$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Integrating cell-signalling pathways with NF-κB and IKK function

Nature reviews. Molecular cell biology, v.8 no.1, 2007년, pp.49 - 62  

Perkins, Neil D. (College of Life Sciences, Division of Gene Regulation and Expression, James Black Centre, Dow Street, University of Dundee, Dundee, DD1 5EH, Scotland, UK. n.d.perkins@dundee.ac.uk)

Abstract AI-Helper 아이콘AI-Helper

Nuclear factor (NF)-κB and inhibitor of NF-κB kinase (IKK) proteins regulate many physiological processes, including the innate- and adaptive-immune responses, cell death and inflammation. Disruption of NF-κB or IKK function contributes to many human diseases, including cancer. Howeve...

참고문헌 (136)

  1. Genes Dev. MS Hayden 18 2195 2004 10.1101/gad.1228704 Hayden, M. S. & Ghosh, S. Signaling to NF-κB. Genes Dev. 18, 2195-2224 (2004). This review of the mechanisms of NF-κB activation provides a comprehensive analysis of the NF-κB-signalling pathway. 

  2. Trends Immunol. G Bonizzi 25 280 2004 10.1016/j.it.2004.03.008 Bonizzi, G. & Karin, M. The two NF-κB activation pathways and their role in innate and adaptive immunity. Trends Immunol. 25, 280-288 (2004). 

  3. Oncogene S Gerondakis 18 6888 1999 10.1038/sj.onc.1203236 Gerondakis, S., Grossmann, M., Nakamura, Y., Pohl, T. & Grumont, R. Genetic approaches in mice to understand Rel/NF-κB and IκB function: transgenics and knockouts. Oncogene 18, 6888-6895 (1999). 

  4. Cell Death Differ. M Pasparakis 13 861 2006 10.1038/sj.cdd.4401870 Pasparakis, M., Luedde, T. & Schmidt-Supprian, M. Dissection of the NF-κB signalling cascade in transgenic and knockout mice. Cell Death Differ. 13, 861-872 (2006). Genetic experiments in mice provide much of the basis for our understanding of the NF-κB and IKK pathway. Reference 3 summarizes fundamental information about different NF-κB-, IκB- and IKK-knockout mouse phenotypes. Reference 4 describes how these mice have been used to study the role of the NF-κB and IKK pathway in physiological processes and human diseases. These reviews are both essential reading. 

  5. Oncogene HL Pahl 18 6853 1999 10.1038/sj.onc.1203239 Pahl, H. L. Activators and target genes of Rel/NF-κB transcription factors. Oncogene 18, 6853-6866 (1999). 

  6. Cell Death Differ. ND Perkins 13 759 2006 10.1038/sj.cdd.4401838 Perkins, N. D. & Gilmore, T. D. Good cop, bad cop: the different faces of NF-κB. Cell Death Differ. 13, 759-772 (2006). Inhibiting NF-κB might not be all good news. This review discusses how NF-κB functions can vary depending on the biological context, and in some cases display apparently contradictory roles. 

  7. Nature Rev. Drug Discov. M Karin 3 17 2004 10.1038/nrd1279 Karin, M., Yamamoto, Y. & Wang, Q. M. The IKK NF-κB system: a treasure trove for drug development. Nature Rev. Drug Discov. 3, 17-26 (2004). 

  8. Cell Death Differ. HJ Kim 13 738 2006 10.1038/sj.cdd.4401877 Kim, H. J., Hawke, N. & Baldwin, A. S. NF-κB and IKK as therapeutic targets in cancer. Cell Death Differ. 13, 738-747 (2006). Targeting the NF-κB pathway is now recognized as a potential therapy for many inflammatory diseases and cancer. References 7 and 8 provide the rationale for why this is the case and describe the strategies that can be used. 

  9. J. Mol. Med. A Kumar 82 434 2004 10.1007/s00109-004-0555-y Kumar, A., Takada, Y., Boriek, A. M. & Aggarwal, B. B. Nuclear factor-κB: its role in health and disease. J. Mol. Med. 82, 434-448 (2004). 

  10. EMBO J. A Hoffmann 22 5530 2003 10.1093/emboj/cdg534 Hoffmann, A., Leung, T. H. & Baltimore, D. Genetic analysis of NF-κB/Rel transcription factors defines functional specificities. EMBO J. 22, 5530-5539 (2003). 

  11. EMBO J. P Dobrzanski 13 4608 1994 10.1002/j.1460-2075.1994.tb06782.x Dobrzanski, P., Ryseck, R. P. & Bravo, R. Differential Interactions of Rel-NF-κB complexes with IκBα determine pools of constitutive and inducible NF-κB activity. EMBO J. 13, 4608-4616 (1994). 

  12. Oncogene ND Perkins 25 6717 2006 10.1038/sj.onc.1209937 Perkins, N. D. Post-translational modifications regulating the activity and function of the nuclear factor κB pathway. Oncogene 25, 6717-6730 (2006). 

  13. Oncogene ND Perkins 22 7553 2003 10.1038/sj.onc.1207139 Perkins, N. D. Oncogenes, tumor suppressors and p52 NF-κB. Oncogene 22, 7553-7556 (2003). 

  14. Cell L Lin 92 819 1998 10.1016/S0092-8674(00)81409-9 Lin, L., DeMartino, G. N. & Greene, W. C. Cotranslational biogenesis of NF-κB p50 by the 26S proteasome. Cell 92, 819-828 (1998). 

  15. Mol. Cell. Biol. S Cohen 24 475 2004 10.1128/MCB.24.1.475-486.2004 Cohen, S., Achbert-Weiner, H. & Ciechanover, A. Dual effects of IκB kinase β-mediated phosphorylation on p105 fate: SCF(β-TrCP)-dependent degradation and SCF(β-TrCP)-independent processing. Mol. Cell. Biol. 24, 475-486 (2004). 

  16. EMBO J. AK Moorthy 25 1945 2006 10.1038/sj.emboj.7601081 Moorthy, A. K. et al. The 20S proteasome processes NF-κB1 p105 into p50 in a translation-independent manner. EMBO J. 25, 1945-1956 (2006). 

  17. Cell Death Differ. T Kawai 13 816 2006 10.1038/sj.cdd.4401850 Kawai, T. & Akira, S. TLR signaling. Cell Death Differ. 13, 816-825 (2006). 

  18. Nature Cell Biol. ZJ Chen 7 758 2005 10.1038/ncb0805-758 Chen, Z. J. Ubiquitin signalling in the NF-κB pathway. Nature Cell Biol. 7, 758-765 (2005). 

  19. EMBO Rep. D Krappmann 6 321 2005 10.1038/sj.embor.7400380 Krappmann, D. & Scheidereit, C. A pervasive role of ubiquitin conjugation in activation and termination of IκB kinase pathways. EMBO Rep. 6, 321-326 (2005). NEMO-dependent activation of IKKβ involves a complex, ubiquitin-based signalling pathway that is comprehensively described in references 18 and 19. 

  20. Curr. Biol. KA Burns 14 R1040 2004 10.1016/j.cub.2004.11.040 Burns, K. A. & Martinon, F. Inflammatory diseases: is ubiquitinated NEMO at the hub? Curr. Biol. 14, R1040-R1042 (2004). 

  21. Nature Immunol. M Yamamoto 7 962 2006 10.1038/ni1367 Yamamoto, M. et al. Key function for the Ubc13 E2 ubiquitin-conjugating enzyme in immune receptor signaling. Nature Immunol. 7, 962-970 (2006). 

  22. Cell Death Differ. S Janssens 13 773 2006 10.1038/sj.cdd.4401843 Janssens, S. & Tschopp, J. Signals from within: the DNA-damage-induced NF-κB response. Cell Death Differ. 13, 773-784 (2006). 

  23. Science ZH Wu 311 1141 2006 10.1126/science.1121513 Wu, Z. H., Shi, Y., Tibbetts, R. S. & Miyamoto, S. Molecular linkage between the kinase ATM and NF-κB signaling in response to genotoxic stimuli. Science 311, 1141-1146 (2006). 

  24. J. Clin. Invest. JL Luo 115 2625 2005 10.1172/JCI26322 Luo, J. L., Kamata, H. & Karin, M. IKK/NF-κB signaling: balancing life and death - a new approach to cancer therapy. J. Clin. Invest. 115, 2625-2632 (2005). 

  25. Oncogene J Kucharczak 22 8961 2003 10.1038/sj.onc.1207230 Kucharczak, J., Simmons, M. J., Fan, Y. J. & Gelinas, C. To be, or not to be: NF-κB is the answer - role of Rel/NF-κB in the regulation of apoptosis. Oncogene 22, 8961-8982 (2003). Comprehensive review of the complexities surrounding NF-κB-dependent regulation of apoptosis. 

  26. Nature Med. O Herrmann 11 1322 2005 10.1038/nm1323 Herrmann, O. et al. IKK mediates ischemia-induced neuronal death. Nature Med. 11, 1322-1329 (2005). 

  27. Development FO Baxter 133 3485 2006 10.1242/dev.02502 Baxter, F. O. et al. IKKβ/2 induces TWEAK and apoptosis in mammary epithelial cells. Development 133, 3485-3494 (2006). 

  28. Cell MC Hu 117 225 2004 10.1016/S0092-8674(04)00302-2 Hu, M. C. et al. IκB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 117, 225-237 (2004). 

  29. Mol. Cell. Biol. SI Gringhuis 25 6454 2005 10.1128/MCB.25.15.6454-6463.2005 Gringhuis, S. I., Garcia-Vallejo, J. J., van Het Hof, B. & van Dijk, W. Convergent actions of IκB kinase β and protein kinase Cδ modulate mRNA stability through phosphorylation of 14-3-3β complexed with tristetraprolin. Mol. Cell. Biol. 25, 6454-6463 (2005). 

  30. J. Biol. Chem. Z Gao 277 48115 2002 10.1074/jbc.M209459200 Gao, Z. et al. Serine phosphorylation of insulin receptor substrate 1 by inhibitor κB kinase complex. J. Biol. Chem. 277, 48115-48121 (2002). 

  31. Mol. Endocrinol. J He 20 114 2006 10.1210/me.2005-0107 He, J. et al. Interleukin-1α inhibits insulin signaling with phosphorylating insulin receptor substrate-1 on serine residues in 3T3-L1 adipocytes. Mol. Endocrinol. 20, 114-124 (2006). 

  32. J. Cell. Biol. Y Nakamori 173 665 2006 10.1083/jcb.200601065 Nakamori, Y. et al. Myosin motor Myo1c and its receptor NEMO/IKK-γ promote TNF-α-induced serine307 phosphorylation of IRS-1. J. Cell. Biol. 173, 665-671 (2006). 

  33. Mol. Cell E Wegener 23 13 2006 10.1016/j.molcel.2006.05.027 Wegener, E. et al. Essential role for IκB kinase β in remodelling Carma1-Bcl10-Malt1 complexes upon T cell activation. Mol. Cell 23, 13-23 (2006). 

  34. Mol. Cell. Biol. S Beinke 24 9658 2004 10.1128/MCB.24.21.9658-9667.2004 Beinke, S., Robinson, M. J., Hugunin, M. & Ley, S. C. Lipopolysaccharide activation of the TPL-2/MEK/extracellular signal-regulated kinase mitogen-activated protein kinase cascade is regulated by IκB kinase-induced proteolysis of NF-κB1 p105. Mol. Cell. Biol. 24, 9658-9667 (2004). 

  35. Mol. Cell. Biol. M Waterfield 24 6040 2004 10.1128/MCB.24.13.6040-6048.2004 Waterfield, M., Jin, W., Reiley, W., Zhang, M. & Sun, S. C. IκB kinase is an essential component of the Tpl2 signaling pathway. Mol. Cell. Biol. 24, 6040-6048 (2004). References 34 and 35 describe how IKKβ-induced proteolysis of p105 results in TPL2 and MAP kinase-pathway activation. 

  36. Nature Cell Biol. T Bouwmeester 6 97 2004 10.1038/ncb1086 Bouwmeester, T. et al. A physical and functional map of the human TNF-α NF-κB signal transduction pathway. Nature Cell Biol. 6, 97-105 (2004). 

  37. J. Biol. Chem. J Zhang 279 17819 2004 10.1074/jbc.M310737200 Zhang, J., Xu, L. G., Han, K. J. & Shu, H. B. Identification of a ZU5 and death domain-containing inhibitor of NF-κB. J. Biol. Chem. 279, 17819-17825 (2004). 

  38. Biochem. Biophys. Res. Commun. Z Li 309 980 2003 10.1016/j.bbrc.2003.08.104 Li, Z., Zhang, J., Chen, D. & Shu, H. B. Casper/c-FLIP is physically and functionally associated with NF-κB1 p105. Biochem. Biophys. Res. Commun. 309, 980-985 (2003). 

  39. Oncogene R Ferrier 18 995 1999 10.1038/sj.onc.1202374 Ferrier, R. et al. Physical interaction of the bHLH LYL1 protein and NF-κB1 p105. Oncogene 18, 995-1005 (1999). 

  40. Proc. Natl Acad. Sci. USA S Lee 101 17416 2004 10.1073/pnas.0408061101 Lee, S. et al. IκB kinase β phosphorylates Dok1 serines in response to TNF, IL-1, or γ radiation. Proc. Natl Acad. Sci. USA 101, 17416-17421 (2004). 

  41. Mol. Cell. Biol. SD Westerheide 21 8428 2001 10.1128/MCB.21.24.8428-8436.2001 Westerheide, S. D., Mayo, M. W., Anest, V., Hanson, J. L. & Baldwin, A. S. The putative oncoprotein Bcl-3 induces cyclin D1 to stimulate G1 transition. Mol. Cell. Biol. 21, 8428-8436 (2001). 

  42. Mol. Cell. Biol. S Rocha 23 4713 2003 10.1128/MCB.23.13.4713-4727.2003 Rocha, S., Martin, A. M., Meek, D. W. & Perkins, N. D. p53 represses cyclin D1 transcription through down regulation of Bcl-3 and inducing increased association of the p52 NF-κB subunit with histone deacetylase 1. Mol. Cell. Biol. 23, 4713-4727 (2003). 

  43. Mol. Cell. Biol. RC Wu 22 3549 2002 10.1128/MCB.22.10.3549-3561.2002 Wu, R. C. et al. Regulation of SRC-3 (pCIP/ACTR/AIB-1/RAC-3/TRAM-1) coactivator activity by IκB kinase. Mol. Cell. Biol. 22, 3549-3561 (2002). 

  44. Mol. Cell KJ Park 18 71 2005 10.1016/j.molcel.2005.03.006 Park, K. J., Krishnan, V., O'Malley, B. W., Yamamoto, Y. & Gaynor, R. B. Formation of an IKKα-dependent transcription complex is required for estrogen receptor-mediated gene activation. Mol. Cell 18, 71-82 (2005). A good example of NF-κB-independent regulation of transcription by IKKα. 

  45. Mol. Biol. Cell C Albanese 14 585 2003 10.1091/mbc.02-06-0101 Albanese, C. et al. IKKα regulates mitogenic signaling through transcriptional induction of cyclin D1 via Tcf. Mol. Biol. Cell 14, 585-599 (2003). 

  46. Cell. Signal. N Carayol 18 1941 2006 10.1016/j.cellsig.2006.02.014 Carayol, N. & Wang, C. Y. IKKα stabilizes cytosolic β-catenin by inhibiting both canonical and non-canonical degradation pathways. Cell. Signal. 18, 1941-1946 (2006). 

  47. J. Biol. Chem. C Lamberti 276 42276 2001 10.1074/jbc.M104227200 Lamberti, C. et al. Regulation of β-catenin function by the IκB kinases. J. Biol. Chem. 276, 42276-42286 (2001). 

  48. Cancer Cell JO Deng 2 323 2002 10.1016/S1535-6108(02)00154-X Deng, J. O. et al. β-catenin interacts with and inhibits NF-κB in human colon and breast cancer. Cancer Cell 2, 323-334 (2002). 

  49. Nature JH Kim 434 921 2005 10.1038/nature03452 Kim, J. H. et al. Transcriptional regulation of a metastasis suppressor gene by Tip60 and β-catenin complexes. Nature 434, 921-926 (2005). 

  50. J. Biol. Chem. YT Kwak 280 33945 2005 10.1074/jbc.M506206200 Kwak, Y. T. et al. IκB kinase α regulates subcellular distribution and turnover of cyclin D1 by phosphorylation. J. Biol. Chem. 280, 33945-33952 (2005). 

  51. J. Biol. Chem. Z Tu 281 6699 2006 10.1074/jbc.M512439200 Tu, Z. et al. IKK α regulates estrogen-induced cell cycle progression by modulating E2F1 expression. J. Biol. Chem. 281, 6699-6706 (2006). 

  52. Mol. Cell JE Hoberg 16 245 2004 10.1016/j.molcel.2004.10.010 Hoberg, J. E., Yeung, F. & Mayo, M. W. SMRT derepression by the IκB kinase α: a prerequisite to NF-κB transcription and survival. Mol. Cell 16, 245-255 (2004). 

  53. Nature K Hoshino 440 949 2006 10.1038/nature04641 Hoshino, K. et al. IκB kinase-α is critical for interferon-α production induced by Toll-like receptors 7 and 9. Nature 440, 949-953 (2006). 

  54. Nature V Anest 423 659 2003 10.1038/nature01648 Anest, V. et al. A nucleosomal function for IκB kinase-α in NF-κB-dependent gene expression. Nature 423, 659-663 (2003). 

  55. Nature Y Yamamoto 423 655 2003 10.1038/nature01576 Yamamoto, Y., Verma, U. N., Prajapati, S., Kwak, Y. T. & Gaynor, R. B. Histone H3 phosphorylation by IKK-α is critical for cytokine-induced gene expression. Nature 423, 655-659 (2003). 

  56. EMBO J. A Soloaga 22 2788 2003 10.1093/emboj/cdg273 Soloaga, A. et al. MSK2 and MSK1 mediate the mitogen- and stress-induced phosphorylation of histone H3 and HMG-14. EMBO J. 22, 2788-2797 (2003). 

  57. J. Biol. Chem. EA Duncan 281 12521 2006 10.1074/jbc.M513333200 Duncan, E. A., Anest, V., Cogswell, P. & Baldwin, A. S. The kinases MSK1 and MSK2 are required for epidermal growth factor-induced, but not tumor necrosis factor-induced, histone H3 Ser10 phosphorylation. J. Biol. Chem. 281, 12521-12525 (2006). 

  58. Nature Immunol. S Saccani 3 69 2002 10.1038/ni748 Saccani, S., Pantano, S. & Natoli, G. p38-dependent marking of inflammatory genes for increased NF-κB recruitment. Nature Immunol. 3, 69-75 (2002). 

  59. Nature YL Hu 410 710 2001 10.1038/35070605 Hu, Y. L. et al. IKKα controls formation of the epidermis independently of NF-κB. Nature 410, 710-714 (2001). 

  60. Dev. Cell A Ohazama 6 219 2004 10.1016/S1534-5807(04)00024-3 Ohazama, A. et al. A dual role for IKKα in tooth development. Dev. Cell 6, 219-227 (2004). 

  61. J. Biol. Chem. UN Verma 279 3509 2004 10.1074/jbc.M309300200 Verma, U. N., Yamamoto, Y., Prajapati, S. & Gaynor, R. B. Nuclear role of I κB Kinase-γ/NF-κB essential modulator (IKKγ/NEMO) in NF-κB-dependent gene expression. J. Biol. Chem. 279, 3509-3515 (2004). 

  62. J. Biol. Chem. CP Bracken 280 14240 2005 10.1074/jbc.M409987200 Bracken, C. P., Whitelaw, M. L. & Peet, D. J. Activity of hypoxia-inducible factor 2α is regulated by association with the NF-κB essential modulator. J. Biol. Chem. 280, 14240-14251 (2005). 

  63. Biochemistry J Li 42 13476 2003 10.1021/bi035390r Li, J., Joo, S. H. & Tsai, M. D. An NF-κB-specific inhibitor, IκBα, binds to and inhibits cyclin-dependent kinase 4. Biochemistry 42, 13476-13483 (2003). 

  64. J. Biol. Chem. NS Chang 277 10323 2002 10.1074/jbc.M106607200 Chang, N. S. The non-ankyrin C terminus of IκBα physically interacts with p53 in vivo and dissociates in response to apoptotic stress, hypoxia, DNA damage, and transforming growth factor-β1-mediated growth suppression. J. Biol. Chem. 277, 10323-10331 (2002). 

  65. Oncogene M Zhou 22 8137 2003 10.1038/sj.onc.1206911 Zhou, M., Gu, L., Zhu, N., Woods, W. G. & Findley, H. W. Transfection of a dominant-negative mutant NF-κB inhibitor (IκBm) represses p53-dependent apoptosis in acute lymphoblastic leukemia cells: interaction of IkBm and p53. Oncogene 22, 8137-8144 (2003). 

  66. BMC Immunol. DH Dreyfus 6 12 2005 10.1186/1471-2172-6-12 Dreyfus, D. H., Nagasawa, M., Gelfand, E. W. & Ghoda, L. Y. Modulation of p53 activity by IκBα: evidence suggesting a common phylogeny between NF-κB and p53 transcription factors. BMC Immunol. 6, 12 (2005). 

  67. J. Virol. BY Wu 71 3161 1997 10.1128/jvi.71.4.3161-3167.1997 Wu, B. Y., Woffendin, C., MacLachlan, I. & Nabel, G. J. Distinct domains of IκB-α inhibit human immunodeficiency virus type 1 replication through NF-κB and Rev. J. Virol. 71, 3161-3167 (1997). 

  68. Proc. Natl Acad. Sci. USA C Aguilera 101 16537 2004 10.1073/pnas.0404429101 Aguilera, C., Hoya-Arias, R., Haegeman, G., Espinosa, L. & Bigas, A. Recruitment of IκBα to the hes1 promoter is associated with transcriptional repression. Proc. Natl Acad. Sci. USA 101, 16537-16542 (2004). 

  69. Mol. Cell HH Zhong 1 661 1998 10.1016/S1097-2765(00)80066-0 Zhong, H. H., Voll, R. E. & Ghosh, S. Phosphorylation of NF-κB p65 by PKA stimulates transcriptional activity by promoting a novel bivalent interaction with the coactivator CBP/p300. Mol. Cell 1, 661-671 (1998). 

  70. Mol. Cell. Biol. JE Hoberg 26 457 2006 10.1128/MCB.26.2.457-471.2006 Hoberg, J. E., Popko, A. E., Ramsey, C. S. & Mayo, M. W. IκB kinase α-mediated derepression of SMRT potentiates acetylation of RelA/p65 by p300. Mol. Cell. Biol. 26, 457-471 (2006). Interesting paper describing the complexities of NF-κB-mediated gene regulation, including the role of co-activators, co-repressors and post-translational modifications. 

  71. Nature Rev. Mol. Cell Biol. LF Chen 5 392 2004 10.1038/nrm1368 Chen, L. F. & Greene, W. C. Shaping the nuclear action of NF-κB. Nature Rev. Mol. Cell Biol. 5, 392-401 (2004). 

  72. Mol. Cell S Rocha 12 15 2003 10.1016/S1097-2765(03)00223-5 Rocha, S., Campbell, K. J. & Perkins, N. D. p53- and Mdm2-independent repression of NF-κB transactivation by the ARF tumor suppressor. Mol. Cell 12, 15-25 (2003). 

  73. EMBO J. S Rocha 24 1157 2005 10.1038/sj.emboj.7600608 Rocha, S., Garrett, M. D., Campbell, K. J., Schumm, K. & Perkins, N. D. Regulation of NF-κB and p53 through activation of ATR and Chk1 by the ARF tumour suppressor. EMBO J. 24, 1157-1169 (2005). Describes how RelA can repress as well as activate transcription and how these contrasting functions can result from subunit phosphorylation and be linked to tumour-suppressor function. 

  74. Cancer Res. KJ Campbell 66 929 2006 10.1158/0008-5472.CAN-05-2234 Campbell, K. J., Witty, J. M., Rocha, S. & Perkins, N. D. Cisplatin mimics ARF tumor suppressor regulation of RelA (p65) nuclear factor-κB transactivation. Cancer Res. 66, 929-935 (2006). 

  75. Mol. Cell KJ Campbell 13 853 2004 10.1016/S1097-2765(04)00131-5 Campbell, K. J., Rocha, S. & Perkins, N. D. Active repression of antiapoptotic gene expression by ReIA(p65) NF-κB. Mol. Cell 13, 853-865 (2004). 

  76. Oncogene E Strozyk 25 6239 2006 10.1038/sj.onc.1209655 Strozyk, E., Poppelmann, B., Schwarz, T. & Kulms, D. Differential effects of NF-κB on apoptosis induced by DNA-damaging agents: the type of DNA damage determines the final outcome. Oncogene 25, 6239-6251 (2006). 

  77. Mol. Cell J Liu 21 467 2006 10.1016/j.molcel.2005.12.020 Liu, J. et al. NF-κB is required for UV-induced JNK activation via induction of PKCδ. Mol. Cell 21, 467-480 (2006). 

  78. J. Biol. Chem. J Anrather 280 244 2005 10.1074/jbc.M409344200 Anrather, J., Racchumi, G. & Iadecola, C. cis-acting, element-specific transcriptional activity of differentially phosphorylated nuclear factor-κB. J. Biol. Chem. 280, 244-252 (2005). 

  79. J. Clin. Oncol. JE Thompson 22 4217 2004 10.1200/JCO.2004.01.103 Thompson, J. E. & Thompson, C. B. Putting the rap on Akt. J. Clin. Oncol. 22, 4217-4226 (2004). 

  80. J. Biol. Chem. LV Madrid 276 18934 2001 10.1074/jbc.M101103200 Madrid, L. V., Mayo, M. W., Reuther, J. Y. & Baldwin, A. S. Akt stimulates the transactivation potential of the RelA/p65 subunit of NF-κB through utilization of the IκB kinase and activation of the mitogen-activated protein kinase p38. J. Biol. Chem. 276, 18934-18940 (2001). 

  81. Oncogene SJ Jeong 24 6719 2005 10.1038/sj.onc.1208825 Jeong, S. J., Pise-Masison, C. A., Radonovich, M. F., Park, H. U. & Brady, J. N. Activated AKT regulates NF-κB activation, p53 inhibition and cell survival in HTLV-1-transformed cells. Oncogene 24, 6719-6728 (2005). 

  82. J. Biol. Chem. D Haller 277 38168 2002 10.1074/jbc.M205737200 Haller, D., Russo, M. P., Sartor, R. B. & Jobin, C. IKKβ and phosphatidylinositol 3-kinase/Akt participate in non-pathogenic Gram-negative enteric bacteria-induced RelA phosphorylation and NF-κB activation in both primary and intestinal epithelial cell lines. J. Biol. Chem. 277, 38168-38178 (2002). 

  83. J. Immunol. I Mattioli 172 6336 2004 10.4049/jimmunol.172.10.6336 Mattioli, I. et al. Transient and selective NF-κB p65 serine 536 phosphorylation induced by T cell costimulation is mediated by IκB kinase β and controls the kinetics of p65 nuclear import. J. Immunol. 172, 6336-6344 (2004). 

  84. J. Biol. Chem. J Bohuslav 279 26115 2004 10.1074/jbc.M313509200 Bohuslav, J., Chen, L. F., Kwon, H., Mu, Y. & Greene, W. C. p53 induces NF-κB activation by an IκB kinase-independent mechanism involving phosphorylation of p65 by ribosomal S6 kinase 1. J. Biol. Chem. 279, 26115-26125 (2004). 

  85. Nature T Lawrence 434 1138 2005 10.1038/nature03491 Lawrence, T., Bebien, M., Liu, G. Y., Nizet, V. & Karin, M. IKKα limits macrophage NF-κB activation and contributes to the resolution of inflammation. Nature 434, 1138-1143 (2005). 

  86. Int. J. Biochem. Cell. Biol. ND Perkins 29 1433 1997 10.1016/S1357-2725(97)00088-5 Perkins, N. D. Achieving transcriptional specificity with NF-κB. Int. J. Biochem. Cell. Biol. 29, 1433-1448 (1997). 

  87. Nature Immunol. G Natoli 6 439 2005 10.1038/ni1196 Natoli, G., Saccani, S., Bosisio, D. & Marazzi, I. Interactions of NF-κB with chromatin: the art of being at the right place at the right time. Nature Immunol. 6, 439-445 (2005). Interesting review that discusses the importance of chromatin structure, including histone phosphorylation, for the regulation of NF-κB-dependent gene expression. 

  88. Curr. Opin. Genet. Dev. M Merika 11 205 2001 10.1016/S0959-437X(00)00180-5 Merika, M. & Thanos, D. Enhanceosomes. Curr. Opin. Genet. Dev. 11, 205-208 (2001). 

  89. Cell JV Falvo 83 1101 1995 10.1016/0092-8674(95)90137-X Falvo, J. V., Thanos, D. & Maniatis, T. Reversal of intrinsic DNA bends in the IFN-b gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell 83, 1101-1111 (1995). 

  90. Cell D Thanos 83 1091 1995 10.1016/0092-8674(95)90136-1 Thanos, D. & Maniatis, T. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83, 1091-1100 (1995). 

  91. J. Biol. Chem. NR Chapman 275 4719 2000 10.1074/jbc.275.7.4719 Chapman, N. R. & Perkins, N. D. Inhibition of the RelA(p65) NF-κB subunit by Egr-1. J. Biol. Chem. 275, 4719-4725 (2000). 

  92. Cell Death Differ. G Natoli 13 693 2006 10.1038/sj.cdd.4401880 Natoli, G. & De Santa, F. Shaping alternative NF-κB-dependent gene expression programs: new clues to specificity. Cell Death Differ. 13, 693-696 (2006). 

  93. Mol. Cell. Biol. A Kumar 25 5893 2005 10.1128/MCB.25.14.5893-5903.2005 Kumar, A., Lin, Z., SenBanerjee, S. & Jain, M. K. Tumor necrosis factor α-mediated reduction of KLF2 is due to inhibition of MEF2 by NF-κB and histone deacetylases. Mol. Cell. Biol. 25, 5893-5903 (2005). 

  94. EMBO J. K Schumm 25 4820 2006 10.1038/sj.emboj.7601343 Schumm, K., Rocha, S., Caamano, J. & Perkins, N. D. Regulation of p53 tumour suppressor target gene expression by the p52 NF-κB subunit. EMBO J. 25, 4820-4832 (2006). 

  95. Proc. Natl Acad. Sci. USA N Nadiminty 103 7264 2006 10.1073/pnas.0509808103 Nadiminty, N. et al. Stat3 activation of NF-κB p100 processing involves CBP/p300-mediated acetylation. Proc. Natl Acad. Sci. USA 103, 7264-7269 (2006). 

  96. Genes Dev. OH Kramer 20 473 2006 10.1101/gad.364306 Kramer, O. H. et al. Acetylation of Stat1 modulates NF-κB activity. Genes Dev. 20, 473-485 (2006). 

  97. EMBO J. D Bosisio 25 798 2006 10.1038/sj.emboj.7600977 Bosisio, D. et al. A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-κB-dependent gene activity. EMBO J. 25, 798-810 (2006). 

  98. Mol. Cell M Merika 1 277 1998 10.1016/S1097-2765(00)80028-3 Merika, M., Williams, A. J., Chen, G. Y., Collins, T. & Thanos, D. Recruitment of CBP/p300 by the IFNβ enhanceosome is required for synergistic activation of transcription. Mol. Cell 1, 277-287 (1998). 

  99. Mol. Cell. Biol. E Ainbinder 22 6354 2002 10.1128/MCB.22.18.6354-6362.2002 Ainbinder, E. et al. Mechanism of rapid transcriptional induction of tumor necrosis factor α-responsive genes by NF-κB. Mol. Cell. Biol. 22, 6354-6362 (2002). 

  100. Dev. Biol. A Stathopoulos 246 57 2002 10.1006/dbio.2002.0652 Stathopoulos, A. & Levine, M. Dorsal gradient networks in the Drosophila embryo. Dev. Biol. 246, 57-67 (2002). 

  101. J. Biol. Chem. H Jono 279 36171 2004 10.1074/jbc.M406638200 Jono, H. et al. NF-κB is essential for induction of CYLD, the negative regulator of NF-κB: evidence for a novel inducible autoregulatory feedback pathway. J. Biol. Chem. 279, 36171-36174 (2004). 

  102. Nature IE Wertz 430 694 2004 10.1038/nature02794 Wertz, I. E. et al. De-ubiquitination and ubiquitin ligase domains of A20 downregulate NF-κB signalling. Nature 430, 694-699 (2004). 

  103. Nature E Trompouki 424 793 2003 10.1038/nature01803 Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-κB activation by TNFR family members. Nature 424, 793-796 (2003). 

  104. Nature TR Brummelkamp 424 797 2003 10.1038/nature01811 Brummelkamp, T. R., Nijman, S. M. B., Dirac, A. M. G. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-κB. Nature 424, 797-801 (2003). 

  105. Nature A Kovalenko 424 801 2003 10.1038/nature01802 Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-κB signalling by deubiquitination. Nature 424, 801-805 (2003). 

  106. Cell R Massoumi 125 665 2006 10.1016/j.cell.2006.03.041 Massoumi, R., Chmielarska, K., Hennecke, K., Pfeifer, A. & Fassler, R. Cyld inhibits tumor cell proliferation by blocking Bcl-3-dependent NF-κB signaling. Cell 125, 665-677 (2006). 

  107. Mol. Cell. Biol. D Krappmann 24 6488 2004 10.1128/MCB.24.14.6488-6500.2004 Krappmann, D. et al. The IκB kinase complex and NF-κB act as master regulators of lipopolysaccharide-induced gene expression and control subordinate activation of AP-1. Mol. Cell. Biol. 24, 6488-6500 (2004). This paper is an excellent example of how NF-κB-induced genes, in this case AP1 family members, influence a second wave of NF-κB-dependent gene expression. 

  108. Science SL Werner 309 1857 2005 10.1126/science.1113319 Werner, S. L., Barken, D. & Hoffmann, A. Stimulus specificity of gene expression programs determined by temporal control of IKK activity. Science 309, 1857-1861 (2005). 

  109. Science MW Covert 309 1854 2005 10.1126/science.1112304 Covert, M. W., Leung, T. H., Gaston, J. E. & Baltimore, D. Achieving stability of lipopolysaccharide-induced NF-κB activation. Science 309, 1854-1857 (2005). 

  110. J. Biol. Chem. C Wietek 278 50923 2003 10.1074/jbc.M308135200 Wietek, C., Miggin, S. M., Jefferies, C. A. & O'Neill, L. A. Interferon regulatory factor-3-mediated activation of the interferon-sensitive response element by Toll-like receptor (TLR) 4 but not TLR3 requires the p65 subunit of NF-κ. J. Biol. Chem. 278, 50923-50931 (2003). 

  111. Cell Death Differ. S Papa 13 712 2006 10.1038/sj.cdd.4401865 Papa, S. et al. The NF-κB-mediated control of the JNK cascade in the antagonism of programmed cell death in health and disease. Cell Death Differ. 13, 712-729 (2006). 

  112. Cell Death Differ. H Nakano 13 730 2006 10.1038/sj.cdd.4401830 Nakano, H. et al. Reactive oxygen species mediate crosstalk between NF-κB and JNK. Cell Death Differ. 13, 730-737 (2006). References 111 nd 112 are comprehensive reviews that discuss the mechanisms linking NF-κB activity to the JNK-signalling pathway. 

  113. Cell H Kamata 120 649 2005 10.1016/j.cell.2004.12.041 Kamata, H. et al. Reactive oxygen species promote TNFα-induced death and sustained JNK activation by inhibiting MAP kinase phosphatases. Cell 120, 649-661 (2005). 

  114. J. Cell Biol. JY Zhang 168 561 2005 10.1083/jcb.200411060 Zhang, J. Y., Tao, S., Kimmel, R. & Khavari, P. A. CDK4 regulation by TNFR1 and JNK is required for NF-κB-mediated epidermal growth control. J. Cell Biol. 168, 561-566 (2005). 

  115. Nature Rev. Cancer KH Vousden 2 594 2002 10.1038/nrc864 Vousden, K. H. & Lu, X. Live or let die: the cell's response to p53. Nature Rev. Cancer 2, 594-604 (2002). 

  116. Cancer Cell V Tergaonkar 1 493 2002 10.1016/S1535-6108(02)00068-5 Tergaonkar, V., Pando, M., Vafa, O., Wahl, G. & Verma, I. p53 stabilization is decreased upon NFκB activation: a role for NFκB in acquisition of resistance to chemotherapy. Cancer Cell 1, 493-503 (2002). Shows how, in some circumstances, the NF-κB and IKK pathway can suppress p53 activity through inducing HDM2 (or MDM2) expression. 

  117. Genes Dev. D Kashatus 20 225 2006 10.1101/gad.1352206 Kashatus, D., Cogswell, P. & Baldwin, A. S. Expression of the Bcl-3 proto-oncogene suppresses p53 activation. Genes Dev. 20, 225-235 (2006). 

  118. Mol. Cell. Biol. GA Webster 19 3485 1999 10.1128/MCB.19.5.3485 Webster, G. A. & Perkins, N. D. Transcriptional cross talk between NF-κB and p53. Mol. Cell. Biol. 19, 3485-3495 (1999). 

  119. Nature KM Ryan 404 892 2000 10.1038/35009130 Ryan, K. M., Ernst, M. K., Rice, N. R. & Vousden, K. H. Role of NF-κB in p53-mediated programmed cell death. Nature 404, 892-897 (2000). 

  120. J. Biol. Chem. S Fujioka 279 27549 2004 10.1074/jbc.M313435200 Fujioka, S. et al. Stabilization of p53 is a novel mechanism for proapoptotic function of NF-κB. J. Biol. Chem. 279, 27549-27559 (2004). 

  121. J. Neurosci. H Aleyasin 24 2963 2004 10.1523/JNEUROSCI.0155-04.2004 Aleyasin, H. et al. Nuclear factor-κB modulates the p53 response in neurons exposed to DNA damage. J. Neurosci. 24, 2963-2973 (2004). 

  122. Mol. Cell. Biol. S Shetty 25 5404 2005 10.1128/MCB.25.13.5404-5416.2005 Shetty, S. et al. Transcription factor NF-κB differentially regulates death receptor 5 expression involving histone deacetylase 1. Mol. Cell. Biol. 25, 5404-5416 (2005). 

  123. Mol. Cell. Biol. B Eymin 26 4339 2006 10.1128/MCB.02240-05 Eymin, B. et al. p14ARF activates a Tip60-dependent and p53-independent ATM/ATR/CHK pathway in response to genotoxic stress. Mol. Cell. Biol. 26, 4339-4350 (2006). 

  124. Trends Endocrinol. Metab. G Pascual 17 321 2006 10.1016/j.tem.2006.08.005 Pascual, G. & Glass, C. K. Nuclear receptors versus inflammation: mechanisms of transrepression. Trends Endocrinol. Metab. 17, 321-327 (2006). Clear and concise discussion of the complex relationship between nuclear receptors and the NF-κB pathway. 

  125. Endocrine Rev. K De Bosscher 24 488 2003 10.1210/er.2002-0006 De Bosscher, K., Vanden Berghe, W. & Haegeman, G. The interplay between the glucocorticoid receptor and nuclear factor-κB or activator protein-1: molecular mechanisms for gene repression. Endocrine Rev. 24, 488-522 (2003). 

  126. J. Allergy Clin. Immunol. K Ito 117 522 2006 10.1016/j.jaci.2006.01.032 Ito, K., Chung, K. F. & Adcock, I. M. Update on glucocorticoid action and resistance. J. Allergy Clin. Immunol. 117, 522-543 (2006). 

  127. Science N Auphan 270 286 1995 10.1126/science.270.5234.286 Auphan, N., DiDonato, J. A., Rosette, C., Helmberg, A. & Karin, M. Immunosuppression by glucocorticoids: inhibition of NF-κB activity through induction of IκB synthesis. Science 270, 286-290 (1995). 

  128. Science RI Scheinman 270 283 1995 10.1126/science.270.5234.283 Scheinman, R. I., Cogswell, P. C., Lofquist, A. K. & Baldwin, A. S. Role of transcriptional activation of IκBα in mediation of immunosuppression by glucocorticoids. Science 270, 283-286 (1995). 

  129. J. Biol. Chem. KA Sheppard 273 29291 1998 10.1074/jbc.273.45.29291 Sheppard, K. A. et al. Nuclear integration of glucocorticoid receptor and nuclear factor-κB signaling by CREB-binding protein and steroid receptor coactivator-1. J. Biol. Chem. 273, 29291-29294 (1998). 

  130. Cell S Ogawa 122 707 2005 10.1016/j.cell.2005.06.029 Ogawa, S. et al. Molecular determinants of crosstalk between nuclear receptors and toll-like receptors. Cell 122, 707-721 (2005). 

  131. Mol. Cell. Biol. K Ito 20 6891 2000 10.1128/MCB.20.18.6891-6903.2000 Ito, K., Barnes, P. J. & Adcock, I. M. Glucocorticoid receptor recruitment of histone deacetylase 2 inhibits interleukin-1β-induced histone H4 acetylation on lysines 8 and 12. Mol. Cell. Biol. 20, 6891-6903 (2000). 

  132. Genes Dev. HF Luecke 19 1116 2005 10.1101/gad.1297105 Luecke, H. F. & Yamamoto, K. R. The glucocorticoid receptor blocks P-TEFb recruitment by NFκB to effect promoter-specific transcriptional repression. Genes Dev. 19, 1116-1127 (2005). 

  133. Biochem. Pharmacol. BB Aggarwal 71 1397 2006 10.1016/j.bcp.2006.02.009 Aggarwal, B. B. & Shishodia, S. Molecular targets of dietary agents for prevention and therapy of cancer. Biochem. Pharmacol. 71, 1397-1421 (2006). 

  134. Curr. Opin. Hematol. RE Davis 9 333 2002 10.1097/00062752-200207000-00011 Davis, R. E. & Staudt, L. M. Molecular diagnosis of lymphoid malignancies by gene expression profiling. Curr. Opin. Hematol. 9, 333-338 (2002). 

  135. Cancer Res. JL Hanson 64 7248 2004 10.1158/0008-5472.CAN-03-3898 Hanson, J. L., Hawke, N. A., Kashatus, D. & Baldwin, A. S. The nuclear factor κB subunits RelA/p65 and c-Rel potentiate but are not required for Ras-induced cellular transformation. Cancer Res. 64, 7248-7255 (2004). 

  136. Cancer Lett. FR Greten 206 193 2004 10.1016/j.canlet.2003.08.029 Greten, F. R. & Karin, M. The IKK/NF-κB activation pathway - a target for prevention and treatment of cancer. Cancer Lett. 206, 193-199 (2004). 

관련 콘텐츠

이 논문과 함께 이용한 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로