$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Illuminating the silence: understanding the structure and function of small RNAs

Nature reviews. Molecular cell biology, v.8 no.1, 2007년, pp.23 - 36  

Rana, Tariq M. (Department of Biochemistry and Molecular Pharmacology, University of Massachusetts Medical School, Worcester, Massachusetts 01605, USA. tariq.rana@umassmed.edu)

Abstract AI-Helper 아이콘AI-Helper

RNA interference (RNAi) is triggered by double-stranded RNA helices that have been introduced exogenously into cells as small interfering (si)RNAs or that have been produced endogenously from small non-coding RNAs known as microRNAs (miRNAs). RNAi has become a standard experimental tool and its ther...

참고문헌 (135)

  1. Nature A Fire 391 806 1998 10.1038/35888 Fire, A. et al. Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391, 806-811 (1998). First report showing that dsRNA can silence specific genes in animals. 

  2. Biochem. Soc. Trans. BR Williams 25 509 1997 10.1042/bst0250509 Williams, B. R. Role of the double-stranded RNA-activated protein kinase (PKR) in cell regulation. Biochem. Soc. Trans. 25, 509-513 (1997). 

  3. Nature E Bernstein 409 363 2001 10.1038/35053110 Bernstein, E., Caudy, A. A., Hammond, S. M. & Hannon, G. J. Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409, 363-366 (2001). 

  4. Science SM Hammond 293 1146 2001 10.1126/science.1064023 Hammond, S. M., Boettcher, S., Caudy, A. A., Kobayashi, R. & Hannon, G. J. Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293, 1146-1150 (2001). 

  5. Genes Dev. T Tuschl 13 3191 1999 10.1101/gad.13.24.3191 Tuschl, T., Zamore, P. D., Lehmann, R., Bartel, D. P. & Sharp, P. A. Targeted mRNA degradation by double-stranded RNA in vitro. Genes Dev. 13, 3191-3197 (1999). 

  6. Cell PD Zamore 101 25 2000 10.1016/S0092-8674(00)80620-0 Zamore, P. D., Tuschl, T., Sharp, P. A. & Bartel, D. P. RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101, 25-33 (2000). 

  7. Proc. Natl Acad. Sci. USA NJ Caplen 98 9742 2001 10.1073/pnas.171251798 Caplen, N. J., Parrish, S., Imani, F., Fire, A. & Morgan, R. A. Specific inhibition of gene expression by small double-stranded RNAs in invertebrate and vertebrate systems. Proc. Natl Acad. Sci. USA 98, 9742-9747 (2001). 

  8. Nature SM Elbashir 411 494 2001 10.1038/35078107 Elbashir, S. M. et al. Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411, 494-498 (2001). This paper, together with reference 7, showed that siRNA can trigger RNAi in mammalian cells. 

  9. Cell RC Lee 75 843 1993 10.1016/0092-8674(93)90529-Y Lee, R. C., Feinbaum, R. L. & Ambros, V. The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell 75, 843-854 (1993). Discovery of the first miRNA. 

  10. Genes Dev. JG Doench 17 438 2003 10.1101/gad.1064703 Doench, J. G., Petersen, C. P. & Sharp, P. A. siRNAs can function as miRNAs. Genes Dev. 17, 438-442 (2003). 

  11. Proc. Natl Acad. Sci. USA Y Zeng 100 9779 2003 10.1073/pnas.1630797100 Zeng, Y., Yi, R. & Cullen, B. R. MicroRNAs and small interfering RNAs can inhibit mRNA expression by similar mechanisms. Proc. Natl Acad. Sci. USA 100, 9779-9784 (2003). 

  12. Cell S Bagga 122 553 2005 10.1016/j.cell.2005.07.031 Bagga, S. et al. Regulation by let-7 and lin-4 miRNAs results in target mRNA degradation. Cell 122, 553-563 (2005). 

  13. Nature Z Lippman 431 364 2004 10.1038/nature02875 Lippman, Z. & Martienssen, R. The role of RNA interference in heterochromatic silencing. Nature 431, 364-370 (2004). 

  14. Proc. Natl Acad. Sci. USA PM Waterhouse 95 13959 1998 10.1073/pnas.95.23.13959 Waterhouse, P. M., Graham, M. W. & Wang, M. B. Virus resistance and gene silencing in plants can be induced by simultaneous expression of sense and antisense RNA. Proc. Natl Acad. Sci. USA 95, 13959-13964 (1998). 

  15. Nature GJ Hannon 431 371 2004 10.1038/nature02870 Hannon, G. J. & Rossi, J. J. Unlocking the potential of the human genome with RNA interference. Nature 431, 371-378 (2004). 

  16. Nature G Meister 431 343 2004 10.1038/nature02873 Meister, G. & Tuschl, T. Mechanisms of gene silencing by double-stranded RNA. Nature 431, 343-349 (2004). 

  17. Nature Struct. Mol. Biol. MA Carmell 11 214 2004 10.1038/nsmb729 Carmell, M. A. & Hannon, G. J. RNase III enzymes and the initiation of gene silencing. Nature Struct. Mol. Biol. 11, 214-218 (2004). 

  18. Cell RI Gregory 123 631 2005 10.1016/j.cell.2005.10.022 Gregory, R. I., Chendrimada, T. P., Cooch, N. & Shiekhattar, R. Human RISC couples microRNA biogenesis and posttranscriptional gene silencing. Cell 123, 631-640 (2005). 

  19. Nature Biotechnol. DH Kim 23 222 2005 10.1038/nbt1051 Kim, D. H. et al. Synthetic dsRNA Dicer substrates enhance RNAi potency and efficacy. Nature Biotechnol. 23, 222-226 (2005). 

  20. Nature Biotechnol. D Siolas 23 227 2005 10.1038/nbt1052 Siolas, D. et al. Synthetic shRNAs as potent RNAi triggers. Nature Biotechnol. 23, 227-231 (2005). 

  21. FEBS Lett. E Wienholds 579 5911 2005 10.1016/j.febslet.2005.07.070 Wienholds, E. & Plasterk, R. H. MicroRNA function in animal development. FEBS Lett. 579, 5911-5922 (2005). 

  22. Nature V Ambros 431 350 2004 10.1038/nature02871 Ambros, V. The functions of animal microRNAs. Nature 431, 350-355 (2004). 

  23. Cell DP Bartel 116 281 2004 10.1016/S0092-8674(04)00045-5 Bartel, D. P. MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116, 281-297 (2004). 

  24. Nature D Baulcombe 431 356 2004 10.1038/nature02874 Baulcombe, D. RNA silencing in plants. Nature 431, 356-363 (2004). 

  25. Plant Physiol. JC Carrington 138 565 2005 10.1104/pp.104.900156 Carrington, J. C. Small RNAs and Arabidopsis. A fast forward look. Plant Physiol. 138, 565-566 (2005). 

  26. Science M Lagos-Quintana 294 853 2001 10.1126/science.1064921 Lagos-Quintana, M., Rauhut, R., Lendeckel, W. & Tuschl, T. Identification of novel genes coding for small expressed RNAs. Science 294, 853-858 (2001). 

  27. Science NC Lau 294 858 2001 10.1126/science.1065062 Lau, N. C., Lim, L. P., Weinstein, E. G. & Bartel, D. P. An abundant class of tiny RNAs with probable regulatory roles in Caenorhabditis elegans. Science 294, 858-862 (2001). 

  28. Genes Dev. Z Mourelatos 16 720 2002 10.1101/gad.974702 Mourelatos, Z. et al. miRNPs: a novel class of ribonucleoproteins containing numerous microRNAs. Genes Dev. 16, 720-728 (2002). 

  29. Nature Rev. Mol. Cell Biol. VN Kim 6 376 2005 10.1038/nrm1644 Kim, V. N. MicroRNA biogenesis: coordinated cropping and dicing. Nature Rev. Mol. Cell Biol. 6, 376-385 (2005). 

  30. Curr. Biol. M Landthaler 14 2162 2004 10.1016/j.cub.2004.11.001 Landthaler, M., Yalcin, A. & Tuschl, T. The human DiGeorge syndrome critical region gene 8 and its D. melanogaster homolog are required for miRNA biogenesis. Curr. Biol. 14, 2162-2167 (2004). 

  31. Nature RI Gregory 432 235 2004 10.1038/nature03120 Gregory, R. I. et al. The microprocessor complex mediates the genesis of microRNAs. Nature 432, 235-240 (2004). 

  32. Nature AM Denli 432 231 2004 10.1038/nature03049 Denli, A. M., Tops, B. B., Plasterk, R. H., Ketting, R. F. & Hannon, G. J. Processing of primary microRNAs by the microprocessor complex. Nature 432, 231-235 (2004). 

  33. Genes Dev. J Han 18 3016 2004 10.1101/gad.1262504 Han, J. et al. The Drosha-DGCR8 complex in primary microRNA processing. Genes Dev. 18, 3016-3027 (2004). 

  34. Cell J Han 125 887 2006 10.1016/j.cell.2006.03.043 Han, J. et al. Molecular basis for the recognition of primary microRNAs by the Drosha-DGCR8 complex. Cell 125, 887-901 (2006). Elegant study showing the molecular mechanism of the first step involved in pri-miRNA processing. 

  35. Science E Lund 303 95 2004 10.1126/science.1090599 Lund, E., Guttinger, S., Calado, A., Dahlberg, J. E. & Kutay, U. Nuclear export of microRNA precursors. Science 303, 95-98 (2004). 

  36. Rna MT Bohnsack 10 185 2004 10.1261/rna.5167604 Bohnsack, M. T., Czaplinski, K. & Gorlich, D. Exportin 5 is a RanGTP-dependent dsRNA-binding protein that mediates nuclear export of pre-miRNAs. Rna 10, 185-191 (2004). 

  37. Genes Dev. R Yi 17 3011 2003 10.1101/gad.1158803 Yi, R., Qin, Y., Macara, I. G. & Cullen, B. R. Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev. 17, 3011-3016 (2003). 

  38. PLoS Biol. C Chu 4 e210 2006 10.1371/journal.pbio.0040210 Chu, C. & Rana, T. M. Translation repression in human cells by microRNA-induced gene silencing requires RCK/p54. PLoS Biol. 4, e210 (2006). 

  39. Nature Cell Biol. GL Sen 7 633 2005 10.1038/ncb1265 Sen, G. L. & Blau, H. M. Argonaute 2/RISC resides in sites of mammalian mRNA decay known as cytoplasmic bodies. Nature Cell Biol. 7, 633-636 (2005). 

  40. Science RS Pillai 309 1573 2005 10.1126/science.1115079 Pillai, R. S. et al. Inhibition of translational initiation by let-7 microRNA in human cells. Science 309, 1573-1576 (2005). 

  41. Nature Cell Biol. J Liu 7 719 2005 10.1038/ncb1274 Liu, J., Valencia-Sanchez, M. A., Hannon, G. J. & Parker, R. MicroRNA-dependent localization of targeted mRNAs to mammalian P-bodies. Nature Cell Biol. 7, 719-723 (2005). This paper, combined with references 38-40, showed that Argonaute proteins localize to mRNA-processing bodies, or P-bodies. 

  42. Genes Dev. MA Valencia-Sanchez 20 515 2006 10.1101/gad.1399806 Valencia-Sanchez, M. A., Liu, J., Hannon, G. J. & Parker, R. Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev. 20, 515-524 (2006). 

  43. J. Cell Biol. N Kedersha 169 871 2005 10.1083/jcb.200502088 Kedersha, N. et al. Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J. Cell Biol. 169, 871-884 (2005). 

  44. Mol. Cell YL Chiu 10 549 2002 10.1016/S1097-2765(02)00652-4 Chiu, Y. L. & Rana, T. M. RNAi in human cells: basic structural and functional features of small interfering RNA. Mol. Cell 10, 549-561 (2002). 

  45. RNA YL Chiu 9 1034 2003 10.1261/rna.5103703 Chiu, Y. L. & Rana, T. M. siRNA function in RNAi: a chemical modification analysis. RNA 9, 1034-1048 (2003). 

  46. Nature Struct. Mol. Biol. B Haley 11 599 2004 10.1038/nsmb780 Haley, B. & Zamore, P. D. Kinetic analysis of the RNAi enzyme complex. Nature Struct. Mol. Biol. 11, 599-606 (2004). This article, together with references 44 and 45, showed that RNA helical geometry is the major determinant in RNAi. 

  47. Nucleic Acids Res. M Amarzguioui 31 589 2003 10.1093/nar/gkg147 Amarzguioui, M., Holen, T., Babaie, E. & Prydz, H. Tolerance for mutations and chemical modifications in a siRNA. Nucleic Acids Res. 31, 589-595 (2003). 

  48. Biochemistry HR Neenhold 34 6303 1995 10.1021/bi00019a007 Neenhold, H. R. & Rana, T. M. Major groove opening at the HIV-1 Tat binding site of TAR RNA evidenced by a rhodium probe. Biochemistry 34, 6303-6309 (1995). 

  49. Science KM Weeks 261 1574 1993 10.1126/science.7690496 Weeks, K. M. & Crothers, D. M. Major groove accessibility of RNA. Science 261, 1574-1577 (1993). 

  50. Nucleic Acids Res. T Holen 31 2401 2003 10.1093/nar/gkg338 Holen, T., Amarzguioui, M., Babaie, E. & Prydz, H. Similar behaviour of single-strand and double-strand siRNAs suggests they act through a common RNAi pathway. Nucleic Acids Res. 31, 2401-2407 (2003). 

  51. Science S Yekta 304 594 2004 10.1126/science.1097434 Yekta, S., Shih, I. H. & Bartel, D. P. MicroRNA-directed cleavage of HOXB8 mRNA. Science 304, 594-596 (2004). 

  52. Science G Hutvagner 297 2056 2002 10.1126/science.1073827 Hutvagner, G. & Zamore, P. D. A microRNA in a multiple-turnover RNAi enzyme complex. Science 297, 2056-2060 (2002). 

  53. J. Biol. Chem. S Saxena 278 44312 2003 10.1074/jbc.M307089200 Saxena, S., Jonsson, Z. O. & Dutta, A. Small RNAs with imperfect match to endogenous mRNA repress translation. Implications for off-target activity of small inhibitory RNA in mammalian cells. J. Biol. Chem. 278, 44312-44319 (2003). 

  54. Nature CC Mello 431 338 2004 10.1038/nature02872 Mello, C. C. & Conte, D. Revealing the world of RNA interference. Nature 431, 338-342 (2004). 

  55. Nature C Cogoni 399 166 1999 10.1038/20215 Cogoni, C. & Macino, G. Gene silencing in Neurospora crassa requires a protein homologous to RNA-dependent RNA polymerase. Nature 399, 166-169 (1999). 

  56. Cell T Dalmay 101 543 2000 10.1016/S0092-8674(00)80864-8 Dalmay, T., Hamilton, A., Rudd, S., Angell, S. & Baulcombe, D. C. An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101, 543-553 (2000). 

  57. Cell C Lipardi 107 297 2001 10.1016/S0092-8674(01)00537-2 Lipardi, C., Wei, Q. & Paterson, B. M. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107, 297-307 (2001). 

  58. Cell P Mourrain 101 533 2000 10.1016/S0092-8674(00)80863-6 Mourrain, P. et al. Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101, 533-542 (2000). 

  59. Cell T Sijen 107 465 2001 10.1016/S0092-8674(01)00576-1 Sijen, T. et al. On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107, 465-476 (2001). 

  60. Cell C Lipardi 107 297 2001 10.1016/S0092-8674(01)00537-2 Lipardi, C., Wei, Q. & Paterson, B. M. RNAi as random degradative PCR: siRNA primers convert mRNA into dsRNAs that are degraded to generate new siRNAs. Cell 107, 297-307 (2001). 

  61. Cell K Nishikura 107 415 2001 10.1016/S0092-8674(01)00581-5 Nishikura, K. A short primer on RNAi: RNA-directed RNA polymerase acts as a key catalyst. Cell 107, 415-418 (2001). 

  62. Nucleic Acids Res. F Czauderna 31 2705 2003 10.1093/nar/gkg393 Czauderna, F. et al. Structural variations and stabilising modifications of synthetic siRNAs in mammalian cells. Nucleic Acids Res. 31, 2705-2716 (2003). 

  63. Mol. Cell DS Schwarz 10 537 2002 10.1016/S1097-2765(02)00651-2 Schwarz, D. S., Hutvagner, G., Haley, B. & Zamore, P. D. Evidence that siRNAs function as guides, not primers, in the Drosophila and human RNAi pathways. Mol. Cell 10, 537-548 (2002). 

  64. Rna JY Roignant 9 299 2003 10.1261/rna.2154103 Roignant, J. Y. et al. Absence of transitive and systemic pathways allows cell-specific and isoform-specific RNAi in Drosophila. Rna 9, 299-308 (2003). 

  65. Nature JB Ma 434 666 2005 10.1038/nature03514 Ma, J. B. et al. Structural basis for 5′-end-specific recognition of guide RNA by the A. fulgidus Piwi protein. Nature 434, 666-670 (2005). 

  66. Nature JS Parker 434 663 2005 10.1038/nature03462 Parker, J. S., Roe, S. M. & Barford, D. Structural insights into mRNA recognition from a PIWI domain-siRNA guide complex. Nature 434, 663-666 (2005). 

  67. Rna AL Jackson 12 1179 2006 10.1261/rna.25706 Jackson, A. L. et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. Rna 12, 1179-1187 (2006). 

  68. Nature Biotechnol. AL Jackson 21 635 2003 10.1038/nbt831 Jackson, A. L. et al. Expression profiling reveals off-target gene regulation by RNAi. Nature Biotechnol. 21, 635-637 (2003). 

  69. Nature TS Zimmermann 441 111 2006 10.1038/nature04688 Zimmermann, T. S. et al. RNAi-mediated gene silencing in non-human primates. Nature 441, 111-114 (2006). 

  70. Nature Biotechnol. DV Morrissey 23 1002 2005 10.1038/nbt1122 Morrissey, D. V. et al. Potent and persistent in vivo anti-HBV activity of chemically modified siRNAs. Nature Biotechnol. 23, 1002-1007 (2005). 

  71. Nature J Soutschek 432 173 2004 10.1038/nature03121 Soutschek, J. et al. Therapeutic silencing of an endogenous gene by systemic administration of modified siRNAs. Nature 432, 173-178 (2004). 

  72. Rna AL Jackson 12 1197 2006 10.1261/rna.30706 Jackson, A. L. et al. Position-specific chemical modification of siRNAs reduces “off-target” transcript silencing. Rna 12, 1197-1205 (2006). 

  73. Cell W Filipowicz 122 17 2005 10.1016/j.cell.2005.06.023 Filipowicz, W. RNAi: the nuts and bolts of the RISC machine. Cell 122, 17-20 (2005). 

  74. Science PD Zamore 309 1519 2005 10.1126/science.1111444 Zamore, P. D. & Haley, B. Ribo-gnome: the big world of small RNAs. Science 309, 1519-1524 (2005). 

  75. Mol. Cell G Meister 15 185 2004 10.1016/j.molcel.2004.07.007 Meister, G. et al. Human Argonaute2 mediates RNA cleavage targeted by miRNAs and siRNAs. Mol. Cell 15, 185-197 (2004). 

  76. Science J Liu 305 1437 2004 10.1126/science.1102513 Liu, J. et al. Argonaute2 is the catalytic engine of mammalian RNAi. Science 305, 1437-1441 (2004). 

  77. Science JJ Song 305 1434 2004 10.1126/science.1102514 Song, J. J., Smith, S. K., Hannon, G. J. & Joshua-Tor, L. Crystal structure of Argonaute and its implications for RISC slicer activity. Science 305, 1434-1437 (2004). 

  78. Embo J. SM Elbashir 20 6877 2001 10.1093/emboj/20.23.6877 Elbashir, S. M., Martinez, J., Patkaniowska, A., Lendeckel, W. & Tuschl, T. Functional anatomy of siRNAs for mediating efficient RNAi in Drosophila melanogaster embryo lysate. Embo J. 20, 6877-6888 (2001). 

  79. Cell DS Schwarz 115 199 2003 10.1016/S0092-8674(03)00759-1 Schwarz, D. S. et al. Asymmetry in the assembly of the RNAi enzyme complex. Cell 115, 199-208 (2003). 

  80. Cell A Khvorova 115 209 2003 10.1016/S0092-8674(03)00801-8 Khvorova, A., Reynolds, A. & Jayasena, S. D. Functional siRNAs and miRNAs exhibit strand bias. Cell 115, 209-216 (2003). This paper, together with reference 79, showed the influence of siRNA thermodynamic stability on RISC formation. 

  81. EMBO Rep. PJ Leuschner 7 314 2006 10.1038/sj.embor.7400637 Leuschner, P. J., Ameres, S. L., Kueng, S. & Martinez, J. Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep. 7, 314-320 (2006). 

  82. Cell C Matranga 123 607 2005 10.1016/j.cell.2005.08.044 Matranga, C., Tomari, Y., Shin, C., Bartel, D. P. & Zamore, P. D. Passenger-strand cleavage facilitates assembly of siRNA into Ago2-containing RNAi enzyme complexes. Cell 123, 607-620 (2005). 

  83. Cell TA Rand 123 621 2005 10.1016/j.cell.2005.10.020 Rand, T. A., Petersen, S., Du, F. & Wang, X. Argonaute2 cleaves the anti-guide strand of siRNA during RISC activation. Cell 123, 621-629 (2005). 

  84. Biochem. Biophys. Res. Commun. M Amarzguioui 316 1050 2004 10.1016/j.bbrc.2004.02.157 Amarzguioui, M. & Prydz, H. An algorithm for selection of functional siRNA sequences. Biochem. Biophys. Res. Commun. 316, 1050-1058 (2004). 

  85. FEBS Lett. H Hohjoh 557 193 2004 10.1016/S0014-5793(03)01492-3 Hohjoh, H. Enhancement of RNAi activity by improved siRNA duplexes. FEBS Lett. 557, 193-198 (2004). 

  86. Nucleic Acids Res. Y Naito 32 W124 2004 10.1093/nar/gkh442 Naito, Y., Yamada, T., Ui-Tei, K., Morishita, S. & Saigo, K. siDirect: highly effective, target-specific siRNA design software for mammalian RNA interference. Nucleic Acids Res. 32, W124-W129 (2004). 

  87. Nature Biotechnol. A Reynolds 22 326 2004 10.1038/nbt936 Reynolds, A. et al. Rational siRNA design for RNA interference. Nature Biotechnol. 22, 326-330 (2004). 

  88. Nucleic Acids Res. K Ui-Tei 32 936 2004 10.1093/nar/gkh247 Ui-Tei, K. et al. Guidelines for the selection of highly effective siRNA sequences for mammalian and chick RNA interference. Nucleic Acids Res. 32, 936-948 (2004). 

  89. Bioinformatics SM Yiu 21 144 2005 10.1093/bioinformatics/bth498 Yiu, S. M. et al. Filtering of ineffective siRNAs and improved siRNA design yool. Bioinformatics 21, 144-151 (2005). 

  90. Genes Dev. J Martinez 18 975 2004 10.1101/gad.1187904 Martinez, J. & Tuschl, T. RISC is a 5′ phosphomonoester-producing RNA endonuclease. Genes Dev. 18, 975-980 (2004). 

  91. Nature Rev. Mol. Cell Biol. EJ Sontheimer 6 127 2005 10.1038/nrm1568 Sontheimer, E. J. Assembly and function of RNA silencing complexes. Nature Rev. Mol. Cell Biol. 6, 127-138 (2005). 

  92. Nature Struct. Mol. Biol. KM Brown 12 469 2005 10.1038/nsmb931 Brown, K. M., Chu, C. Y. & Rana, T. M. Target accessibility dictates the potency of human RISC. Nature Struct. Mol. Biol. 12, 469-470 (2005). 

  93. Rna G Meister 10 544 2004 10.1261/rna.5235104 Meister, G., Landthaler, M., Dorsett, Y. & Tuschl, T. Sequence-specific inhibition of microRNA- and siRNA-induced RNA silencing. Rna 10, 544-550 (2004). 

  94. J. Virol. YL Chiu 78 2517 2004 10.1128/JVI.78.5.2517-2529.2004 Chiu, Y. L., Cao, H., Jacque, J. M., Stevenson, M. & Rana, T. M. Inhibition of human immunodeficiency virus type 1 replication by RNA interference directed against human transcription elongation factor P-TEFb (CDK9/CyclinT1). J. Virol. 78, 2517-2529 (2004). 

  95. Nature TP Chendrimada 436 740 2005 10.1038/nature03868 Chendrimada, T. P. et al. TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436, 740-744 (2005). 

  96. PLoS Biol. K Forstemann 3 e236 2005 10.1371/journal.pbio.0030236 Forstemann, K. et al. Normal microRNA maturation and germ-line stem cell maintenance requires Loquacious, a double-stranded RNA-binding domain protein. PLoS Biol. 3, e236 (2005). 

  97. EMBO Rep. AD Haase 6 961 2005 10.1038/sj.embor.7400509 Haase, A. D. et al. TRBP, a regulator of cellular PKR and HIV-1 virus expression, interacts with Dicer and functions in RNA silencing. EMBO Rep. 6, 961-967 (2005). 

  98. Genes Dev. AA Caudy 16 2491 2002 10.1101/gad.1025202 Caudy, A. A., Myers, M., Hannon, G. J. & Hammond, S. M. Fragile X-related protein and VIG associate with the RNA interference machinery. Genes Dev. 16, 2491-2496 (2002). 

  99. Genes Dev. JG Doench 18 504 2004 10.1101/gad.1184404 Doench, J. G. & Sharp, P. A. Specificity of microRNA target selection in translational repression. Genes Dev. 18, 504-511 (2004). 

  100. Nature LP Lim 433 769 2005 10.1038/nature03315 Lim, L. P. et al. Microarray analysis shows that some microRNAs downregulate large numbers of target mRNAs. Nature 433, 769-773 (2005). 

  101. Genes Dev. K Okamura 18 1655 2004 10.1101/gad.1210204 Okamura, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Distinct roles for Argonaute proteins in small RNA-directed RNA cleavage pathways. Genes Dev. 18, 1655-1666 (2004). 

  102. Curr. Biol. DS Schwarz 14 787 2004 10.1016/j.cub.2004.03.008 Schwarz, D. S., Tomari, Y. & Zamore, P. D. The RNA-induced silencing complex is a Mg2+-dependent endonuclease. Curr. Biol. 14, 787-791 (2004). 

  103. J. Mol. Biol. S Schubert 348 883 2005 10.1016/j.jmb.2005.03.011 Schubert, S., Grunweller, A., Erdmann, V. A. & Kurreck, J. Local RNA target structure influences siRNA efficacy: systematic analysis of intentionally designed binding regions. J. Mol. Biol. 348, 883-893 (2005). 

  104. J. Mol. Biol. M Overhoff 348 871 2005 10.1016/j.jmb.2005.03.012 Overhoff, M. et al. Local RNA target structure influences siRNA efficacy: a systematic global analysis. J. Mol. Biol. 348, 871-881 (2005). This article, together with references 92 and 103, showed the effect of target accessibility on RNAi function. 

  105. Arch. Biochem. Biophys. TM Rana 365 175 1999 10.1006/abbi.1999.1206 Rana, T. M. & Jeang, K. T. Biochemical and functional interactions between HIV-1 Tat protein and TAR RNA. Arch. Biochem. Biophys. 365, 175-185 (1999). 

  106. Gene M Kozak 234 187 1999 10.1016/S0378-1119(99)00210-3 Kozak, M. Initiation of translation in prokaryotes and eukaryotes. Gene 234, 187-208 (1999). 

  107. Nature J Krutzfeldt 438 685 2005 10.1038/nature04303 Krutzfeldt, J. et al. Silencing of microRNAs in vivo with 'antagomirs'. Nature 438, 685-689 (2005). 

  108. Annu. Rev. Med. DM Dykxhoorn 56 401 2005 10.1146/annurev.med.56.082103.104606 Dykxhoorn, D. M. & Lieberman, J. The silent revolution: RNA interference as basic biology, research tool, and therapeutic. Annu. Rev. Med. 56, 401-423 (2005). 

  109. Nature D Palliser 439 89 2006 10.1038/nature04263 Palliser, D. et al. An siRNA-based microbicide protects mice from lethal herpes simplex virus 2 infection. Nature 439, 89-94 (2006). 

  110. Mol. Cell F Vazquez 16 69 2004 10.1016/j.molcel.2004.09.028 Vazquez, F. et al. Endogenous trans-acting siRNAs regulate the accumulation of Arabidopsis mRNAs. Mol. Cell 16, 69-79 (2004). 

  111. Genes Dev. A Peragine 18 2368 2004 10.1101/gad.1231804 Peragine, A., Yoshikawa, M., Wu, G., Albrecht, H. L. & Poethig, R. S. SGS3 and SGS2/SDE1/RDR6 are required for juvenile development and the production of trans-acting siRNAs in Arabidopsis. Genes Dev. 18, 2368-2379 (2004). 

  112. Science TA Volpe 297 1833 2002 10.1126/science.1074973 Volpe, T. A. et al. Regulation of heterochromatic silencing and histone H3 lysine-9 methylation by RNAi. Science 297, 1833-1837 (2002). 

  113. Science BJ Reinhart 297 1831 2002 10.1126/science.1077183 Reinhart, B. J. & Bartel, D. P. Small RNAs correspond to centromere heterochromatic repeats. Science 297, 1831 (2002). 

  114. Curr. Biol. AA Aravin 11 1017 2001 10.1016/S0960-9822(01)00299-8 Aravin, A. A. et al. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11, 1017-1027 (2001). 

  115. Curr. Opin. Genet. Dev. K Mochizuki 14 181 2004 10.1016/j.gde.2004.01.004 Mochizuki, K. & Gorovsky, M. A. Small RNAs in genome rearrangement in Tetrahymena. Curr. Opin. Genet. Dev. 14, 181-187 (2004). 

  116. Nature A Aravin 442 203 2006 10.1038/nature04916 Aravin, A. et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442, 203-207 (2006). 

  117. Nature A Girard 442 199 2006 10.1038/nature04917 Girard, A., Sachidanandam, R., Hannon, G. J. & Carmell, M. A. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442, 199-202 (2006). 

  118. Genes Dev. ST Grivna 20 1709 2006 10.1101/gad.1434406 Grivna, S. T., Beyret, E., Wang, Z. & Lin, H. A novel class of small RNAs in mouse spermatogenic cells. Genes Dev. 20, 1709-1714 (2006). 

  119. Genes Dev. T Watanabe 20 1732 2006 10.1101/gad.1425706 Watanabe, T. et al. Identification and characterization of two novel classes of small RNAs in the mouse germline: retrotransposon-derived siRNAs in oocytes and germline small RNAs in testes. Genes Dev. 20, 1732-1743 (2006). 

  120. Science NC Lau 313 363 2006 10.1126/science.1130164 Lau, N. C. et al. Characterization of the piRNA complex from rat testes. Science 313, 363-367 (2006). 

  121. Mech. Dev. S Kuramochi-Miyagawa 108 121 2001 10.1016/S0925-4773(01)00499-3 Kuramochi-Miyagawa, S. et al. Two mouse piwi-related genes: miwi and mili. Mech. Dev. 108, 121-133 (2001). 

  122. Cell YS Lee 117 69 2004 10.1016/S0092-8674(04)00261-2 Lee, Y. S. et al. Distinct roles for Drosophila Dicer-1 and Dicer-2 in the siRNA/miRNA silencing pathways. Cell 117, 69-81 (2004). 

  123. Cell H Zhang 118 57 2004 10.1016/j.cell.2004.06.017 Zhang, H., Kolb, F. A., Jaskiewicz, L., Westhof, E. & Filipowicz, W. Single processing center models for human Dicer and bacterial RNase III. Cell 118, 57-68 (2004). 

  124. Genes Dev. K Miyoshi 19 2837 2005 10.1101/gad.1370605 Miyoshi, K., Tsukumo, H., Nagami, T., Siomi, H. & Siomi, M. C. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes Dev. 19, 2837-2848 (2005). This paper, together with references 75 and 76, provided evidence that AGO2 is the catalytic enzyme that cleaves target mRNA during RNAi. 

  125. PLoS Biol. K Saito 3 e235 2005 10.1371/journal.pbio.0030235 Saito, K., Ishizuka, A., Siomi, H. & Siomi, M. C. Processing of pre-microRNAs by the Dicer-1-Loquacious complex in Drosophila cells. PLoS Biol. 3, e235 (2005). 

  126. Genes Dev. F Jiang 19 1674 2005 10.1101/gad.1334005 Jiang, F. et al. Dicer-1 and R3D1-L catalyze microRNA maturation in Drosophila. Genes Dev. 19, 1674-1679 (2005). 

  127. Embo J. Y Lee 25 522 2006 10.1038/sj.emboj.7600942 Lee, Y. et al. The role of PACT in the RNA silencing pathway. Embo J. 25, 522-532 (2006). 

  128. Embo J. JS Parker 23 4727 2004 10.1038/sj.emboj.7600488 Parker, J. S., Roe, S. M. & Barford, D. Crystal structure of a PIWI protein suggests mechanisms for siRNA recognition and slicer activity. Embo J. 23, 4727-4737 (2004). 

  129. J. Mol. Biol. S Schubert 346 457 2005 10.1016/j.jmb.2004.11.074 Schubert, S. et al. Maintaining inhibition: siRNA double expression vectors against coxsackieviral RNAs. J. Mol. Biol. 346, 457-465 (2005). 

  130. Nucleic Acids Res. T Holen 30 1757 2002 10.1093/nar/30.8.1757 Holen, T., Amarzguioui, M., Wiiger, M. T., Babaie, E. & Prydz, H. Positional effects of short interfering RNAs targeting the human coagulation trigger tissue factor. Nucleic Acids Res. 30, 1757-1766 (2002). 

  131. J. Med. Chem. TP Prakash 48 4247 2005 10.1021/jm050044o Prakash, T. P. et al. Positional effect of chemical modifications on short interference RNA activity in mammalian cells. J. Med. Chem. 48, 4247-4253 (2005). 

  132. Biochemistry DA Braasch 42 7967 2003 10.1021/bi0343774 Braasch, D. A. et al. RNA interference in mammalian cells by chemically-modified RNA. Biochemistry 42, 7967-7975 (2003). 

  133. Rna BA Kraynack 12 163 2006 10.1261/rna.2150806 Kraynack, B. A. & Baker, B. F. Small interfering RNAs containing full 2′-O-methylribonucleotide-modified sense strands display Argonaute2/eIF2C2-dependent activity. Rna 12, 163-176 (2006). 

  134. Nature Struct. Mol. Biol. FV Rivas 12 340 2005 10.1038/nsmb918 Rivas, F. V. et al. Purified Argonaute2 and an siRNA form recombinant human RISC. Nature Struct. Mol. Biol. 12, 340-349 (2005). 

  135. J. Biol. Chem. H Wu 276 23547 2001 10.1074/jbc.M009676200 Wu, H., Lima, W. F. & Crooke, S. T. Investigating the structure of human RNase H1 by site-directed mutagenesis. J. Biol. Chem. 276, 23547-23553 (2001). 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로