$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Soil pH Variation Within a Soil. I. pH Variation in Soil Pores Observed in a Column-Leaching Method

Communications in soil science and plant analysis, v.35 no.3/4, 2004년, pp.319 - 329  

Hsu, Shih-Lin (Department of Environmental Studies (Soil Science), The Union Institute, Cincinnati, Ohio, USA) ,  Hung, Joe ,  Wallace, Arthur

Abstract

The traditional method for determining soil pH is to measure the pH of mixed soil samples. The resulting measured soil pH as an average is used to represent the unsampled neighborhood. This average cannot really represent the actual soil pH value if spatially dependent heterogeneity of soil properties exists among the samples. The objective of this study was to develop a more complete understanding of soil pH in soil that had been acidified by use of nitrogen fertilizer. The soil samples obtained from the Van Rockel vineyard in Temecula, CA were taken to run a designed column-leaching test from four random test sites with two replicates per site at the depths of 0–30 cm, 30–60 cm, and 60–90 cm. The pH variation in soil pores was observed periodically through several column-leaching tests. When unsieved soil samples in an air-dried state were used to observe the changes in soil pH as shown by a column-leaching procedure, soil pH values during leaching increased gradually with elapsed time in a third or fourth order polynomial functional manner for the first 30 collectors (roughly 90 min) and approached nearly constant values for the last 10 collectors (roughly 30 min). There was a wide pH differential range (0.42–1.73 pH units) in acidified soil in different fractions. The early collection had pH values less than the traditional method and the late collection had pH values greater than the traditional method.

참고문헌 (17)

  1. YANG, J., HAMMER, R. D., BLANCHAR, R. W.. MICROSCALE PH SPATIAL DISTRIBUTION IN THE AP HORIZON OF MEXICO SILT LOAM :. Soil science, vol.160, no.5, 371-375.

  2. Moore, T. J., Loeppert, R. H.. Significance of Potassium Chloride pH of Calcareous Soils. Soil Science Society of America journal, vol.51, no.4, 908-912.

  3. LASLETT, G. M., McBRATNEY, A. B.. Estimation and implications of instrumental drift, random measurement error and nugget variance of soil attributes-a case study for soil pH. The Journal of soil science, vol.41, no.3, 451-471.

  4. Nilsson, T., Kranz-Eliasson, B., Bjurman, M.. Measurement of pH in soil samples from a cutover peatland in Sweden: The effect of electrolyte and solution/soil ratio. Communications in soil science and plant analysis, vol.26, no.3, 361-374.

  5. Aitken, RL, Moody, PW. Interrelations between soil pH measurements in various electrolytes and soil solution pH in acidic soils. Australian journal of soil research, vol.29, no.4, 483-.

  6. Differences between soil solutions obtained from rhizosphere and non-rhizosphere soils by water displacement and soil centrifugation. European J. Soil Sci. Lorenz S.E. 431 45 1994 

  7. SANDERS, J. R.. The effect of pH upon the copper and cupric ion concentrations in soil solutions. The Journal of soil science, vol.33, no.4, 679-689.

  8. LOGSDON, SALLY D.. FLOW MECHANISMS THROUGH CONTINUOUS AND BURIED MACROPORES :. Soil science, vol.160, no.4, 237-242.

  9. GERMANN, P., BEVEN, K.. WATER FLOW IN SOIL MACROPORES I. AN EXPERIMENTAL APPROACH. The Journal of soil science, vol.32, no.1, 1-13.

  10. Whiteley, G. M., Dexter, A. R.. Behaviour of roots in cracks between soil peds. Plant and soil, vol.74, no.2, 153-162.

  11. Whiteley, G. M., Dexter, A. R.. The behaviour of roots encountering cracks in soil : I. Experimental methods and results. Plant and soil, vol.77, no.2, 141-149.

  12. Li, Yimin, Ghodrati, Masoud. Preferential Transport of Nitrate through Soil Columns Containing Root Channels. Soil Science Society of America journal, vol.58, no.3, 653-659.

  13. Li, Yimin, Ghodrati, Masoud. Transport of Nitrate in Soils as Affected by Earthworm Activities. Journal of environmental quality, vol.24, no.3, 432-438.

  14. Neilsen, Denise, Hoyt, Paul B., Parchomchuk, Peter, Neilsen, Gerald H., Hogue, Eugene J.. Measurement of the sensitivity of orchard soils to acidification. Canadian journal of soil science, vol.75, no.3, 391-395.

  15. Quisenberry, V. L., Phillips, R. E.. Displacement of Soil Water by Simulated Rainfall. Soil Science Society of America journal, vol.42, no.5, 675-679.

  16. Libardi, P. L., Reichardt, K., Nielsen, D. R., Biggar, J. W.. Simple Field Methods for Estimating Soil Hydraulic Conductivity. Soil Science Society of America journal, vol.44, no.1, 3-7.

  17. Chen, C., Thomas, D. M., Green, R. E., Wagenet, R. J.. Two-Domain Estimation of Hydraulic Properties in Macropore Soils. Soil Science Society of America journal, vol.57, no.3, 680-686.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로