$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Review of maglev train technologies

IEEE transactions on magnetics, v.42 no.7, 2006년, pp.1917 - 1925  

Lee, Hyung-Woo (Korea Railroad Res. Inst., Uiwang, South Korea) ,  Kim, Ki-Chan ,  Lee, Ju

Abstract

This paper reviews and summarizes Maglev train technologies from an electrical engineering point of view and assimilates the results of works over the past three decades carried out all over the world. Many researches and developments concerning the Maglev train have been accomplished; however, they are not always easy to understand. The purpose of this paper is to make the Maglev train technologies clear at a glance. Included are general understandings, technologies, and worldwide practical projects. Further research needs are also addressed.

참고문헌 (114)

  1. He, J.L., Wang, Z., Rote, D.M., Winkelman, S.. Investigation of the stability of AC repulsive-force levitation systems for low-speed maglev. IEEE transactions on magnetics, vol.28, no.5, 3315-3317.

  2. Sakamoto, T., Eastham, A.R., Dawson, G.E.. Induced currents and forces for the split-guideway electrodynamic levitation system. IEEE transactions on magnetics, vol.27, no.6, 5004-5006.

  3. Zhang, Guoqiang, Fang, Youtong, Song, Fuchuan, Zhu, Guiping, Wang, Zanji. Optimal design and FEM analysis of the superconducting magnets of EMS-MAGLEV models using Bi-2223 tapes. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.14, no.2, 1850-1853.

  4. Tsuchiya, M., Ohsaki, H.. Characteristics of electromagnetic force of EMS-type maglev vehicle using bulk superconductors. IEEE transactions on magnetics, vol.36, no.5, 3683-3685.

  5. Wang Jiasu, Ren Zhongyou, Dong Xiaogang, Lin Guobin, Lian Jisan, Zhang Cuifang, Huang Haiyu, Deng Changyan, Zhu Dequi. A scheme of Maglev vehicle using high Tc bulk superconducters. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.9, no.2, 904-907.

  6. Hull, J.R.. Attractive levitation for high-speed ground transport with large guideway clearance and alternating-gradient stabilization. IEEE transactions on magnetics, vol.25, no.5, 3272-3274.

  7. Hill, R.J.. Teaching electrodynamic levitation theory. IEEE transactions on education, vol.33, no.4, 346-354.

  8. Tsukamoto, O., Iwata, Y., Yamamura, S.. Analysis of ride quality of repulsive type magnetically levitated vehicles. IEEE transactions on magnetics, vol.17, no.2, 1221-1233.

  9. Iwahana, T.. Study of superconducting magnetic suspension and guidance characteristics on loop tracks. IEEE transactions on magnetics, vol.11, no.6, 1704-1711.

  10. Hogan, J., Fink, H.. Comparison and optimization of lift and drag forces on vehicles levitated by eddy current repulsion for various null and normal flux magnets with one or two tracks. IEEE transactions on magnetics, vol.11, no.2, 604-607.

  11. IEE Review will maglev lift off? riches 1988 10.1049/ir:19880177 34 427 

  12. Hoburg, J.F.. Modeling maglev passenger compartment static magnetic fields from linear Halbach permanent-magnet arrays. IEEE transactions on magnetics, vol.40, no.1, 59-64.

  13. Kusagawa, S., Baba, J., Shutoh, K., Masada, E.. Multipurpose design optimization of EMS-type magnetically levitated vehicle based on genetic algorithm. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.14, no.2, 1922-1925.

  14. Albertz, D., Dappen, S., Henneberger, G.. Calculation of the induced currents and forces for a hybrid magnetic levitation system. IEEE transactions on magnetics, vol.33, no.2, 1263-1266.

  15. Davey, K.. Analysis of an electrodynamic Maglev system. IEEE transactions on magnetics, vol.35, no.5, 4259-4267.

  16. Yoshida, K., Lee, Ju, Kim, Young Jung. 3-D FEM field analysis in controlled-PM LSM for Maglev vehicle. IEEE transactions on magnetics, vol.33, no.2, 2207-2210.

  17. Cho, D., Kato, Y., Spilman, D.. Sliding mode and classical controllers in magnetic levitation systems. IEEE control systems, vol.13, no.1, 42-48.

  18. Takahashi, I., Ide, Y.. Decoupling control of thrust and attractive force of a LIM using a space vector control inverter. IEEE transactions on industry applications, vol.29, no.1, 161-167.

  19. Cassat, A., Jufer, M.. MAGLEV projects technology aspects and choices. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.12, no.1, 915-925.

  20. Eastham, J., Balchin, M., Coles, P., Rodger, D.. Comparison of short primary linear machines for high speed maglev vehicles. IEEE transactions on magnetics, vol.23, no.5, 2338-2343.

  21. Ono, M., Koga, S., Ohtsuki, H.. Japan's superconducting Maglev train. IEEE instrumentation & measurement magazine, vol.5, no.1, 9-15.

  22. Sinha, P.K., Zhou, F.B., Kutiyal, R.S.. Fault detection in electromagnetic suspension systems with state estimation methods. IEEE transactions on magnetics, vol.29, no.6, 2950-2952.

  23. Vermilyea, M.E., Minas, C.. A cryogen-free superconducting magnet design for Maglev vehicle applications. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.3, no.1, 444-447.

  24. Scholle, E.A., Schwartz, J.. Power dissipation due to vibration-induced disturbances in maglev superconducting magnets. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.4, no.4, 205-210.

  25. Fujimoto, H., Kamijo, H., Higuchi, T., Nakamura, Y., Nagashima, K., Murakami, M., Sang-Im Yoo. Preliminary study of a superconducting bulk magnet for the Maglev train. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.9, no.2, 301-304.

  26. Nakao, H., Yamashita, T., Sanada, Y., Yamaji, M., Nakagaki, S., Shudo, T., Takahashi, M., Miura, A., Terai, M., Igarashi, M., Kurihara, T., Tomioka, K., Yamaguchi, M.. Development of a modified superconducting magnet for Maglev vehicles. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.9, no.2, 1000-1003.

  27. Shudo, T., Yamashita, T., Nakao, H., Sanada, Y., Yamaji, M., Terai, M., Inadama, S.. Study on vibration phenomena of superconducting magnets for MAGLEV. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.7, no.2, 932-935.

  28. Arata, M., Kawai, M., Yamashita, T., Fujita, M., Hamajima, T., Sanada, Y., Miura, A., Yamaguchi, M., Yamaji, M., Terai, M., Inadama, S.. Eddy current loss reduction of superconducting magnets for MAGLEV with a multilayer superconducting sheet. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.7, no.2, 912-915.

  29. Sakamoto, S., Watanabe, H., Takizawa, T., Suzuki, E., Terai, N.. Development of a MAGLEV superconducting magnet for the Yamanashi test line in Japan: vibration characteristics and analysis for design. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.7, no.3, 3791-3796.

  30. Ametani, A., Kato, R., Nishinaga, H., Okai, M.. A study of transient induced voltages on a Maglev train coil system. IEEE transactions on power delivery : a publication of the Power Engineering Society, vol.10, no.3, 1657-1662.

  31. Yokoyama, S., Shimohata, K., Inaguchi, T., Takeuchi, T., Kim, T., Nakamura, S., Miyashita, S., Uchikawa, F.. A conceptual design of a superconducting magnet for MAGLEV using a Bi-based high-Tc tape. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.5, no.2, 610-613.

  32. Andriollo, M., Martinelli, G., Morini, A., Scuttari, A.. Minimization of the induced current effects in the shields of SC coils in EDS-MAGLEV trains. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.5, no.2, 604-609.

  33. Burkhardt, E.E., Schwartz, J., Nakamae, S.. Analysis of superconducting magnet (SCM)-ground coil interactions for EDS Maglev coil configurations. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.3, no.1, 430-433.

  34. Eastham, A.R., Hayes, W.F.. Maglev systems development status. IEEE aerospace and electronic systems magazine, vol.3, no.1, 21-30.

  35. Rogg, D.. General survey of the possible applications and development tendencies of magnetic levitation technology. IEEE transactions on magnetics, vol.20, no.5, 1696-1701.

  36. Fujie, J.. An advanced arrangement of the combined propulsion, levitation and guidance system of superconducting Maglev. IEEE transactions on magnetics, vol.35, no.5, 4049-4051.

  37. Abel, E., Mahtani, J., Rhodes, R.. Linear machine power requirements and system comparisons. IEEE transactions on magnetics, vol.14, no.5, 918-920.

  38. IEEE Trans Magn electromechanical dynamics in superconducting levitation systems ooi 1975 mag 11 1495 

  39. Burke, P., Turton, R., Slemon, G.. The calculation of eddy losses in guideway conductors and structural members of high-speed vehicles. IEEE transactions on magnetics, vol.10, no.3, 462-465.

  40. Tsuchishima, H., Herai, T.. Superconducting magnet and on-board refrigeration system on Japanese MAGLEV vehicle. IEEE transactions on magnetics, vol.27, no.2, 2272-2275.

  41. Bohn, G.. Calculation of frequency responses of electro-magnetic levitation magnets. IEEE transactions on magnetics, vol.13, no.5, 1412-1414.

  42. Rote, D.M., Cai, Yigang. Review of dynamic stability of repulsive-force maglev suspension systems. IEEE transactions on magnetics, vol.38, no.2, 1383-1390.

  43. Davey, K.R.. Electrodynamic Maglev coil design and analysis. IEEE transactions on magnetics, vol.33, no.5, 4227-4229.

  44. de Boeij, J., Steinbuch, M., Gutierrez, H.M.. Modeling the electromechanical interactions in a null-flux electrodynamic maglev system. IEEE transactions on magnetics, vol.41, no.1, 466-470.

  45. de Boeij, J., Steinbuch, M., Gutierrez, H.M.. Mathematical model of the 5-DOF sled dynamics of an electrodynamic maglev system with a passive sled. IEEE transactions on magnetics, vol.41, no.1, 460-465.

  46. Wang, I.-Y.A., Busch-Vishniac, I.. A new repulsive magnetic levitation approach using permanent magnets and air-core electromagnets. IEEE transactions on magnetics, vol.30, no.4, 1422-1432.

  47. Leung, E., Dew, M., Samavedam, G., Gamble, B.. A study of two distinct coil designs for a Maglev EDS application. IEEE transactions on magnetics, vol.30, no.4, 2379-2382.

  48. Kim, Dong-Hun, Lee, Ji-Kwang, Hahn, Song-Yop, Cha, Gueesoo. New levitation scheme with AC superconducting magnet for EDS MAGLEV system. IEEE transactions on magnetics, vol.32, no.5, 5151-5153.

  49. Andriollo, M., Martinelli, G., Morini, A., Scuttari, A.. Optimization of the winding configuration in EDS-MAGLEV trains. IEEE transactions on magnetics, vol.32, no.4, 2393-2398.

  50. Koseki, T., Hayafune, K., Masada, E.. Lateral motion of a short-stator type magnetic wheel. IEEE transactions on magnetics, vol.23, no.5, 2350-2352.

  51. Burke, P., Kunts, S., Slemon, G.. A dual linear synchronous motor for Maglev vehicles. IEEE transactions on magnetics, vol.13, no.5, 1415-1417.

  52. Sakamoto, T., Shiromizu, T.. Propulsion control of superconducting linear synchronous motor vehicle. IEEE transactions on magnetics, vol.33, no.5, 3460-3462.

  53. Albicini, F., Andriollo, M., Martinelli, G., Morini, A.. General expressions of propulsion force in EDS-MAGLEY transport systems with superconducting coils. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.3, no.1, 425-429.

  54. Shibata, M., Maki, N., Saitoh, T., Kobayashi, T., Sawano, E., Ohshima, H.. On-board power supply system of a magnetically levitated vehicle. IEEE transactions on magnetics, vol.28, no.1, 474-477.

  55. Andriollo, M., Martinelli, C., Morini, A., Tortella, A.. Optimization of the on-board linear generator in EMS-MAGLEV trains. IEEE transactions on magnetics, vol.33, no.5, 4224-4226.

  56. Ohashi, S., Ohsaki, H., Masada, E.. Running characteristics of the magnetically levitated train in a curved track section. IEEE transactions on magnetics, vol.33, no.5, 4212-4214.

  57. Wang, Jiasu, Wang, Suyu, Ren, Zhongyou, Wang, Xiaorong, Zhu, Min, Jiang, He, Song, Honghai, Wang, Xingzhi, Zheng, Jun. Guidance forces on high temperature superconducting Maglev test vehicle. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.13, no.2, 2154-2156.

  58. Rhodes, R., Mulhall, B., Howell, J., Abel, E.. The Wolfson Maglev project. IEEE transactions on magnetics, vol.10, no.3, 398-401.

  59. Gutberlet, H.. The German magnetic transportation program. IEEE transactions on magnetics, vol.10, no.3, 417-420.

  60. Sasakawa, T., Tagawa, N.. Reduction of magnetic field in vehicle of superconducting maglev train. IEEE transactions on magnetics, vol.36, no.5, 3676-3679.

  61. Atherton, D.. Maglev using permanent magnets. IEEE transactions on magnetics, vol.16, no.1, 146-148.

  62. Weh, H., Shalaby, M.. Magnetic levitation with controlled permanentic excitation. IEEE transactions on magnetics, vol.13, no.5, 1409-1411.

  63. Yoshida, K., Umino, T.. Dynamics of the propulsion and levitation systems in the controlled-PM LSM maglev vehicle. IEEE transactions on magnetics, vol.23, no.5, 2353-2355.

  64. Morishita, M., Azukizawa, T., Kanda, S., Tamura, N., Yokoyama, T.. A new MAGLEV system for magnetically levitated carrier system. IEEE transactions on vehicular technology, vol.38, no.4, 230-236.

  65. Onuki, T., Toda, Y.. Optimal design of hybrid magnet in maglev system with both permanent and electromagnets. IEEE transactions on magnetics, vol.29, no.2, 1783-1786.

  66. Tzeng, Yeou-Kuang, Wang, T.C.. Optimal design of the electromagnetic levitation with permanent and electro magnets. IEEE transactions on magnetics, vol.30, no.6, 4731-4733.

  67. Wang, T.C., Tzeng, Yeou-Kuang. A new electromagnetic levitation system for rapid transit and high speed transportation. IEEE transactions on magnetics, vol.30, no.6, 4734-4736.

  68. Technical survey of the maglev train 2004 150 

  69. Sinha, P.. Design of a magnetically levitated vehicle. IEEE transactions on magnetics, vol.20, no.5, 1672-1674.

  70. Sen, P.. On linear synchronous motor (LSM) for high speed propulsion. IEEE transactions on magnetics, vol.11, no.5, 1484-1486.

  71. Yamamura, S.. Magnetic levitation technology of tracked vehicles present status and prospects. IEEE transactions on magnetics, vol.12, no.6, 874-878.

  72. Coffey, H.T.. US maglev: status and opportunities. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.3, no.1, 863-868.

  73. Gamble, B., Cope, D., Leung, E.. Design of a superconducting magnet system for Maglev applications. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.3, no.1, 434-437.

  74. Yong-Joo Kim, Pan-Seok Shin, Do-Hyun Kang, Yun-Hyun Cho. Design and analysis of electromagnetic system in a magnetically levitated vehicle, KOMAG-01. IEEE transactions on magnetics, vol.28, no.5, 3321-3323.

  75. Yan, Luguang. Suggestion for selection of Maglev option for Beijing-Shanghai high-speed line. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.14, no.2, 936-939.

  76. Electric Power Applications IEE Proceedings B [see also IEE Proceedings-Electric Power Applications] review of recent progress in linear motors mclean 1988 10.1049/ip-b.1988.0042 135 380 

  77. Holmer, P.. Faster than a speeding bullet train. IEEE spectrum, vol.40, no.8, 30-34.

  78. Boldea, I., Trica, A., Papusoiu, G., Nasar, S.A.. Field tests on a MAGLEV with passive guideway linear inductor motor transportation system. IEEE transactions on vehicular technology, vol.37, no.4, 213-219.

  79. Wang, Suyu, Wang, Jiasu, Wang, Xiaorong, Ren, Zhongyou, Zeng, Youwen, Deng, Changyan, Jiang, He, Zhu, Min, Lin, Guobin, Xu, Zhipei, Zhu, Degui, Song, Honghai. The man-loading high-temperature superconducting Maglev test vehicle. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.13, no.2, 2134-2137.

  80. Meins, J., Miller, L., Mayer, W.J.. The high speed Maglev transport system TRANSRAPID. IEEE transactions on magnetics, vol.24, no.2, 808-811.

  81. Lang, C., Jones, W.D.. Virginia Maglev System Off to Shaky Start. IEEE spectrum, vol.40, no.11, 14-15.

  82. Rosenblatt, A.. Riding on air in Virginia [Maglev train]. IEEE spectrum, vol.39, no.10, 20-21.

  83. Luguang, Yan. Progress of high-speed Maglev in China. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.12, no.1, 944-947.

  84. Powell, J.R., Danby, G.T.. Maglev vehicles-raising transportation advances of the ground. IEEE potentials, vol.15, no.4, 7-12.

  85. Post, R.F., Ryutov, D.D.. The Inductrack: a simpler approach to magnetic levitation. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.10, no.1, 901-904.

  86. Nakashima, H.. The superconducting magnet for the Maglev transport system. IEEE transactions on magnetics, vol.30, no.4, 1572-1578.

  87. Sawada, K.. Development of magnetically levitated high speed transport system in Japan. IEEE transactions on magnetics, vol.32, no.4, 2230-2235.

  88. Aoki, S.. 3-dimensional magnetic field calculation of the levitation magnet for HSST by the finite element method. IEEE transactions on magnetics, vol.16, no.5, 725-727.

  89. Knowles, R.. Dynamic circuit and Fourier series methods for moment calculation in electrodynamic repulsive magnetic levitation systems. IEEE transactions on magnetics, vol.18, no.4, 953-960.

  90. Williams, J., Paul, R., Simkin, J.. Three-dimensional finite-element modelling of a superconducting suspension system. IEEE transactions on magnetics, vol.19, no.6, 2615-2618.

  91. Hayafune, K., Masada, E.. Dynamics of the PM type linear synchronous motor for magnetically levitated carrier vehicle. IEEE transactions on magnetics, vol.23, no.5, 2578-2580.

  92. Takahashi, T., Kurita, K.. Computation of eddy currents induced in a conducting sheet under moving magnets. IEEE transactions on magnetics, vol.24, no.1, 197-200.

  93. Tsuchimoto, M., Miya, K., Yamashita, A., Hashimoto, M.. An analysis of eddy current and Lorentz force of thin plates under moving magnets. IEEE transactions on magnetics, vol.28, no.2, 1434-1437.

  94. Atherton, D., Eastham, A.. Superconducting maglev and LSM development in canada. IEEE transactions on magnetics, vol.11, no.2, 627-632.

  95. Saitoh, T., Maki, N., Kobayashi, T., Shibata, M., Takizawa, T.. Electromagnetic force and eddy current loss in dynamic behavior of a superconducting magnetically levitated vehicle. IEEE transactions on applied superconductivity : a publication of the IEEE Superconductivity Committee, vol.3, no.1, 417-420.

  96. Reitz, J., Borcherts, R.. U.S. department of transportation program in magnetic suspension (repulsion concept). IEEE transactions on magnetics, vol.11, no.2, 615-618.

  97. IEEE Trans Magn applications of the dynamic circuit theory to maglev suspension systems he 1993 10.1109/20.280868 29 4153 

  98. Ohtsuka, T., Kyotani, Y.. Superconducting maglev tests. IEEE transactions on magnetics, vol.15, no.6, 1416-1421.

  99. Fukumoto, H., Kameoka, Y., Yoshioka, K., Takizawa, T., Kobayashi, T.. Application of 3D eddy current analysis on magnetically levitated vehicles. IEEE transactions on magnetics, vol.29, no.2, 1878-1881.

  100. Thornton, R.. Magnetic levitation and propulsion, 1975. IEEE transactions on magnetics, vol.11, no.4, 981-995.

  101. Andriollo, M., Martinelli, G., Morini, A., Tortella, A.. FEM calculation of the LSM propulsion force in EMS-MAGLEV trains. IEEE transactions on magnetics, vol.32, no.5, 5064-5066.

  102. Ohtsuka, T., Kyotani, Y.. Superconducting levitated high speed ground transportation project in Japan. IEEE transactions on magnetics, vol.11, no.2, 608-614.

  103. Kyotani, Y.. Recent progress by JNR on Maglev. IEEE transactions on magnetics, vol.24, no.2, 804-807.

  104. Nakamura, S.. Development of high speed surface transport system (IISST). IEEE transactions on magnetics, vol.15, no.6, 1428-1433.

  105. Oshima, K.. Superconducting magnetic levitation train project in Japan. IEEE transactions on magnetics, vol.17, no.5, 2338-2342.

  106. Bohn, G., Steinmetz, G.. The electromagnetic levitation and guidance technology of the 'transrapid' test facility Emsland. IEEE transactions on magnetics, vol.20, no.5, 1666-1671.

  107. Suzuki, S., Kawashima, M., Hosoda, Y., Tanida, T.. HSST-03 system. IEEE transactions on magnetics, vol.20, no.5, 1675-1677.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로