$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Heat transfer characteristics of nanofluids: a review

International journal of thermal sciences = Revue générale de thermique, v.46 no.1, 2007년, pp.1 - 19  

Wang, X.Q. (Department of Mechanical Engineering, National University of Singapore, 10 Kent Ridge Crescent, Singapore, 119260) ,  Mujumdar, A.S.

Abstract AI-Helper 아이콘AI-Helper

Research in convective heat transfer using suspensions of nanometer-sized solid particles in base liquids started only over the past decade. Recent investigations on nanofluids, as such suspensions are often called, indicate that the suspended nanoparticles markedly change the transport properties a...

주제어

참고문헌 (110)

  1. Maxwell 1881 A Treatise on Electricity and Magnetism 

  2. S.U.S. Choi, Enhancing thermal conductivity of fluids with nanoparti-cles, Developments and Applications of Non-Newtonian Flows, FED-vol. 231/MD-vol. 66, 1995, pp. 99-105 

  3. Materials Today Keblinski 8 6 36 2005 10.1016/S1369-7021(05)70936-6 Nanofluids for thermal transport 

  4. Journal of Crystal Growth Akoh 45 495 1978 10.1016/0022-0248(78)90482-7 Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate 

  5. 10.1557/PROC-457-149 M. Wagener, B.S. Murty, B. Gunther, Preparation of metal nanosus-pensions by high-pressure DC-sputtering on running liquids, in: S. Ko-marnenl, J.C. Parker, H.J. Wollenberger (Eds.), Nanocrystalline and Nanocomposite Materials II, vol. 457, Materials Research Society, Pittsburgh, PA, 1997, pp. 149-154 

  6. 10.1557/PROC-457-3 J.A. Eastman, U.S. Choi, S. Li, L.J. Thompson, S. Lee, Enhanced thermal conductivity through the development of nanofluids, Materials Research Society Symposium - Proceedings, vol. 457, Materials Research Society, Pittsburgh, PA, USA, Boston, MA, USA, 1997, pp. 3-11 

  7. Journal of Colloid and Interface Science Zhu 227 100 2004 10.1016/j.jcis.2004.04.026 A novel one-step chemical method for preparation of copper nanofluids 

  8. Journal of Crystal Growth Lo 277 1-4 636 2005 10.1016/j.jcrysgro.2005.01.067 Shape-controlled synthesis of Cu-based nanofluid using submerged arc nanoparticle synthesis system (SANSS) 

  9. JSME International Journal, Series B: Fluids and Thermal Engineering Lo 48 4 750 2006 10.1299/jsmeb.48.750 Ni nano-magnetic fluid prepared by submerged arc nano synthesis system (sanss) 

  10. Journal of Heat Transfer Lee 121 280 1999 10.1115/1.2825978 Measuring thermal conductivity of fluids containing oxide nanoparticles 

  11. Journal of Thermophysics and Heat Transfer Wang 13 4 474 1999 10.2514/2.6486 Thermal conductivity of nanoparticle-fluid mixture 

  12. International Journal of Thermal Sciences Murshed 44 4 367 2005 10.1016/j.ijthermalsci.2004.12.005 Enhanced thermal conductivity of TiO2-water based nanofluids 

  13. International Journal of Heat and Fluid Transfer Xuan 21 58 2000 10.1016/S0142-727X(99)00067-3 Heat transfer enhancement of nanofluids 

  14. Y.J. Hwang, Y.C. Ahn, H.S. Shin, C.G. Lee, G.T. Kim, H.S. Park, J.K. Lee, Investigation on characteristics of thermal conductivity enhancement of nanofluids, Current Applied Physics, in press 

  15. Physica A Kestin 92 102 1978 10.1016/0378-4371(78)90023-7 A contribution to the theory of the transient hot-wire technique for thermal conductivity measurements 

  16. ASME Trans. J. Heat Transfer Das 125 567 2003 10.1115/1.1571080 Temperature dependence of thermal conductivity enhancement for nanofluids 

  17. Journal of Physics E: Scientific Instruments Nagasaka 14 1435 1981 10.1088/0022-3735/14/12/020 Absolute measurement of the thermal conductivity of electrically conducting liquids by the transient hot-wire method 

  18. Roetzel vol. 21 201 1990 Measurement of thermal diffusivity using temperature oscillations 

  19. International Journal of Thermophysics Czarnetzki 16 2 413 1995 10.1007/BF01441907 Temperature oscillation techniques for simultaneous measurement of thermal diffusivity and conductivity 

  20. Netsu Bus-sei (Japan) Masuda 7 4 227 1993 10.2963/jjtp.7.227 Alteration of thermal conductivity and viscosity of liquid by dispersing ultra-fine particles (dispersion of 7-AI2O3, SiO2, and TiO2 ultra-fine particles) 

  21. Journal of Applied Physics Xie 91 7 4568 2002 10.1063/1.1454184 Thermal conductivity enhancement of suspensions containing nanosized alumina particles 

  22. Applied Physics Letters Eastman 78 6 718 2001 10.1063/1.1341218 Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles 

  23. Journal of Applied Physics Hong 97 6 1 2005 10.1063/1.1861145 Study of the enhanced thermal conductivity of Fe nanofluids 

  24. Applied Physics Letters Hong 88 3 31901 2006 10.1063/1.2166199 Thermal conductivity of fe nanofluids depending on the cluster size of nanoparticles 

  25. Journal of the Chinese Ceramic Society Xie 29 4 361 2001 Study on the thermal conductivity of sic nanofluids 

  26. International Journal of Thermophysics Xie 23 2 571 2002 10.1023/A:1015121805842 Thermal conductivity of suspensions containing nanosized SiC particles 

  27. I&EC Fundam Hamilton 1 182 1962 10.1021/i160003a005 Thermal conductivity of heterogeneous two-component systems 

  28. Journal of Applied Physics Li 99 8 084314 2006 10.1063/1.2191571 Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids) 

  29. Applied Physics Letters Patel 83 2931 2003 10.1063/1.1602578 Thermal conductivities of naked and monolayer protected metal nanoparticle based nanofluids: Manifestation of anomalous enhancement and chemical effects 

  30. Journal of Applied Physics Putnam 99 8 084308 2006 10.1063/1.2189933 Thermal conductivity of nanoparticle suspensions 

  31. Nature Iijima 354 6348 56 1991 10.1038/354056a0 Helical microtubules of graphitic carbon 

  32. Applied Physics Letters Choi 79 2252 2001 10.1063/1.1408272 Anomalous thermal conductivity enhancement in nano-tube suspensions 

  33. Journal of Applied Physics Xie 94 8 4967 2003 10.1063/1.1613374 Nanofluids containing multiwalled carbon nanotubes and their enhanced thermal conductivities 

  34. Applied Physics Letters Biercuk 80 15 2767 2002 10.1063/1.1469696 Carbon nanotube composites for thermal management 

  35. 10.1063/1.1426893 M. Llaguno, J. Hone, A. Johnson, J. Fischer, Thermal conductivity of single-wall carbon nanotubes: diameter and annealing dependence, in: H. Kuzmany, J. Fink, M. Mehring, S. Roth (Eds.), AIP Conference Proceedings, vol. 591, Woodbury, New York, 2001 

  36. Journal of Applied Physics Choi 94 9 6034 2003 10.1063/1.1616638 Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing 

  37. Journal of Thermo-physics and Heat Transfer Wen 18 4 481 2004 10.2514/1.9934 Effective thermal conductivity of aqueous suspensions of carbon nanotubes (carbon nanotube nanofluids) 

  38. International Journal of Heat and Mass Transfer Ding 49 1-2 240 2005 Heat transfer of aqueous suspensions of carbon nanotubes (CNT nanofluids) 

  39. M.J. Assael, C.F. Chen, I.N. Metaxa, W.A. Wakeham, Thermal conductivity of suspensions of carbon nanotubes in water, in: 15th Symposium on Thermophysical Properties, National Institute of Standards, University of Colorado, Boulder, USA, 2003 

  40. International Journal of Thermophysics Assael 25 4 971 2004 10.1023/B:IJOT.0000038494.22494.04 Thermal conductivity of suspensions of carbon nanotubes in water 

  41. International Journal of Thermophysics Assael 26 3 647 2005 10.1007/s10765-005-5569-3 Thermal conductivity enhancement in aqueous suspensions of carbon multi-walled and double-walled nanotubes in the presence of two different dispersants 

  42. International Communications in Heat and Mass Transfer Liu 32 9 1202 2005 10.1016/j.icheatmasstransfer.2005.05.005 Enhancement of thermal conductivity with carbon nanotube for nanofluids 

  43. Tsinghua Sci. Tech. Li 7 2 198 2002 Experimental viscosity measurements for copper oxide nanoparticle suspensions 

  44. International Journal of Heat and Mass Transfer Das 46 5 851 2003 10.1016/S0017-9310(02)00348-4 Pool boiling characteristics of nano-fluids 

  45. 10.1115/IMECE1996-0161 S. Lee, S.U.S. Choi, Application of metallic nanoparticle suspensions in advanced cooling systems, in: 1996 International Mechanical Engineering Congress and Exhibition, Atlanta, USA, 1996 

  46. Journal of Heat Transfer Xuan 125 151 2003 10.1115/1.1532008 Investigation on convective heat transfer and flow features of nanofluids 

  47. International Journal of Heat and Mass Transfer Wen 47 24 5181 2004 10.1016/j.ijheatmasstransfer.2004.07.012 Experimental investigation into convective heat transfer of nanofluids at the entrance region under laminar flow conditions 

  48. International Communications in Heat and Mass Transfer Heris 33 4 529 2006 10.1016/j.icheatmasstransfer.2006.01.005 Experimental investigation of oxide nanofluids laminar flow convective heat transfer 

  49. H.-T. Chien, C.-I. Tsai, P.-H. Chen, P.-Y. Chen, Improvement on thermal performance of a disk-shaped miniature heat pipe with nanofluid, in: ICEPT 2003, Fifth International Conference on Electronic Packaging Technology, Proceedings (IEEE Cat. No.03EX750), IEEE, Shanghai, China, 2003, p. 389 

  50. Material Letters Tsai 58 1461 2004 10.1016/j.matlet.2003.10.009 Effect of structural character of gold nanoparticles in nanofluid on heat pipe thermal performance 

  51. Applied Physics Letters Ma 88 14 143116 2006 10.1063/1.2192971 Effect of nanofluid on the heat transport capability in an oscillating heat pipe 

  52. Experimental Heat Transfer Pak 11 2 151 1998 10.1080/08916159808946559 Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles 

  53. International Journal of Heat and Mass Transfer Yang 48 6 1107 2005 10.1016/j.ijheatmasstransfer.2004.09.038 Heat transfer properties of nanoparticle-in-fluid dispersions (nanofluids) in laminar flow 

  54. International Journal of Heat and Mass Transfer Khanafer 46 3639 2003 10.1016/S0017-9310(03)00156-X Bouyancy-driven heat transfer enhancement in a two-dimensional enclosure utilizing nanofluids 

  55. Heat and Mass Transfer Putra 39 8-9 775 2003 10.1007/s00231-002-0382-z Natural convection of nano-fluids 

  56. International Journal of Heat and Fluid Flow Wen 26 6 855 2005 10.1016/j.ijheatfluidflow.2005.10.005 Formulation of nanofluids for natural convective heat transfer applications 

  57. D. Faulkner, M. Khotan, R. Shekarriz, Practical design of a 1000 W/cm2 cooling system, in: Annual IEEE Semiconductor Thermal Measurement and Management Symposium, Institute of Electrical and Electronics Engineers Inc., San Jose, CA, United States, 2003, pp. 223-230 

  58. S. Witharana, Boiling of refrigerants on enhanced surfaces and boiling of nanofluids, PhD thesis, The Royal Institute of Technology, 2003 

  59. C.H. Li, B.X. Wang, X.F. Peng, Experimental investigations on boiling of nano-particle suspensions, in: 2003 Boiling Heat Transfer Conference, Jamica, USA, 2003 

  60. International Journal of Multiphase Flow Das 29 8 1237 2003 10.1016/S0301-9322(03)00105-8 Pool boiling of nano-fluids on horizontal narrow tubes 

  61. 10.1016/j.ijheatmasstransfer.2004.12.047 I.C. Bang, S.H. Chang, Boiling heat transfer performance and phenomena of Al2O3-water nanofluids from a plain surface in a pool, in: Proceedings of ICAPP, Pitterburgh, US, 2004 

  62. International Journal of Heat and Mass Transfer Bang 48 12 2420 2005 10.1016/j.ijheatmasstransfer.2004.12.047 Boiling heat transfer performance and phenomena of Al2O3-water nano-fluids from a plain surface in a pool 

  63. J.P. Tu, N. Dinh, T. Theofanous, An experimental study of nanofluid boiling heat transfer, in: Proceedings of 6th International Symposium on Heat Transfer, Beijing, China, 2004 

  64. Applied Physics Letters You 83 3374 2003 10.1063/1.1619206 Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer 

  65. International Journal of Heat and Mass Transfer Vassallo 47 407 2004 10.1016/S0017-9310(03)00361-2 Pool boiling heat transfer experiments in silica-water nano-fluids 

  66. International Journal of Heat and Mass Transfer Zhou 47 3109 2004 10.1016/j.ijheatmasstransfer.2004.02.018 Heat transfer enhancement of copper nanofluid with acoustic cavitation 

  67. Journal of Nanoparticle Research Wen 7 2 265 2005 10.1007/s11051-005-3478-9 Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids 

  68. International Journal of Heat and Mass Transfer Keblinski 45 855 2002 10.1016/S0017-9310(01)00175-2 Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids) 

  69. Annu. Rev. Mater. Res. Eastman 34 219 2004 10.1146/annurev.matsci.34.052803.090621 Thermal transport in nanofluids 

  70. Journal of Nanoparticle Research Yu 5 1-2 167 2003 10.1023/A:1024438603801 The role of interfacial layers in the enhanced thermal of nanofluids: a renovated Maxwell model 

  71. Journal of Nanoparticle Research Yu 6 4 355 2004 10.1007/s11051-004-2601-7 The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Hamilton-Crosser model 

  72. International Journal of Heat and Mass Transfer Xue 47 19-20 4277 2004 10.1016/j.ijheatmasstransfer.2004.05.016 Effect of liquid layering at the liquid-solid interface on thermal transport 

  73. International Journal of Heat and Mass Transfer Khaled 48 11 2172 2005 10.1016/j.ijheatmasstransfer.2004.12.035 Heat transfer enhancement through control of thermal dispersion effects 

  74. Microfluidics and Nanofluidics Wen 1 2 183 2005 10.1007/s10404-004-0027-2 Effect of particle migration on heat transfer in suspensions of nanoparticles flowing through minichannels 

  75. Powder Technology Ding 149 2-3 84 2005 10.1016/j.powtec.2004.11.012 Particle migration in a flow of nanoparticle suspensions 

  76. International Communications in Heat and Mass Transfer Koo 32 9 1111 2005 10.1016/j.icheatmasstransfer.2005.05.014 Impact analysis of nanoparticle motion mechanisms on the thermal conductivity of nanofluids 

  77. Applied Physics Letters Evans 88 9 93116 2006 10.1063/1.2179118 Role of Brownian motion hydrodynamics on nanofluid thermal conductivity 

  78. Journal of Physical Chemistry B Lee 110 9 4323 2006 10.1021/jp057225m A new parameter to control heat transport in nanofluids: Surface charge state of the particle in suspension 

  79. Transactions of the ASME, Journal of Heat Transfer Vadasz 128 5 465 2006 10.1115/1.2175149 Heat conduction in nanofluid suspensions 

  80. Annalen der Physik, Leipzig Bruggeman 24 636 1935 10.1002/andp.19354160705 Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen, I. Dielektrizitatskonstanten und Leitfahigkeiten der Mischkorper aus isotropen Substanzen 

  81. Journal of Applied Physics Schwartz 78 10 5898 1995 10.1063/1.360591 Interfacial transport in porous media: Application to dc electrical conductivity of mortars 

  82. Physics Letters A Xue 307 313 2003 10.1016/S0375-9601(02)01728-0 Model for effective thermal conductivity of nanofluids 

  83. Physics of Fluids Kim 16 7 2395 2004 10.1063/1.1739247 Analysis of convective instability and heat transfer characteristics of nanofluids 

  84. Materials Chemistry and Physics Xue 90 2-3 298 2005 10.1016/j.matchemphys.2004.05.029 A model of thermal conductivity of nanofluids with interfacial shells 

  85. International Journal of Heat and Mass Transfer Xie 48 14 2926 2005 10.1016/j.ijheatmasstransfer.2004.10.040 Effect of interfacial nanolayer on the effective thermal conductivity of nanoparticle-fluid mixture 

  86. AIChE Journal Xuan 49 4 1038 2003 10.1002/aic.690490420 Aggregation structure and thermal conductivity of nanofluids 

  87. Mandelbrot 1982 The Fractal Geometry of Nature 

  88. International Journal of Heat and Mass Transfer Wang 46 2665 2003 10.1016/S0017-9310(03)00016-4 A fractal model for predicting the effective thermal conductivity of liquid with suspension of nanoparticles 

  89. Physical Review Letters Kumar 93 14 144301 2004 10.1103/PhysRevLett.93.144301 Model for heat conduction in nanofluids 

  90. Journal of Applied Physics Bhattacharya 95 11 6492 2004 10.1063/1.1736319 Brownian dynamics simulation to determine the effective thermal conductivity of nanofluids 

  91. Applied Physics Letters Jang 84 4316 2004 10.1063/1.1756684 Role of Brownian motion in the enhanced thermal conductivity of nanofluids 

  92. Physical Review Letters Prasher 94 2 025901 2005 10.1103/PhysRevLett.94.025901 Thermal conductivity of nanoscale colloidal solutions (nanofluids) 

  93. Journal of Nanoparticle Research Koo 6 6 577 2004 10.1007/s11051-004-3170-5 A new thermal conductivity model for nanofluids 

  94. International Journal of Heat and Mass Transfer Koo 48 13 2652 2005 10.1016/j.ijheatmasstransfer.2005.01.029 Laminar nanofluid flow in micro-heat sinks 

  95. Chemical Physics Letters Nan 375 5-6 666 2003 10.1016/S0009-2614(03)00956-4 A simple model for thermal conductivity of carbon nanotube-based composites 

  96. Applied Physics Letters Nan 85 3549 2004 10.1063/1.1808874 Interface effect on thermal conductivity of carbon nanotube composites 

  97. L. Gao, X.F. Zhou, Differential effective medium theory for thermal conductivity in nanofluids, Physics Letters A, in press 

  98. Physica B: Condensed Matter Xue 368 1-4 302 2005 10.1016/j.physb.2005.07.024 Model for thermal conductivity of carbon nanotube-based composites 

  99. Nanotechnology Xue 17 6 1655 2006 10.1088/0957-4484/17/6/020 Model for the effective thermal conductivity of carbon nanotube composites 

  100. Wasp 1999 Solid-liquid Slurry Pipeline Transportation 

  101. Superlattices and Microstructures Maiga 35 543 2004 10.1016/j.spmi.2003.09.012 Heat transfer behaviours of nanofluids in a uniformly heated tube 

  102. Maiga vol. 5 453 2004 Hydrodynamic and thermal behaviours of a nanofluid in a uniformly heated tube 

  103. International Journal of Heat and Fluid Flow Maiga 26 4 530 2005 10.1016/j.ijheatfluidflow.2005.02.004 Heat transfer enhancement by using nanofluids in forced convection flows 

  104. International Journal of Numerical Methods for Heat and Fluid Flow Maiga 16 3 275 2006 10.1108/09615530610649717 Heat transfer enhancement in turbulent tube flow using Al2O3 nanopar-ticle suspension 

  105. Superlattices and Microstructures Roy 35 497 2004 10.1016/j.spmi.2003.09.011 Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids 

  106. 10.1615/IHTC13.p7.410 X.-Q. Wang, A.S. Mujumdar, C. Yap, Free convection heat transfer in horizontal and vertical rectangular cavities filled with nanofluids, in: International Heat Transfer Conference IHTC-13, Sydney, Australia, August, 2006 

  107. International Journal of Heat and Mass Transfer Xuan 43 3701 2000 10.1016/S0017-9310(99)00369-5 Conceptions for heat transfer correlation of nanofluids 

  108. 10.1115/IMECE2004-61054 S.P. Jang, S.U.S. Choi, Free convection in a rectangular cavity (Benard convection) with nanofluids, in: Proceedings of IMECE, Anaheim, California, USA, 2004, pp. 13-19 

  109. Heat and Mass Transfer/Waerme- und Stoffuebertragung Xuan 41 3 199 2005 Lattice Boltzmann model for nanofluids 

  110. Progress in Computational Fluid Dynamics Xuan 5 1/2 13 2005 10.1504/PCFD.2005.005813 Investigation on flow and heat transfer of nanofluids by the thermal Lattice Boltzmann model 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로