 23 1237 2008 10.1557/JMR.2008.0167 J.C. Margiotta, D. Zhang, D.C. Nagle, C.E. Feeser, Formation of dense silicon carbide by liquid silicon infiltration of carbon with engineered structure. J. Mater. Res. 23, 1237-1248 (2008). https://doi.org/10.1557/JMR.2008.0167 

  19. J. Korean Cryst. Growth Cryst. Technol. YJ Joo 30 271 2020 10.6111/JKCGCT.2020.30.6.271 Y.J. Joo, S.H. Joo, C.K. Youn, Effect of pyrolysis temperature and pressing load on the densification of amorphous silicon carbide block. J. Korean Cryst. Growth Cryst. Technol. 30, 271-276 (2020). https://doi.org/10.6111/JKCGCT.2020.30.6.271 

  20. Compos. Part A Appl. TJ Pirzada 140 2021 10.1016/j.compositesa.2020.106197 T.J. Pirzada, S. Singh, R.D. Meyere, P. Earp, M. Galano, T.J. Marrow, Effects of polymer infiltration processing (PIP) temperature on the mechanical and thermal properties of Nextel 312 fibre SiCO ceramic matrix composites. Compos. Part A Appl. 140, 106197 (2021). https://doi.org/10.1016/j.compositesa.2020.106197 

  21. Carbon P Toth 178 688 2021 10.1016/j.carbon.2021.03.043 P. Toth, Nanostructure quantification of turbostratic carbon by HRTEM image analysis: State of the art, biases, sensitivity and best practices. Carbon 178, 688-707 (2021). https://doi.org/10.1016/j.carbon.2021.03.043 

  22. Solid State Sci. P Ruz 62 105 2016 10.1016/j.solidstatesciences.2016.10.017 P. Ruz, S. Banerjee, M. Pandey, V. Sudarsan, P.U. Sastry, R.J. Kshirsagar, Structural evolution of turbostratic carbon: Implications in H2 storage. Solid State Sci. 62, 105-111 (2016). https://doi.org/10.1016/j.solidstatesciences.2016.10.017 

  23. J. Nanosci. Nanotechnol. R Liu 14 1647 2014 10.1166/jnn.2014.8905 R. Liu, Y. Chi, L. Fang, Z. Tang, Z. Tang, Synthesis of Carbon Nanowall by Plasma-Enhanced Chemical Vapor Deposition Method. J. Nanosci. Nanotechnol. 14, 1647-1657 (2014). https://doi.org/10.1166/jnn.2014.8905 

  24. 10.1016/j.carbon.2008.10.003 P. J. Meadows, E. L. Honorato, P. Xiao, Fluidized Bed Chemical Vapor Deposition of Pyrolytic Carbon - II. Effect of Deposition Conditions on Anisotropy. Carbon 47, 251-62 (2009). https://doi.org/10.1016/j.carbon.2008.10.003 

  25. Carbon M Seyring 116 347 2017 10.1016/j.carbon.2017.01.107 M. Seyring, A. Simon, I. Voigt, U. Ritter, M. Rettenmayr, Quantitative crystallographic analysis of individual carbon nanofibers using high resolution transmission electron microscopy and electron diffraction. Carbon 116, 347-355 (2017). https://doi.org/10.1016/j.carbon.2017.01.107 

  26. Bull. Chem. Soc. Jpn K Kamei 93 1603 2020 10.1246/bcsj.20200232 K. Kamei, T. Shimizu, K. Harano, E. Nakamura, Aryl radical addition to curvatures of carbon nanohorns for single-molecule-level molecular imaging. Bull. Chem. Soc. Jpn 93, 1603-1608 (2020). https://doi.org/10.1246/bcsj.20200232 

  27. Carbon J Kabel 182 571 2021 10.1016/j.carbon.2021.06.045 J. Kabel, T.E.J. Edwards, A. Sharama, J. Michler, P. Hosemann, Direct observation of the elasticity-texture relationship in pyrolytic carbon via in situ micropillar compression and digital image correlation. Carbon 182, 571-584 (2021). https://doi.org/10.1016/j.carbon.2021.06.045 

  28. Combust. Flame P Toth 160 909 2013 10.1016/j.combustflame.2013.01.002 P. Toth, A.B. Palotas, E.G. Eddings, R.T. Whitaker, J.S. Lighty, A novel framework for the quantitative analysis of high resolution transmission electron micrographs of soot I. Improved measurement of interlayer spacing. Combust. Flame 160, 909-919 (2013). https://doi.org/10.1016/j.combustflame.2013.01.002 

  29. 10.1016/j.combustflame.2011.01.009 K. Yehliu, R. L. Vander Wal, A. L. Boehman, Development of an HRTEM image analysis method to quantify carbon nanostructure. Combust. Flame 158, 1837-1851 (2011). https://doi.org/10.1016/j.combustflame.2011.01.009 

  30. Energy Fuels CA Wang 30 2694 2016 10.1021/acs.energyfuels.5b02907 C.A. Wang, T. Huddle, E.H. Lester, J.P. Mathews, Quantifying curvature in high-resolution transmission electron microscopy lattice fringe micrographs of coals. Energy Fuels 30, 2694-2704 (2016). https://doi.org/10.1021/acs.energyfuels.5b02907 

  31. Procedia Struct. Integr. JM Parente 5 282 2020 10.1016/j.prostr.2020.04.033 J.M. Parente, P. Santos, S. Valvez, M.P. Silva, P.N.B. Reis, Fatigue behaviour of graphene composites: an overview. Procedia Struct. Integr. 5, 282-293 (2020). https://doi.org/10.1016/j.prostr.2020.04.033 

  32. J. Am. Ceram. C Droillard 79 849 1996 10.1111/j.1151-2916.1996.tb08516.x C. Droillard, J. Lamon, Fracture toughness of 2-D Woven SiC/SiC CVI-composites with multilayered interphases. J. Am. Ceram. 79, 849-858 (1996). https://doi.org/10.1111/j.1151-2916.1996.tb08516.x 

  33. Acta Mater. F Rebillat 48 4609 2000 10.1016/S1359-6454(00)00247-0 F. Rebillat, J. Lamon, The concept of a strong interface applied to SiC/SiC composites with a BN interphase. Acta Mater. 48, 4609-4618 (2000). https://doi.org/10.1016/S1359-6454(00)00247-0 

  34. Mater. Y Zhou 25 679 2019 10.3390/ma12040679 Y. Zhou, T. Ye, L. Ma, Z. Lu, Z. Yang, S. Liu, Investigation on Cf/PyC interfacial properties of C/C composites by the molecular dynamics simulation method. Mater. 25, 679 (2019). https://doi.org/10.3390/ma12040679 

  35. J. Eur. Ceram. RK Goldberg 42 6846 2022 10.1016/j.jeurceramsoc.2022.07.042 R.K. Goldberg, A.S. Almansour, R.M. Sullivan, Analytical simulation of effects of local mechanisms on tensile response of ceramic matrix minicomposites. J. Eur. Ceram. 42, 6846-6864 (2022). https://doi.org/10.1016/j.jeurceramsoc.2022.07.042 

  36. High Temp. Mater. Process. L Li 39 0052 2020 10.1515/htmp-2020-0052 L. Li, Temperature-dependent proportional limit stress of SiC/SiC fiber-reinforced ceramic-matrix composites. High Temp. Mater. Process. 39, 0052 (2020). https://doi.org/10.1515/htmp-2020-0052 

  37. Rev. Sci. Instrum. A Haboub 85 2014 10.1063/1.4892437 A. Haboub, H.A. Bale, J.R. Nasiatka, B.N. Cox, D.B. Marshall, R.O. Ritchie, A.A. MacDowell, Tensile testing of materials at high temperatures above 1700 °C with in-situ synchrotron X-ray micro-tomography. Rev. Sci. Instrum. 85, 083702 (2014). https://doi.org/10.1063/1.4892437 

  38. J. Eur. Ceram. K Shimoda 41 1163 2021 10.1016/j.jeurceramsoc.2020.09.024 K. Shimoda, T. Hinoki, Effects of fiber volume fraction on the densification and mechanical properties of unidirectional SiCf/SiC-matrix composites. J. Eur. Ceram. 41, 1163-1170 (2021). https://doi.org/10.1016/j.jeurceramsoc.2020.09.024 

  39. Nat. Mater. HA Bale 12 40 2013 10.1038/nmat3497 H.A. Bale, A. Haboub, A.A. MacDowell, J.R. Nasiatka, D.Y. Parkinson, B.N. Cox, D.B. Marshall, R.O. Ritchie, Real-time quantitative imaging of failure events in materials under load at temperatures above 1,600°C. Nat. Mater. 12, 40-46 (2013). https://doi.org/10.1038/nmat3497 

  40. J. Korean Ceram. JY Park 58 718 2021 10.1007/s43207-021-00146-0 J.Y. Park, D.J. Kim, H.G. Lee, W.-J. Kim, Fabrication and evaluation of C-ring strength of SiCf/SiC composites tube. J. Korean Ceram. 58, 718-727 (2021). https://doi.org/10.1007/s43207-021-00146-0 

  41. 10.1007/0-387-23986-3_4 J. A. Di Carlo, H.-M. Yun, G. N. Morscher, R. T. Bhatt, SiCf/SiC composites for 1,600°C and above. In: Bansal NP (eds) Handbook of ceramic composites. Kluwer Academic Publishers, Boston, pp 77-98 (2005). https://doi.org/10.1007/0-387-23986-3_4 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로