$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Temperature gradient focusing in a PDMS/glass hybrid microfluidic chip

Electrophoresis, v.28 no.24, 2007년, pp.4606 - 4611  

Matsui, Takuya (ISAS-Institute for Analytical Sciences Dortmund and Berlin, Dortmund, Germany) ,  Franzke, Joachim (ISAS-Institute for Analytical Sciences Dortmund and Berlin, Dortmund, Germany) ,  Manz, Andreas (ISAS-Institute for Analytical Sciences Dortmund and Berlin, Dortmund, Germany) ,  Janasek, Dirk (ISAS-Institute for Analytical Sciences Dortmund and Berlin, Dortmund, Germany)

Abstract AI-Helper 아이콘AI-Helper

This paper reports the application of temperature gradient focusing (TGF) in a PDMS/glass hybrid microfluidic chip. With TGF, by the combination of a temperature gradient along a microchannel, an applied electric field, and a buffer with a temperature-dependent ionic strength, analytes are focused b...

주제어

참고문헌 (48)

  1. Reyes, D. R., Iossifidis, D., Auroux, P.-A., Manz, A.. Micro Total Analysis Systems. 1. Introduction, Theory, and Technology. Analytical chemistry, vol.74, no.12, 2623-2636.

  2. Auroux, P.-A., Reyes, D. R., Iossifidis, D., Manz, A.. Micro Total Analysis Systems. 2. Analytical Standard Operations and Applications. Analytical chemistry, vol.74, no.12, 2637-2652.

  3. Vilkner, T., Janasek, D., Manz, A.. Micro Total Analysis Systems. Recent Developments. Analytical chemistry, vol.76, no.12, 3373-3386.

  4. Dittrich, P. S., Tachikawa, K., Manz, A.. Micro Total Analysis Systems. Latest Advancements and Trends. Analytical chemistry, vol.78, no.12, 3887-3908.

  5. Harrison, D. Jed, Fluri, Karl, Seiler, Kurt, Fan, Zhonghui, Effenhauser, Carlo S., Manz, Andreas. Micromachining a Miniaturized Capillary Electrophoresis-Based Chemical Analysis System on a Chip. Science, vol.261, no.5123, 895-897.

  6. Kopp, Martin U., Mello, Andrew J. de, Manz, Andreas. Chemical Amplification: Continuous-Flow PCR on a Chip. Science, vol.280, no.5366, 1046-1048.

  7. Waters, L. C., Jacobson, S. C., Kroutchinina, N., Khandurina, J., Foote, R. S., Ramsey, J. M.. Microchip Device for Cell Lysis, Multiplex PCR Amplification, and Electrophoretic Sizing. Analytical chemistry, vol.70, no.1, 158-162.

  8. Weigl, Bernhard H., Yager, Paul. Microfluidic Diffusion-Based Separation and Detection. Science, vol.283, no.5400, 346-347.

  9. Manz, A., Graber, N., Widmer, H.M.. Miniaturized total chemical analysis systems: A novel concept for chemical sensing. Sensors and actuators. B, Chemical, vol.1, no.1, 244-248.

  10. Lin, Cheng-Huang, Kaneta, Takashi. On-line sample concentration techniques in capillary electrophoresis: Velocity gradient techniques and sample concentration techniques for biomolecules. Electrophoresis, vol.25, no.23, 4058-4073.

  11. 10.1002/1522-2683(200101)22:2<258::AID-ELPS258>3.0.CO;2-4 

  12. Ross, D., Locascio, L. E.. Microfluidic Temperature Gradient Focusing. Analytical chemistry, vol.74, no.11, 2556-2564.

  13. Balss, K. M., Vreeland, W. N., Howell, P. B., Henry, A. C., Ross, D.. Micellar Affinity Gradient Focusing: A New Method for Electrokinetic Focusing. Journal of the American Chemical Society, vol.126, no.7, 1936-1937.

  14. Balss, K. M., Ross, D., Begley, H. C., Olsen, K. G., Tarlov, M. J.. DNA Hybridization Assays Using Temperature Gradient Focusing and Peptide Nucleic Acids. Journal of the American Chemical Society, vol.126, no.41, 13474-13479.

  15. Balss, K. M., Vreeland, W. N., Phinney, K. W., Ross, D.. Simultaneous Concentration and Separation of Enantiomers with Chiral Temperature Gradient Focusing. Analytical chemistry, vol.76, no.24, 7243-7249.

  16. Hoebel, S. J., Balss, K. M., Jones, B. J., Malliaris, C. D., Munson, M. S., Vreeland, W. N., Ross, D.. Scanning Temperature Gradient Focusing. Analytical chemistry, vol.78, no.20, 7186-7190.

  17. 10.1002/(SICI)1522-2683(20000101)21:1<198::AID-ELPS198>3.0.CO;2-V 

  18. Kaniansky, D., Masar, M., Bielcikova, J., Ivanyi, F., Eisenbeiss, F., Stanislawski, B., Grass, B., Neyer, A., Johnck, M.. Capillary Electrophoresis Separations on a Planar Chip with the Column-Coupling Configuration of the Separation Channels. Analytical chemistry, vol.72, no.15, 3596-3604.

  19. Palmer, J., Burgi, D. S., Munro, N. J., Landers, J. P.. Electrokinetic Injection for Stacking Neutral Analytes in Capillary and Microchip Electrophoresis. Analytical chemistry, vol.73, no.4, 725-731.

  20. 10.1002/(SICI)1520-667X(2000)12:2<93::AID-MCS5>3.0.CO;2-P 

  21. Herr, A. E., Molho, J. I., Drouvalakis, K. A., Mikkelsen, J. C., Utz, P. J., Santiago, J. G., Kenny, T. W.. On-Chip Coupling of Isoelectric Focusing and Free Solution Electrophoresis for Multidimensional Separations. Analytical chemistry, vol.75, no.5, 1180-1187.

  22. IVORY, C.. A Brief Review of Alternative Electrofocusing Techniques. Separation science and technology, vol.35, no.11, 1777-1793.

  23. Effenhauser, C. S., Bruin, G. J. M., Paulus, A., Ehrat, M.. Integrated Capillary Electrophoresis on Flexible Silicone Microdevices: Analysis of DNA Restriction Fragments and Detection of Single DNA Molecules on Microchips. Analytical chemistry, vol.69, no.17, 3451-3457.

  24. Duffy, D. C., McDonald, J. C., Schueller, O. J. A., Whitesides, G. M.. Rapid Prototyping of Microfluidic Systems in Poly(dimethylsiloxane). Analytical chemistry, vol.70, no.23, 4974-4984.

  25. Locascio, Laurie E, Perso, Catherine E, Lee, Cheng S. Measurement of electroosmotic flow in plastic imprinted microfluid devices and the effect of protein adsorption on flow rate. Journal of chromatography A, vol.857, no.1, 275-284.

  26. 10.1002/(SICI)1522-2683(20000101)21:1<107::AID-ELPS107>3.0.CO;2-Y 

  27. Kumar, Amit, Whitesides, George M.. Features of gold having micrometer to centimeter dimensions can be formed through a combination of stamping with an elastomeric stamp and an alkanethiol ‘‘ink’’ followed by chemical etching. Applied physics letters, vol.63, no.14, 2002-2004.

  28. McDonald, J. C., Whitesides, G. M.. Poly(dimethylsiloxane) as a Material for Fabricating Microfluidic Devices. Accounts of chemical research, vol.35, no.7, 491-499.

  29. 10.1002/1522-2683(200210)23:20<3461::AID-ELPS3461>3.0.CO;2-8 

  30. Becker, Holger, Locascio, Laurie E.. Polymer microfluidic devices. Talanta, vol.56, no.2, 267-287.

  31. Sia, Samuel K., Whitesides, George M.. Microfluidic devices fabricated in Poly(dimethylsiloxane) for biological studies. Electrophoresis, vol.24, no.21, 3563-3576.

  32. Lee, J. N., Park, C., Whitesides, G. M.. Solvent Compatibility of Poly(dimethylsiloxane)-Based Microfluidic Devices. Analytical chemistry, vol.75, no.23, 6544-6554.

  33. 10.1021/ac048915 

  34. Lin, Yu-Cheng. A poly-methylmethacrylate electrophoresis microchip with sample preconcentrator. Journal of micromechanics and microengineering.: structures, devices, and systems, vol.11, no.3, 189-194.

  35. 10.1002/1522-2683(200101)22:2<300::AID-ELPS300>3.0.CO;2-F 

  36. Khandurina, J., Jacobson, S. C., Waters, L. C., Foote, R. S., Ramsey, J. M.. Microfabricated Porous Membrane Structure for Sample Concentration and Electrophoretic Analysis. Analytical chemistry, vol.71, no.9, 1815-1819.

  37. Huang, Z., Ivory, C. F.. Digitally Controlled Electrophoretic Focusing. Analytical chemistry, vol.71, no.8, 1628-1632.

  38. 10.1002/1522-2683(200107)22:12<2464::AID-ELPS2464>3.0.CO;2-U 

  39. Yang, Hua, Chien, Ring-Ling. Sample stacking in laboratory-on-a-chip devices. Journal of chromatography A, vol.924, no.1, 155-163.

  40. Wainright, Ann, Williams, Stephen J, Ciambrone, Gary, Xue, Qifeng, Wei, Jing, Harris, Dennis. Sample pre-concentration by isotachophoresis in microfluidic devices. Journal of chromatography A, vol.979, no.1, 69-80.

  41. Herr, A. E., Molho, J. I., Santiago, J. G., Mungal, M. G., Kenny, T. W., Garguilo, M. G.. Electroosmotic Capillary Flow with Nonuniform Zeta Potential. Analytical chemistry, vol.72, no.5, 1053-1057.

  42. Ross, D., Johnson, T. J., Locascio, L. E.. Imaging of Electroosmotic Flow in Plastic Microchannels. Analytical chemistry, vol.73, no.11, 2509-2515.

  43. McCormick, R. M., Nelson, R. J., Alonso-Amigo, M. G., Benvegnu, D. J., Hooper, H. H.. Microchannel Electrophoretic Separations of DNA in Injection-Molded Plastic Substrates. Analytical chemistry, vol.69, no.14, 2626-2630.

  44. 10.1002/(SICI)1520-667X(1997)9:6<443::AID-MCS1>3.0.CO;2-1 

  45. Wu, Hongkai, Huang, Bo, Zare, Richard N.. Construction of microfluidic chips using polydimethylsiloxane for adhesive bonding. Lab on a chip, vol.5, no.12, 1393-1398.

  46. Ren, Xueqin, Bachman, Mark, Sims, Christopher, Li, G.P, Allbritton, Nancy. Electroosmotic properties of microfluidic channels composed of poly(dimethylsiloxane). Journal of chromatography. B, Biomedical sciences and applications, vol.762, no.2, 117-125.

  47. J. Capil. Electrophor. Microchip Technol. Branham M. L. 43 6 1999 

  48. Liu, Y., Fanguy, J. C., Bledsoe, J. M., Henry, C. S.. Dynamic Coating Using Polyelectrolyte Multilayers for Chemical Control of Electroosmotic Flow in Capillary Electrophoresis Microchips. Analytical chemistry, vol.72, no.24, 5939-5944.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로