$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Particular vulnerability of rat mesencephalic dopaminergic neurons to tetrahydrobiopterin: Relevance to Parkinson’s disease

Neurobiology of disease, v.25 no.1, 2007년, pp.112 - 120  

Lee, So Yeon (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-ku, Seoul, 138-736, Korea) ,  Moon, Younghye (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-ku, Seoul, 138-736, Korea) ,  Hee Choi, Dong (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-ku, Seoul, 138-736, Korea) ,  Jin Choi, Hyun (Department of Biochemistry and Molecular Biology, University of Ulsan College of Medicine, 388-1 Pungnap-dong, Songpa-ku, Seoul, 138-736, Korea) ,  Hwang, Onyou (Corresponding author. Fax: +822 3010 4248.)

Abstract AI-Helper 아이콘AI-Helper

AbstractWe determined whether tetrahydrobiopterin(BH4), an endogenous cofactor for dopamine(DA) synthesis, causes preferential damage to DArgic neurons among primary cultured rat mesencephalic neurons and whether the death mechanism has relevance to Parkinson’s disease (PD). DArgic neurons wer...

주제어

참고문헌 (56)

  1. J. Neurochem. Alam 69 1326 1997 10.1046/j.1471-4159.1997.69031326.x A generalised increase in protein carbonyls in the brain in Parkinson’s but not incidental Lewy body disease 

  2. Brain Res. Anastasiadis 665 77 1994 10.1016/0006-8993(94)91154-1 Tetrahydrobiopterin uptake into rat brain synaptosomes, cultured PC12 cells, and rat striatum 

  3. J. Biol. Chem. Anastasiadis 276 9050 2001 10.1074/jbc.M006570200 Tetrahydrobiopterin enhances apoptotic PC12 cell death following withdrawal of trophic support 

  4. Histol. Histopathol. Anglade 12 25 1997 Apoptosis and autophagy in nigral neurons of patients with Parkinson’s disease 

  5. J. Neurochem. Berman 73 1127 1999 10.1046/j.1471-4159.1999.0731127.x Dopamine oxidation alters mitochondrial respiration and induces permeability transition in brain mitochondria: implications for Parkinson’s disease 

  6. J. Neurosci. Res. Brewer 42 674 1995 10.1002/jnr.490420510 Serum-free B27/neurobasal medium supports differentiated growth of neurons from the striatum, substantia nigra, septum, cerebral cortex, cerebellum, and dentate gyrus 

  7. Neurosci. Lett. Cheung 233 13 1997 10.1016/S0304-3940(97)00613-7 Development and survival of rat embryonic mesencephalic dopaminergic neurones in serum-free, antioxidant-rich primary cultures 

  8. J. Neurosci. Cho 19 878 1999 10.1523/JNEUROSCI.19-03-00878.1999 Blockade of tetrahydrobiopterin synthesis protects neurons after transient forebrain ischemia in rat: a novel role for the cofactor 

  9. Mol. Pharmacol. Choi 58 633 2000 10.1124/mol.58.3.633 Tetrahydrobiopterin is released from and causes preferential death of catecholaminergic cells by oxidative stress 

  10. J. Neurochem. Choi 86 143 2003 10.1046/j.1471-4159.2003.01808.x Dopamine-dependent cytotoxicity of tetrahydrobiopterin: a possible mechanism for selective neurodegeneration in Parkinson’s disease 

  11. Exp. Neurol. Choi 181 281 2003 10.1016/S0014-4886(03)00054-2 Involvement of apoptosis and calcium mobilization in tetrahydrobiopterin-induced dopaminergic cell death 

  12. Neurosci. Lett. Choi 352 89 2003 10.1016/j.neulet.2003.08.032 Utilization of Exogenous tetrahydrobiopterin in nitric oxide synthesis in human neuroblastoma cell line 

  13. J. Biol. Chem. Choi 279 13256 2004 10.1074/jbc.M314124200 Oxidative modifications and down-regulation of ubiquitin carboxyl-terminal hydrolase L1 associated with idiopathic Parkinson’s and Alzheimer’s diseases 

  14. Neurochem. Int. Choi 46 329 2005 10.1016/j.neuint.2004.10.009 Inhibition of vesicular monoamine transporter enhances vulnerability of dopaminergic cells: relevance to Parkinson’s disease 

  15. Science Conway 294 1346 2001 10.1126/science.1063522 Kinetic stabilization of the alpha-synuclein protofibril by a dopamine-alpha-synuclein adduct 

  16. Biochimie Davies 83 301 2001 10.1016/S0300-9084(01)01250-0 Degradation of oxidized proteins by the 20S proteasome 

  17. Eur. J. Biochem. Davis 173 345 1988 10.1111/j.1432-1033.1988.tb14004.x The auto-oxidation of tetrahydrobiopterin 

  18. J. Neurochem. Dexter 52 381 1989 10.1111/j.1471-4159.1989.tb09133.x Basal lipid peroxidation in substantia nigra is increased in Parkinson’s disease 

  19. J. Biol. Chem. Fisher 248 4300 1973 10.1016/S0021-9258(19)43772-1 Tetrahydropterin oxidation without hydroxylation catalyzed by rat liver phenylalanine hydroxylase 

  20. J. Neurochem. Floor 70 268 1998 10.1046/j.1471-4159.1998.70010268.x Increased protein oxidation in human substantia nigra pars compacta in comparison with basal ganglia and prefrontal cortex measured with an improved dinitrophenylhydrazine assay 

  21. Arch. Neurol. Friedlander 57 1273 2000 10.1001/archneur.57.9.1273 Role of caspase 1 in neurologic disease 

  22. Mol. Pharmacol. Graham 14 644 1978 Autoxidation versus covalent binding of quinones as the mechanism of toxicity of dopamine, 6-hydroxydopamine, and related compounds toward C1300 neuroblastoma cells in vitro 

  23. Proc. Natl. Acad. Sci. U. S. A. Hartmann 97 2875 2000 10.1073/pnas.040556597 Caspase-3: a vulnerability factor and final effector in apoptotic death of dopaminergic neurons in Parkinson’s disease 

  24. Free Radical Biol. Med. He 35 540 2003 10.1016/S0891-5849(03)00385-X Dopaminergic cell death precedes iron elevation in MPTP-injected monkeys 

  25. Nature Hirsch 334 345 1988 10.1038/334345a0 Melanized dopaminergic neurons are differentially susceptible to degeneration in Parkinson’s disease 

  26. Synapse Hwang 28 140 1998 10.1002/(SICI)1098-2396(199802)28:2<140::AID-SYN4>3.0.CO;2-B Localization of GTP cyclohydrolase in monoaminergic but not nitric oxide-producing cells 

  27. NeuroReport Hwang 10 3611 1999 10.1097/00001756-199911260-00027 Up-regulation of GTP cyclohydrolase I and tetrahydrobiopterin by calcium influx 

  28. Annu. Rev. Nutr. Kaufman 13 261 1993 10.1146/annurev.nu.13.070193.001401 New tetrahydrobiopterin-dependent systems 

  29. Free Radical Biol. Med. Keller 29 1037 2000 10.1016/S0891-5849(00)00412-3 Dopamine induces proteasome inhibition in neural PC12 cell line 

  30. J. Neurosci. Kim 20 6309 2000 10.1523/JNEUROSCI.20-16-06309.2000 Regional difference in susceptibility to lipopolysaccharide-induced neurotoxicity in the rat brain: role of microglia 

  31. Neurobiol. Dis. Kim 13 167 2003 10.1016/S0969-9961(03)00037-8 Degeneration of the nigrostriatal pathway and induction of motor deficit by tetrahydrobiopterin: an in vivo model relevant to Parkinson’s disease 

  32. Neurosci. Lett. Kim 359 69 2004 10.1016/j.neulet.2004.02.015 Loss of striatal dopaminergic fibers after intraventricular injection of tetrahydrobiopterin in rat brain 

  33. J. Neurochem. Kim 95 89 2005 10.1111/j.1471-4159.2005.03342.x Immobilization stress causes increases in tetrahydrobiopterin, dopamine, and neuromelanin and oxidative damage in the nigrostriatal system 

  34. J. Neurosci. Kim 25 3701 2005 10.1523/JNEUROSCI.4346-04.2005 Matrix metalloproteinase-3: a novel signaling proteinase from apoptotic neuronal cells that activates microglia 

  35. J. Biol. Chem. Kirsch 278 24481 2003 10.1074/jbc.M211779200 The autoxidation of tetrahydrobiopterin revisited. Proof of superoxide formation from reaction of tetrahydrobiopterin with molecular oxygen 

  36. J. Neurochem. Kuhn 73 1309 1999 10.1046/j.1471-4159.1999.0731309.x Tyrosine hydroxylase is inactivated by catechol-quinones and converted to a redox-cycling quinoprotein: possible relevance to Parkinson’s disease 

  37. J. Biol. Chem. Kwon 264 20496 1989 10.1016/S0021-9258(19)47089-0 Reduced biopterin as a cofactor in the generation of nitrogen oxides by murine macrophages 

  38. J. Neurosci. LaVoie 19 1484 1999 10.1523/JNEUROSCI.19-04-01484.1999 Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine 

  39. Neurochem. Int. Lee 40 361 2002 10.1016/S0197-0186(01)00069-9 Differential effect of catecholamines and MPP(+) on membrane permeability in brain mitochondria and cell viability in PC12 cells 

  40. J. Neurochem. Madsen 85 214 2003 10.1046/j.1471-4159.2003.01666.x Tetrahydrobiopterin precursor sepiapterin provides protection against neurotoxicity of 1-methyl-4-phenylpyridinium in nigral slice cultures 

  41. J. Neurol. Sci. Mochizuki 137 120 1996 10.1016/0022-510X(95)00336-Z Histochemical detection of apoptosis in Parkinson’s disease 

  42. J. Neural Transm. Mogi 107 335 2000 10.1007/s007020050028 Caspase activities and tumor necrosis factor receptor R1 (p55) level are elevated in the substantia nigra from parkinsonian brain 

  43. Annu. Rev. Neurosci. Moore 28 57 2005 10.1146/annurev.neuro.28.061604.135718 Molecular pathophysiology of Parkinson’s disease 

  44. J. Neural Transm. Gen. Sect. Nagatsu 102 175 1995 10.1007/BF01281153 Immunocytochemical localization of GTP cyclohydrolase I in the brain, adrenal gland, and liver of mice 

  45. J. Neurochem. Nakamura 74 2305 2000 10.1046/j.1471-4159.2000.0742305.x Preferential resistance of dopaminergic neurons to the toxicity of glutathione depletion is independent of cellular glutathione peroxidase and is mediated by tetrahydrobiopterin 

  46. J. Biol. Chem. Nakamura 276 34402 2001 10.1074/jbc.M103766200 Tetrahydrobiopterin scavenges superoxide in dopaminergic neurons 

  47. J. Neural Transm. Obata 109 1159 2002 10.1007/s00702-001-0683-2 Dopamine efflux by MPTP and hydroxyl radical generation 

  48. Curr. Drug Metab. Oettl 3 203 2002 10.2174/1389200024605127 Pteridine derivatives as modulators of oxidative stress 

  49. Ann. Neurol. Sian 36 348 1994 10.1002/ana.410360305 Alterations in glutathione levels in Parkinson’s disease and other neurodegenerative disorders affecting basal ganglia 

  50. Neurosci. Lett. Sofic 142 128 1992 10.1016/0304-3940(92)90355-B Reduced and oxidized glutathione in the substantia nigra of patients with Parkinson’s disease 

  51. Cell Tissue Res. Teismann 318 149 2004 10.1007/s00441-004-0944-0 Cellular pathology of Parkinson’s disease: astrocytes, microglia and inflammation 

  52. Free Radical Biol. Med. Thoeni 37 375 2004 10.1016/j.freeradbiomed.2004.05.010 Tetrahydropteridines suppress gene expression and induce apoptosis of activated RAW264.7 cells via formation of hydrogen peroxide 

  53. J. Neurosci. Res. Velasco 71 811 2003 10.1002/jnr.10538 Influence of serum-free medium on the expression of glutamate transporters and the susceptibility to glutamate toxicity in cultured cortical neurons 

  54. FASEB J. Wilms 17 500 2003 10.1096/fj.02-0314fje Activation of microglia by human neuromelanin is NF-kappaB dependent and involves p38 mitogen-activated protein kinase: implications for Parkinson’s disease 

  55. Biochem. Biophys. Res. Commun. Wong 298 750 2002 10.1016/S0006-291X(02)02546-9 High-throughput measurement of mitochondrial membrane potential in a neural cell line using a fluorescence plate reader 

  56. FASEB J. Zhang 19 533 2005 10.1096/fj.04-2751com Aggregated alpha-synuclein activates microglia: a process leading to disease progression in Parkinson’s disease 

LOADING...

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로