$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Molecular basis for sunitinib efficacy and future clinical development

Nature reviews. Drug discovery, v.6 no.9, 2007년, pp.734 - 745  

Faivre, Sandrine (Service Inter-Hospitalier de Cancé) ,  Demetri, George (rologie (SIHC) Beaujon-Bichat and RayLab, Hô) ,  Sargent, William (pital Beaujon, APHP and Denis Diderot University, 100 Boulevard du Gé) ,  Raymond, Eric (né)

Abstract AI-Helper 아이콘AI-Helper

Sunitinib malate (SU11248/Sutent; Pfizer) is a multitargeted tyrosine kinase inhibitor that has potent anti-angiogenic and antitumour activities. Definitive efficacy has been demonstrated in advanced renal cell carcinoma and in gastrointestinal stromal tumours that are refractory or intolerant to im...

참고문헌 (63)

  1. N. Engl. J. Med. J Folkman 285 1182 1971 10.1056/NEJM197108122850711 Folkman, J. Tumor angiogenesis: therapeutic implications. N. Engl. J. Med. 285, 1182-1186 (1971). 

  2. J. Natl Cancer Inst. J Folkman 82 4 1990 10.1093/jnci/82.1.4 Folkman, J. What is the evidence that tumors are angiogenesis dependent? J. Natl Cancer Inst. 82, 4-6 (1990). 

  3. Adv. Cancer Res. JM Cherrington 79 1 2000 10.1016/S0065-230X(00)79001-4 Cherrington, J. M., Strawn, L. M. & Shawver, L. K. New paradigms for the treatment of cancer: the role of anti-angiogenesis agents. Adv. Cancer Res. 79, 1-38 (2000). 

  4. Cell D Hanahan 100 57 2000 10.1016/S0092-8674(00)81683-9 Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. Cell 100, 57-70 (2000). 

  5. Semin. Oncol. S Faivre 33 407 2006 10.1053/j.seminoncol.2006.04.005 Faivre, S., Djelloul, S. & Raymond, E. New paradigms in anticancer therapy: targeting multiple signalling pathways with kinase inhibitors. Semin. Oncol. 33, 407-420 (2006). 

  6. N. Engl. J. Med. RJ Motzer 356 115 2007 10.1056/NEJMoa065044 Motzer, R. J. et al. Sunitinib versus interferon α in metastatic renal-cell carcinoma. N. Engl. J. Med. 356, 115-124 (2007). A pivotal study demonstrating the superiority of sunitinib over the previous standard of care in advanced RCC, for example IFNα. 

  7. Lancet GD Demetri 368 1329 2006 10.1016/S0140-6736(06)69446-4 Demetri, G. D. et al. Efficacy and safety of sunitinib in patients with advanced gastrointestinal stromal tumour after failure of imatinib: a randomized controlled trial. Lancet 368, 1329-1338 (2006). A pivotal study demonstrating the antitumour activity of sunitinib in patients with GIST resistant to imatinib, a situation that had no previous standard treatment. 

  8. FASEB J. R Humar 16 771 2002 10.1096/fj.01-0658com Humar R., Kiefer, F. N., Berns, H. & Battegay, E. J. Hypoxia enhances vascular cell proliferation and angiogenesis in vitro via rapamycin (mTOR-)dependent signaling. FASEB J. 16, 771-780 (2002). 

  9. Am. J. Pathol. C Lewis 167 627 2005 10.1016/S0002-9440(10)62038-X Lewis, C. & Murdoch, C. Macrophage responses to hypoxia: implications for tumor progression and anti-cancer therapies. Am. J. Pathol. 167, 627-635 (2005). 

  10. Nature Med. K Hattori 8 841 2002 10.1038/nm740 Hattori, K. et al. Placental growth factor reconstitutes hematopoiesis by recruiting VEGFR1(+) stem cells from bone-marrow microenvironment. Nature Med. 8, 841-849 (2002). 

  11. Circulation. J Rehman 107 1164 2003 10.1161/01.CIR.0000058702.69484.A0 Rehman, J., Li, J., Orschell, C. M. & March, K. L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation. 107, 1164-1169 (2003). 

  12. J. Cell. Mol. Med. D Ribatti 8 294 2004 10.1111/j.1582-4934.2004.tb00319.x Ribatti, D. The involvement of endothelial progenitor cells in tumor angiogenesis. J. Cell. Mol. Med. 8, 294-300 (2004). 

  13. Cancer Res. K Hida 64 8249 2004 10.1158/0008-5472.CAN-04-1567 Hida, K. et al. Tumor-associated endothelial cells with cytogenetic abnormalities. Cancer Res. 64, 8249-8255 (2004). 

  14. J. Clin. Oncol. DJ Hicklin 23 1 2005 10.1200/JCO.2005.06.081 Hicklin, D. J. & Ellis, L. M. Role of the vascular endothelial growth factor pathway in tumor growth and angiogenesis. J. Clin. Oncol. 23, 1-17 (2005). 

  15. FASEB J. R Erber 18 338 2004 10.1096/fj.03-0271fje Erber, R. et al. Combined inhibition of VEGF and PDGF signaling enforces tumor vessel regression by interfering with pericyte-mediated endothelial cell survival mechanisms. FASEB J. 18, 338-340 (2004). 

  16. Nature Rev. Cancer Y Cao 5 735 2005 10.1038/nrc1693 Cao, Y. Emerging mechanisms of tumour lymphangiogenesis and lymphatic metastasis. Nature Rev. Cancer 5, 735-743 (2005). 

  17. Cell J Condeelis 124 263 2006 10.1016/j.cell.2006.01.007 Condeelis, J. & Pollard, J. W. Macrophages: obligate partners for tumor cell migration, invasion and metastasis. Cell 124, 263-266 (2006). This recent review points out the crucial role of macrophages for tumour cell migration and initiation of angiogenesis. 

  18. Cancer Res. A Adini 62 2749 2002 Adini, A., Kornaga, T., Firoozbakht, F. & Benjamin, L. E. Placental growth factor is a survival factor for tumor endothelial cells and macrophages. Cancer Res. 62, 2749-2752 (2002). 

  19. Mol. Cancer Ther. MJ Grimshaw 1 1273 2002 Grimshaw, M. J., Naylor, S. & Balkwill, F. R. Endothelin-2 is a hypoxia-induced autocrine survival factor for breast tumor cells. Mol. Cancer Ther. 1, 1273-1281 (2002). 

  20. Nature Rev. Cancer. G Bergers 3 401 2003 10.1038/nrc1093 Bergers, G. & Benjamin, L. E. Tumorigenesis and the angiogenic switch. Nature Rev. Cancer. 3, 401-410 (2003). 

  21. N. Engl. J. Med. H Hurwitz 350 2335 2004 10.1056/NEJMoa032691 Hurwitz, H. et al. Bevacizumab plus irinotecan, fluorouracil, and leucovorin for metastatic colorectal cancer. N. Engl. J. Med. 350, 2335-2342 (2004). 

  22. Clin. Cancer Res. DB Mendel 9 327 2003 Mendel, D. B. et al. In vivo antitumor activity of SU11248, a novel tyrosine kinase inhibitor targeting vascular endothelial growth factor and platelet-derived growth factor receptors: determination of a pharmacokinetic/pharmacodynamic relationship. Clin. Cancer Res. 9, 327-337 (2003). 

  23. J. Med. Chem. L Sun 46 1116 2003 10.1021/jm0204183 Sun, L. et al. Discovery of 5-[5-fluoro-2-oxo-1,2- dihydroindol-(3Z)-ylidenemethyl]-2,4-dimethyl-1H-pyrrole-3-carboxylic acid (2-diethylaminoethyl)amide, a novel tyrosine kinase inhibitor targeting vascular endothelial and platelet-derived growth factor receptor tyrosine kinase. J. Med. Chem. 46, 1116-1119 (2003). 

  24. Angiogenesis KL Osusky 7 225 2004 10.1007/s10456-004-3149-y Osusky, K. L. et al. The receptor tyrosine kinase inhibitor SU11248 impedes endothelial cell migration, tubule formation, and blood vessel formation in vivo, but has little effect on existing tumor vessels. Angiogenesis 7, 225-233 (2004). 

  25. Cancer Invest. A Duensing 22 106 2004 10.1081/CNV-120027585 Duensing, A., Heinrich, M. C., Fletcher, C. D. & Fletcher, J. A. Biology of gastrointestinal stromal tumors: KIT mutations and beyond. Cancer Invest. 22, 106-116 (2004). 

  26. Cell. Mol. Life Sci. T Naoe 61 2932 2004 10.1007/s00018-004-4274-x Naoe, T. & Kiyoi, H. Normal and oncogenic FLT3. Cell. Mol. Life Sci. 61, 2932-2938 (2004). 

  27. Cancer Lett. M Ichihara 204 197 2004 10.1016/S0304-3835(03)00456-7 Ichihara, M., Murakumo, Y. & Takahashi, M. RET and neuroendocrine tumors. Cancer Lett. 204, 197-211 (2004). 

  28. Exp. Biol. Med. E Sapi 229 1 2004 10.1177/153537020422900101 Sapi, E. The role of CSF-1 in normal physiology of mammary gland and breast cancer: an update. Exp. Biol. Med. 229, 1-11 (2004). 

  29. J. Chromatogr. A S Baratte 1024 87 2004 10.1016/j.chroma.2003.10.085 Baratte, S. et al. Quantitation of SU11248, an oral multi-target tyrosine kinase inhibitor, and its metabolite in monkey tissues by liquid chromatograph with tandem mass spectrometry following semi-automated liquid-liquid extraction. J. Chromatogr. A 1024, 87-94 (2004). 

  30. Mol. Cancer Ther. TJ Abrams 2 471 2003 10.4161/cbt.2.5.446 Abrams, T. J. et al. SU11248 inhibits KIT and platelet-derived growth factor receptor β in preclinical models of human small cell lung cancer. Mol. Cancer Ther. 2, 471-478 (2003). 

  31. Clin. Exp. Metastasis LJ Murray 20 757 2003 10.1023/B:CLIN.0000006873.65590.68 Murray, L. J. et al. SU11248 inhibits tumor growth and CSF-1R-dependent osteolysis in an experimental breast cancer bone metastasis model. Clin. Exp. Metastasis 20, 757-766 (2003). 

  32. Blood AM O'Farrell 101 3597 2003 10.1182/blood-2002-07-2307 O'Farrell, A. M. et al. SU11248 is a novel FLT3 tyrosine kinase inhibitor with potent activity in vitro and in vivo. Blood 101, 3597-3605 (2003). 

  33. J. Clin. Oncol. S Faivre 24 25 2006 10.1200/JCO.2005.02.2194 Faivre, S. et al. Safety, pharmacokinetic, and antitumor activity of SU11248, a novel oral multitarget tyrosine kinase inhibitor, in patients with cancer. J. Clin. Oncol. 24, 25-35 (2006). A report on the first in man experience (Phase I trial) using sunitinib in patients with advanced cancers; identifies tumour types that benefited from sunitinib including RCC, imatinib-resistant GIST and NETs. 

  34. Expert Opin. Investig. Drugs RJ Motzer 15 553 2006 10.1517/13543784.15.5.553 Motzer, R. J., Hoosen, S., Bello, C. L. & Christensen, J. G. Sunitinib malate for the treatment of solid tumors: a review of current clinical data. Expert Opin. Investig. Drugs 15, 553-561 (2006). 

  35. J. Clin. Oncol. RJ Motzer 24 16 2006 10.1200/JCO.2005.02.2574 Motzer, R. J. et al. Activity of SU11248, a multitargeted inhibitor of vascular endothelial growth factor receptor and platelet-derived growth factor receptor, in patients with metastatic renal cell carcinoma. J. Clin. Oncol. 24, 16-24 (2006). 

  36. JAMA RJ Motzer 295 2516 2006 10.1001/jama.295.21.2516 Motzer, R. J. et al. Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295, 2516-2524 (2006). 

  37. J. Clin. Oncol. R Motzer 25 Suppl. 18 5024 2007 10.1200/jco.2007.25.18_suppl.5024 Motzer R. J. et al. Sunitinib versus interferon-α (IFN-α) as first-line treatment of metastatic renal cell carcinoma (mRCC): updated results and analysis of prognostic factors. J. Clin. Oncol. 25 (Suppl. 18), 5024 (2007). 

  38. Ann. Oncol. IR Judson 17 Suppl. 9 ix162 2006 Judson, I. R., et al. Updated results from a Phase III trial of sunitinib in advanced gastrointestinal stromal tumor (GIST). Ann. Oncol. 17 (Suppl. 9), ix162 (2006). 

  39. Ann. Oncol. P Dileo 17 Suppl. 9 ix162 2006 Dileo, P. et al. Updated results from a 'treatment-use' trial of sunitinib in advanced gastrointestinal stromal tumor (GIST). Ann. Oncol. 17 (Suppl. 9), ix162 (2006). 

  40. Eur. J. Cancer Suppl. KD Miller 3 113 2005 Miller, K. D. et al. Safety and efficacy of sunitinib malate (SU11248) as second-line therapy in metastatic breast cancer (MBC) patients: preliminary results from a Phase II study. Eur. J. Cancer Suppl. 3, 113-114 (2005). 

  41. 10.1016/S1359-6349(05)81013-4 Kulke, M. et al. Results of a Phase II study with sunitinib malate (SU11248) in patients (pts) with advanced neuroendocrine tumours (NETS). Eur. J. Cancer Suppl. 3,204 (2005). 

  42. J. Clin. Oncol. MA Socinski 24 Suppl. 18 7001 2006 10.1200/jco.2006.24.18_suppl.7001 Socinski, M. A. et al. Efficacy and safety of sunitinib in previously treated, advanced non-small cell lung cancer (NSCLC): preliminary results of a multicenter Phase II trial. J. Clin. Oncol. 24 (Suppl. 18),7001 (2006). 

  43. Ann. Oncol. MA Socinski 17 Suppl. 9 ix218 2006 Socinski, M. A. et al. Efficacy and safety of sunitinib in a multicenter Phase II trial of previously treated, advanced non-small cell lung cancer (NSCLC). Ann. Oncol. 17 (Suppl. 9), ix218 (2006). 

  44. J. Clin. Oncol. S Faivre 25 Suppl. 18 3546 2007 10.1200/jco.2007.25.18_suppl.3546 Faivre, S. et al. Assessment of safety and drug-induced tumor necrosis with sunitinib in patients (pts) with unresectable hepatocellular carcinoma (HCC). J. Clin. Oncol. 25 (Suppl. 18), 3546 (2007). 

  45. Ann. Oncol. J-Y Blay 17 Suppl. 9 ix163 2006 Blay, J-Y . et al. Clinical benefit of continuous daily dosing of sunitinib in patients (pts) with advanced gastrointestinal stromal tumor (GIST). Ann. Oncol. 17 (Suppl. 9), ix163 (2006). 

  46. Ann. Oncol. B Escudier 17 Suppl. 9 ix144 2006 Escudier, B. et al. Continuous daily administration of sunitinib malate (SU11248) - a Phase II study in patients (pts) with cytokine-refractory metastatic renal cell carcinoma (mRCC). Ann. Oncol. 17 (Suppl. 9), ix144 (2006). 

  47. Science JG Paez 304 1497 2004 10.1126/science.1099314 Paez, J. G. et al. EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science 304, 1497-1500 (2004). 

  48. Eur. J. Cancer. M Debiec-Rychter 40 689 2004 10.1016/j.ejca.2003.11.025 Debiec-Rychter, M. et al. Use of c-KIT/PDGFRA mutational analysis to predict the clinical response to imatinib in patients with advanced gastrointestinal stromal tumours entered on Phase I and II studies of the EORTC Soft Tissue and Bone Sarcoma Group. Eur. J. Cancer. 40, 689-695 (2004). 

  49. Oncogene AM Morimoto 23 1618 2004 10.1038/sj.onc.1207268 Morimoto, A. M. et al. Gene expression profiling of human colon xenograft tumors following treatment with SU11248, a multitargeted tyrosine kinase inhibitor. Oncogene 23, 1618-1626 (2004). 

  50. Nature Rev. Cancer AM Jubb 6 626 2006 10.1038/nrc1946 Jubb, A. M, Oates, A. J., Holden, S. & Koeppen, H. Predicting benefits from anti-angiogenic agents in malignancy. Nature Rev. Cancer 6, 626-635 (2006). A comprehensive review summarizing the recent findings on potential biological and radiological end points that may be considered to predict benefit from anti-angiogenic therapy. 

  51. 10.1016/S1359-6349(05)81743-4 DePrimo, S. et al. The multitargeted kinase inhibitor sunitinib malate (SU11248): soluble protein biomarkers of pharmacodynamic activity in patients with metastatic renal cell cancer. Eur. J. Cancer. Suppl. 3,420 (2005). 

  52. J. Clin. Oncol. C Bello 24 Suppl. 18 4045 2006 10.1200/jco.2006.24.18_suppl.4045 Bello, C. et al. Analysis of circulating biomarkers of sunitinib malate in patients with unresectable neuroendocrine tumors (NET): VEGF, IL-8, and soluble VEGF receptors 2 and 3. J. Clin. Oncol. 24 (Suppl. 18), 4045 (2006). 

  53. J. Clin. Oncol. SE DePrimo 24 Suppl. 18 578 2006 10.1200/jco.2006.24.18_suppl.578 DePrimo, S. E. et al. Effect of treatment with sunitinib malate, a multitargeted tyrosine kinase inhibitor, on circulating plasma levels of VEGF, soluble VEGF receptors 2 and 3, and soluble KIT in patients with metastatic breast cancer. J. Clin. Oncol. 24 (Suppl. 18), 578 (2006). 

  54. Eur. J. Cancer Suppl. A Norden-Zfoni 3 423 2005 Norden-Zfoni, A. et al. Circulating endothelial cells and monocytes as markers of sunitinib malate (SU11248) activity in patients with imatinib mesylate-resistant GIST. Eur. J. Cancer Suppl. 3, 423 (2005). 

  55. Eur. J. Cancer Suppl. AD Van den Abbeele 3 202 2005 Van den Abbeele, A. D. et al. FDG-PET imaging demonstrates kinase target inhibition by sunitinib malate (SU11248) in GIST patients resistant to or intolerant of imatinib mesylate. Eur. J. Cancer Suppl. 3, 202-203 (2005). 

  56. Eur. J. Cancer Suppl. D Davis 3 203 2005 Davis D. W. et al. Receptor tyrosine kinase activity and apoptosis in gastrointestinal stromal tumors: a pharmacodynamic analysis of response to sunitinib malate (SU11248) therapy. Eur. J. Cancer Suppl. 3, 203 (2005). 

  57. 10.1200/jco.2007.25.18_suppl.5023 Bukowski R. M. et al. Final results of the randomized Phase III trial of sorafenib in advanced renal cell carcinoma: survival and biomarker analysis. J. Clin. Oncol. 25 (Suppl. 18),5023 (2007). 

  58. J. Clin. Oncol JK Abou-alfa 24 4293 2006 10.1200/JCO.2005.01.3441 Abou-alfa J. K. et al. Phase II study of sorafenib in patients with advanced hepatocellular carcinoma. J. Clin. Oncol, 24, 4293-4300 (2006). 

  59. Cancer Cell O Casanovas 8 299 2005 10.1016/j.ccr.2005.09.005 Casanovas, O., Hickling, D. J., Bergers, G. & Hanahan, D. Drug resistance by evasion of antiangiogenic targeting of VEGF-signaling in late-stage pancreatic islet tumors. Cancer Cell 8, 299-309 (2005). An important contribution on how tumours may escape from VEGF/VEGFR inhibition, and the potential implication of FGF/FGFR. 

  60. Mol. Cancer Res. J Huang 2 36 2004 10.1158/1541-7786.36.2.1 Huang, J. et al. Vascular remodeling tumors that recur during chronic suppression of angiogenesis. Mol. Cancer Res. 2, 36-42 (2004). An interesting paper investigating the role of PDGFR in animal models exposed to VEGF/VEGFR inhibition. 

  61. Ronnen, E. A. et al. A Phase I study of sunitinib malate (SU11248) in combination with gefitinib in patients with metastatic renal cell carcinoma (mRCC). J. Clin. Oncol. 24,4537 (2006). 

  62. Curr. Pharm. Des. C Verhoef 12 2623 2006 10.2174/138161206777698756 Verhoef, C., de Wilt, J. H. W. & Verheul, H. M. W. Angiogenesis inhibitors: perspectives for medical, surgical and radiation oncology. Curr. Pharm. Des. 12, 2623-2630 (2006). 

  63. J. Clin. Oncol. CP Raut 24 2325 2006 10.1200/JCO.2005.05.3439 Raut, C. P. et al. Surgical management of advanced gastrointestinal stromal tumors after treatment with targeted systemic therapy using kinase inhibitors. J. Clin. Oncol. 24, 2325-2331 (2006). 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로