$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Cell cycle, CDKs and cancer: a changing paradigm

Nature reviews. Cancer, v.9 no.3, 2009년, pp.153 - 166  

Malumbres, Marcos (Cell Division and Cancer Group, Molecular Oncology Programme, Centro Nacional de Investigaciones Oncoló) ,  Barbacid, Mariano (gicas (CNIO), 28029 Madrid, Spain. barbacid@cnio.es)

Abstract AI-Helper 아이콘AI-Helper

Tumour-associated cell cycle defects are often mediated by alterations in cyclin-dependent kinase (CDK) activity. Misregulated CDKs induce unscheduled proliferation as well as genomic and chromosomal instability. According to current models, mammalian CDKs are essential for driving each cell cycle p...

참고문헌 (176)

  1. Nature Rev. Cancer M Malumbres 1 222 2001 10.1038/35106065 Malumbres, M. & Barbacid, M. To cycle or not to cycle: a critical decision in cancer. Nature Rev. Cancer 1, 222-231 (2001). 

  2. Nature J Massague 432 298 2004 10.1038/nature03094 Massague, J. G1 cell-cycle control and cancer. Nature 432, 298-306 (2004). 

  3. Nature MB Kastan 432 316 2004 10.1038/nature03097 Kastan, M. B. & Bartek, J. Cell-cycle checkpoints and cancer. Nature 432, 316-323 (2004). 

  4. Nature Rev. Cancer GJ Kops 5 773 2005 10.1038/nrc1714 Kops, G. J., Weaver, B. A. & Cleveland, D. W. On the road to cancer: aneuploidy and the mitotic checkpoint. Nature Rev. Cancer 5, 773-785 (2005). 

  5. Trends Biochem. Sci. M Malumbres 30 630 2005 10.1016/j.tibs.2005.09.005 Malumbres, M. & Barbacid, M. Mammalian cyclin-dependent kinases. Trends Biochem. Sci. 30, 630-641 (2005). 

  6. Nature Rev. Mol. Cell Biol. J Bartek 5 792 2004 10.1038/nrm1493 Bartek, J., Lukas, C. & Lukas, J. Checking on DNA damage in S phase. Nature Rev. Mol. Cell Biol. 5, 792-804 (2004). 

  7. Carcinogenesis I Perez de Castro 28 899 2007 10.1093/carcin/bgm019 Perez de Castro, I., de Carcer, G. & Malumbres, M. A census of mitotic cancer genes: new insights into tumor cell biology and cancer therapy. Carcinogenesis 28, 899-912 (2007). 

  8. Nature Rev. Mol. Cell Biol. A Musacchio 8 379 2007 10.1038/nrm2163 Musacchio, A. & Salmon, E. D. The spindle-assembly checkpoint in space and time. Nature Rev. Mol. Cell Biol. 8, 379-393 (2007). 

  9. Cell JW Harbour 98 859 1999 10.1016/S0092-8674(00)81519-6 Harbour, J. W., Luo, R. X., Dei Santi, A., Postigo, A. A. & Dean, D. C. Cdk phosphorylation triggers sequential intramolecular interactions that progressively block Rb functions as cells move through G1. Cell 98, 859-869 (1999). 

  10. Mol. Cell. Biol. AS Lundberg 18 753 1998 10.1128/MCB.18.2.753 Lundberg, A. S. & Weinberg, R. A. Functional inactivation of the retinoblastoma protein requires sequential modification by at least two distinct cyclin-cdk complexes. Mol. Cell. Biol. 18, 753-761 (1998). 

  11. Science S van den Heuvel 262 2050 1993 10.1126/science.8266103 van den Heuvel, S. & Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science 262, 2050-2054 (1993). 

  12. J. Cell Biol. M Pagano 121 101 1993 10.1083/jcb.121.1.101 Pagano, M. et al. Regulation of the cell cycle by the cdk2 protein kinase in cultured human fibroblasts. J. Cell Biol. 121, 101-111 (1993). 

  13. Nature Rev. Mol. Cell Biol. H Hochegger 9 910 2008 10.1038/nrm2510 Hochegger, H., Takeda, S. & Hunt, T. Cyclin-dependent kinases and cell-cycle transitions: does one fit all? Nature Rev. Mol. Cell Biol. 9, 910-916 (2008). 

  14. Nature Genet. SG Rane 22 44 1999 10.1038/8751 Rane, S. G. et al. Loss of Cdk4 expression causes insulin-deficient diabetes and Cdk4 activation results in beta-islet cell hyperplasia. Nature Genet. 22, 44-52 (1999). 

  15. Mol. Cell. Biol. T Tsutsui 19 7011 1999 10.1128/MCB.19.10.7011 Tsutsui, T. et al. Targeted disruption of CDK4 delays cell cycle entry with enhanced p27Kip1 activity. Mol. Cell. Biol. 19, 7011-7019 (1999). 

  16. Cell M Malumbres 118 493 2004 10.1016/j.cell.2004.08.002 Malumbres, M. et al. Mammalian cells cycle without the D-type cyclin-dependent kinases Cdk4 and Cdk6. Cell 118, 493-504 (2004). 

  17. Nature Genet. S Ortega 35 25 2003 10.1038/ng1232 Ortega, S. et al. Cyclin-dependent kinase 2 is essential for meiosis but not for mitotic cell division in mice. Nature Genet. 35, 25-31 (2003). 

  18. Curr. Biol. C Berthet 13 1775 2003 10.1016/j.cub.2003.09.024 Berthet, C., Aleem, E., Coppola, V., Tessarollo, L. & Kaldis, P. Cdk2 knockout mice are viable. Curr. Biol. 13, 1775-1785 (2003). References 17 and 18 provide genetic evidence that CDK2 is not essential for DNA synthesis, or for any other essential step within the mitotic cell cycle. 

  19. Nature D Santamaria 448 811 2007 10.1038/nature06046 Santamaria, D. et al. Cdk1 is sufficient to drive the mammalian cell cycle. Nature 448, 811-815 (2007). Genetic ablation of all interphase CDKs - CDK2, CDK4 and CDK6 - does not result in cell cycle defects in most cell types. In addition, this manuscript describes that CDK1 is essential for cell division. 

  20. Mol. Oncol. C Barriere 1 72 2007 10.1016/j.molonc.2007.03.001 Barriere, C. et al. Mice thrive without Cdk4 and Cdk2. Mol. Oncol. 1, 72-83 (2007). This manuscript demonstrates that the two main interphase CDKs are dispensable for adult homeostasis as well as for proliferation of adult hepatocytes during liver regeneration. 

  21. Dev. Cell C Berthet 10 563 2006 10.1016/j.devcel.2006.03.004 Berthet, C. et al. Combined loss of Cdk2 and Cdk4 results in embryonic lethality and Rb hypophosphorylation. Dev. Cell 10, 563-573 (2006). 

  22. Development A Satyanarayana 135 3389 2008 10.1242/dev.024919 Satyanarayana, A. et al. Genetic substitution of Cdk1 by Cdk2 leads to embryonic lethality and loss of meiotic function of Cdk2. Development 135, 3389-3400 (2008). 

  23. Oncogene MA Ciemerych 24 2877 2005 10.1038/sj.onc.1208608 Ciemerych, M. A. & Sicinski, P. Cell cycle in mouse development. Oncogene 24, 2877-2898 (2005). 

  24. Cell K Kozar 118 477 2004 10.1016/j.cell.2004.07.025 Kozar, K. et al. Mouse development and cell proliferation in the absence of D-cyclins. Cell 118, 477-491 (2004). References 14-16 and 24 provide genetic evidence that the D-type cyclins as well as their cognate CDKs, CDK4 and CDK6, are not essential for entry into the cell cycle. 

  25. Cell Y Geng 114 431 2003 10.1016/S0092-8674(03)00645-7 Geng, Y. et al. Cyclin E ablation in the mouse. Cell 114, 431-443 (2003). 

  26. EMBO J. T Parisi 22 4794 2003 10.1093/emboj/cdg482 Parisi, T. et al. Cyclins E1 and E2 are required for endoreplication in placental trophoblast giant cells. EMBO J. 22, 4794-4803 (2003). 

  27. Mol. Cell Y Geng 25 127 2007 10.1016/j.molcel.2006.11.029 Geng, Y. et al. Kinase-independent function of cyclin, E. Mol. Cell 25, 127-139 (2007). 

  28. Cell Y Geng 97 767 1999 10.1016/S0092-8674(00)80788-6 Geng, Y. et al. Rescue of cyclin D1 deficiency by knockin cyclin, E. Cell 97, 767-777 (1999). References 25-28 provide genetic evidence on the essential functions of E-type cyclins, their CDK2-independent roles and their functional overlap with cyclin D1. 

  29. Nature Genet. M Murphy 15 83 1997 10.1038/ng0197-83 Murphy, M. et al. Delayed early embryonic lethality following disruption of the murine cyclin A2 gene. Nature Genet. 15, 83-86 (1997). 

  30. Proc. Natl Acad. Sci. USA M Brandeis 95 4344 1998 10.1073/pnas.95.8.4344 Brandeis, M. et al. Cyclin B2-null mice develop normally and are fertile whereas cyclin B1-null mice die in utero. Proc. Natl Acad. Sci. USA 95, 4344-4349 (1998). 

  31. Genes Dev. TE Kippin 19 756 2005 10.1101/gad.1272305 Kippin, T. E., Martens, D. J. & van der Kooy, D. p21 loss compromises the relative quiescence of forebrain stem cell proliferation leading to exhaustion of their proliferation capacity. Genes Dev. 19, 756-767 (2005). 

  32. Nature Genet. AR Choudhury 39 99 2007 10.1038/ng1937 Choudhury, A. R. et al. Cdkn1a deletion improves stem cell function and lifespan of mice with dysfunctional telomeres without accelerating cancer formation. Nature Genet. 39, 99-105 (2007). 

  33. Cell Stem Cell CA Fasano 1 87 2007 10.1016/j.stem.2007.04.001 Fasano, C. A. et al. shRNA knockdown of Bmi-1 reveals a critical role for p21-Rb pathway in NSC self-renewal during development. Cell Stem Cell 1, 87-99 (2007). 

  34. Proc. Natl Acad. Sci. USA RN Pechnick 105 1358 2008 10.1073/pnas.0711030105 Pechnick, R. N., Zonis, S., Wawrowsky, K., Pourmorady, J. & Chesnokova, V. p21Cip1 restricts neuronal proliferation in the subgranular zone of the dentate gyrus of the hippocampus. Proc. Natl Acad. Sci. USA 105, 1358-1363 (2008). 

  35. Nature Cell Biol. CR Walkley 7 172 2005 10.1038/ncb1214 Walkley, C. R., Fero, M. L., Chien, W. M., Purton, L. E. & McArthur, G. A. Negative cell-cycle regulators cooperatively control self-renewal and differentiation of haematopoietic stem cells. Nature Cell Biol. 7, 172-178 (2005). 

  36. Science T Cheng 287 1804 2000 10.1126/science.287.5459.1804 Cheng, T. et al. Hematopoietic stem cell quiescence maintained by p21cip1/waf1. Science 287, 1804-1808 (2000). 

  37. Genes Dev. A Besson 21 1731 2007 10.1101/gad.1556607 Besson, A. et al. Discovery of an oncogenic activity in p27Kip1 that causes stem cell expansion and a multiple tumor phenotype. Genes Dev. 21, 1731-1746 (2007). 

  38. Nature Cell Biol. Y Yuan 6 436 2004 10.1038/ncb1126 Yuan, Y., Shen, H., Franklin, D. S., Scadden, D. T. & Cheng, T. In vivo self-renewing divisions of haematopoietic stem cells are increased in the absence of the early G1-phase inhibitor, p18INK4C. Nature Cell Biol. 6, 436-442 (2004). 

  39. Blood H Yu 107 1200 2006 10.1182/blood-2005-02-0685 Yu, H., Yuan, Y., Shen, H. & Cheng, T. Hematopoietic stem cell exhaustion impacted by p18INK4C and p21Cip1/Waf1 in opposite manners. Blood 107, 1200-1206 (2006). 

  40. Nature V Janzen 443 421 2006 10.1038/nature05159 Janzen, V. et al. Stem-cell ageing modified by the cyclin-dependent kinase inhibitor p16INK4a. Nature 443, 421-426 (2006). 

  41. Nature J Krishnamurthy 443 453 2006 10.1038/nature05092 Krishnamurthy, J. et al. p16INK4a induces an age-dependent decline in islet regenerative potential. Nature 443, 453-457 (2006). 

  42. Cancer Res. XH Pei 67 3162 2007 10.1158/0008-5472.CAN-06-4517 Pei, X. H., Bai, F., Smith, M. D. & Xiong, Y. p18Ink4c collaborates with Men1 to constrain lung stem cell expansion and suppress non-small-cell lung cancers. Cancer Res. 67, 3162-3170 (2007). 

  43. Nature AV Molofsky 443 448 2006 10.1038/nature05091 Molofsky, A. V. et al. Increasing p16INK4a expression decreases forebrain progenitors and neurogenesis during ageing. Nature 443, 448-452 (2006). 

  44. Exp. Hematol. M Rosu-Myles 35 394 2007 10.1016/j.exphem.2006.11.005 Rosu-Myles, M., Taylor, B. J. & Wolff, L. Loss of the tumor suppressor p15Ink4b enhances myeloid progenitor formation from common myeloid progenitors. Exp. Hematol. 35, 394-406 (2007). 

  45. Nature ME Carlson 454 528 2008 10.1038/nature07034 Carlson, M. E., Hsu, M. & Conboy, I. M. Imbalance between pSmad3 and Notch induces CDK inhibitors in old muscle stem cells. Nature 454, 528-532 (2008). 

  46. Cell V Horsley 132 299 2008 10.1016/j.cell.2007.11.047 Horsley, V., Aliprantis, A. O., Polak, L., Glimcher, L. H. & Fuchs, E. NFATc1 balances quiescence and proliferation of skin stem cells. Cell 132, 299-310 (2008). 

  47. J. Cell Biol. B Jablonska 179 1231 2007 10.1083/jcb.200702031 Jablonska, B. et al. Cdk2 is critical for proliferation and self-renewal of neural progenitor cells in the adult subventricular zone. J. Cell Biol. 179, 1231-1245 (2007). 

  48. Biochim. Biophys. Acta S Ortega 1602 73 2002 Ortega, S., Malumbres, M. & Barbacid, M. Cyclin D-dependent kinases, INK4 inhibitors and cancer. Biochim. Biophys. Acta 1602, 73-87 (2002). 

  49. EMBO J. R Sotillo 20 6637 2001 10.1093/emboj/20.23.6637 Sotillo, R. et al. Wide spectrum of tumors in knock-in mice carrying a Cdk4 protein insensitive to INK4 inhibitors. EMBO J. 20, 6637-6647 (2001). 

  50. Mol. Cell. Biol. SG Rane 22 644 2002 10.1128/MCB.22.2.644-656.2002 Rane, S. G., Cosenza, S. C., Mettus, R. V. & Reddy, E. P. Germ line transmission of the Cdk4R24C mutation facilitates tumorigenesis and escape from cellular senescence. Mol. Cell. Biol. 22, 644-656 (2002). 

  51. Proc. Natl Acad. Sci. USA R Sotillo 98 13312 2001 10.1073/pnas.241338598 Sotillo, R. et al. Invasive melanoma in Cdk4-targeted mice. Proc. Natl Acad. Sci. USA 98, 13312-13317 (2001). 

  52. Cancer Cell A Martin 7 591 2005 10.1016/j.ccr.2005.05.006 Martin, A. et al. Cdk2 is dispensable for cell cycle inhibition and tumor suppression mediated by p27Kip1 and p21Cip1. Cancer Cell 7, 591-598 (2005). 

  53. Nature Cell Biol. E Aleem 7 831 2005 10.1038/ncb1284 Aleem, E., Kiyokawa, H. & Kaldis, P. Cdc2-cyclin E complexes regulate the G1/S phase transition. Nature Cell Biol. 7, 831-836 (2005). 

  54. Cancer Cell O Tetsu 3 233 2003 10.1016/S1535-6108(03)00053-9 Tetsu, O. & McCormick, F. Proliferation of cancer cells despite CDK2 inhibition. Cancer Cell 3, 233-245 (2003). This manuscript illustrates that different human tumour cell lines have selective requirements for CDK activity. 

  55. Mol. Cell. Biol. PL Miliani de Marval 24 7538 2004 10.1128/MCB.24.17.7538-7547.2004 Miliani de Marval, P. L. et al. Lack of cyclin-dependent kinase 4 inhibits c-myc tumorigenic activities in epithelial tissues. Mol. Cell. Biol. 24, 7538-7547 (2004). 

  56. Cancer Cell Q Yu 9 23 2006 10.1016/j.ccr.2005.12.012 Yu, Q. et al. Requirement for CDK4 kinase function in breast cancer. Cancer Cell 9, 23-32 (2006). 

  57. Cancer Res. HK Reddy 65 10174 2005 10.1158/0008-5472.CAN-05-2639 Reddy, H. K. et al. Cyclin-dependent kinase 4 expression is essential for neu-induced breast tumorigenesis. Cancer Res. 65, 10174-10178 (2005). 

  58. Cancer Cell MW Landis 9 13 2006 10.1016/j.ccr.2005.12.019 Landis, M. W., Pawlyk, B. S., Li, T., Sicinski, P. & Hinds, P. W. Cyclin D1-dependent kinase activity in murine development and mammary tumorigenesis. Cancer Cell 9, 13-22 (2006). References 56-58 demonstrate the requirement for the mouse CDK4-cyclin D activity in ERBB2-induced breast tumours suggesting possible therapeutic uses of specific CDK4 inhibitors in ERBB2-positive breast cancer. 

  59. Nature Q Yu 411 1017 2001 10.1038/35082500 Yu, Q., Geng, Y. & Sicinski, P. Specific protection against breast cancers by cyclin D1 ablation. Nature 411, 1017-1021 (2001). This pioneer study reports that cyclin D1 (and hence CDK4 or CDK6 activity) is essential for Erbb2 - or Hras -induced tumours but not Myc - or Wnt1 -induced tumours. 

  60. Cancer Cell M Malumbres 9 2 2006 10.1016/j.ccr.2005.12.026 Malumbres, M. & Barbacid, M. Is Cyclin D1-CDK4 kinase a bona fide cancer target? Cancer Cell 9, 2-4 (2006). 

  61. Nature Rev. Genet. A Aguilera 9 204 2008 10.1038/nrg2268 Aguilera, A. & Gomez-Gonzalez, B. Genome instability: a mechanistic view of its causes and consequences. Nature Rev. Genet. 9, 204-217 (2008). 

  62. Nature Rev. Mol. Cell Biol. KA Cimprich 9 616 2008 10.1038/nrm2450 Cimprich, K. A. & Cortez, D. ATR: an essential regulator of genome integrity. Nature Rev. Mol. Cell Biol. 9, 616-627 (2008). 

  63. Nature Rev. Mol. Cell Biol. MF Lavin 9 759 2008 10.1038/nrm2514 Lavin, M. F. Ataxia-telangiectasia: from a rare disorder to a paradigm for cell signalling and cancer. Nature Rev. Mol. Cell Biol. 9, 759-769 (2008). 

  64. Nature Rev. Genet. KW Caldecott 9 619 2008 10.1038/nrg2380 Caldecott, K. W. Single-strand break repair and genetic disease. Nature Rev. Genet. 9, 619-631 (2008). 

  65. Nature Rev. Cancer L Antoni 7 925 2007 10.1038/nrc2251 Antoni, L., Sodha, N., Collins, I. & Garrett, M. D. CHK2 kinase: cancer susceptibility and cancer therapy - two sides of the same coin? Nature Rev. Cancer 7, 925-936 (2007). 

  66. Nature J Bartkova 434 864 2005 10.1038/nature03482 Bartkova, J. et al. DNA damage response as a candidate anti-cancer barrier in early human tumorigenesis. Nature 434, 864-870 (2005). 

  67. Nature J Bartkova 444 633 2006 10.1038/nature05268 Bartkova, J. et al. Oncogene-induced senescence is part of the tumorigenesis barrier imposed by DNA damage checkpoints. Nature 444, 633-637 (2006). 

  68. Nature VG Gorgoulis 434 907 2005 10.1038/nature03485 Gorgoulis, V. G. et al. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434, 907-913 (2005). 

  69. Nature R Di Micco 444 638 2006 10.1038/nature05327 Di Micco, R. et al. Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638-642 (2006). This series of articles (references 66-69) demonstrate the tumour suppressor role of the DNA damage response and the effects of its alteration in human tumours. 

  70. Science TD Halazonetis 319 1352 2008 10.1126/science.1140735 Halazonetis, T. D., Gorgoulis, V. G. & Bartek, J. An oncogene-induced DNA damage model for cancer development. Science 319, 1352-1355 (2008). 

  71. DNA Repair (Amst) K Yata 8 6 2009 10.1016/j.dnarep.2008.09.002 Yata, K. & Esashi, F. Dual role of CDKs in DNA repair: To be, or not to be. DNA Repair (Amst) 8, 6-18 (2009). 

  72. Nature P Huertas 455 689 2008 10.1038/nature07215 Huertas, P., Cortes-Ledesma, F., Sartori, A. A., Aguilera, A. & Jackson, S. P. CDK targets Sae2 to control DNA-end resection and homologous recombination. Nature 455, 689-692 (2008). 

  73. Nature F Esashi 434 598 2005 10.1038/nature03404 Esashi, F. et al. CDK-dependent phosphorylation of BRCA2 as a regulatory mechanism for recombinational repair. Nature 434, 598-604 (2005). References 72 and 73 report an unexpected function for yeast and mammalian CDKs in DNA repair. 

  74. Nature TA Potapova 440 954 2006 10.1038/nature04652 Potapova, T. A. et al. The reversibility of mitotic exit in vertebrate cells. Nature 440, 954-958 (2006). 

  75. Curr. Opin. Cell Biol. E Queralt 20 661 2008 10.1016/j.ceb.2008.09.003 Queralt, E. & Uhlmann, F. Cdk-counteracting phosphatases unlock mitotic exit. Curr. Opin. Cell Biol. 20, 661-668 (2008). 

  76. Nature Rev. Mol. Cell Biol. JM Peters 7 644 2006 10.1038/nrm1988 Peters, J. M. The anaphase promoting complex/cyclosome: a machine designed to destroy. Nature Rev. Mol. Cell Biol. 7, 644-656 (2006). 

  77. Nature Rev. Mol. Cell Biol. M Sullivan 8 894 2007 10.1038/nrm2276 Sullivan, M. & Morgan, D. O. Finishing mitosis, one step at a time. Nature Rev. Mol. Cell Biol. 8, 894-903 (2007). 

  78. Nature Rev. Cancer KI Nakayama 6 369 2006 10.1038/nrc1881 Nakayama, K. I. & Nakayama, K. Ubiquitin ligases: cell-cycle control and cancer. Nature Rev. Cancer 6, 369-381 (2006). 

  79. Nature Cell Biol. MJ Hayes 8 607 2006 10.1038/ncb1410 Hayes, M. J. et al. Early mitotic degradation of Nek2A depends on Cdc20-independent interaction with the APC/C. Nature Cell Biol. 8, 607-614 (2006). 

  80. Mol. Cell R Wolthuis 30 290 2008 10.1016/j.molcel.2008.02.027 Wolthuis, R. et al. Cdc20 and Cks direct the spindle checkpoint-independent destruction of cyclin A. Mol. Cell 30, 290-302 (2008). 

  81. Nature Genet. SL Carter 38 1043 2006 10.1038/ng1861 Carter, S. L., Eklund, A. C., Kohane, I. S., Harris, L. N. & Szallasi, Z. A signature of chromosomal instability inferred from gene expression profiles predicts clinical outcome in multiple human cancers. Nature Genet. 38, 1043-1048 (2006). 

  82. Nature Rev. Cancer K Fukasawa 7 911 2007 10.1038/nrc2249 Fukasawa, K. Oncogenes and tumour suppressors take on centrosomes. Nature Rev. Cancer 7, 911-924 (2007). 

  83. Oncogene A Duensing 25 2943 2006 10.1038/sj.onc.1209310 Duensing, A. et al. Cyclin-dependent kinase 2 is dispensable for normal centrosome duplication but required for oncogene-induced centrosome overduplication. Oncogene 25, 2943-2949 (2006). 

  84. Oncogene K Hanashiro 27 5288 2008 10.1038/onc.2008.161 Hanashiro, K., Kanai, M., Geng, Y., Sicinski, P. & Fukasawa, K. Roles of cyclins A and E in induction of centrosome amplification in p53-compromised cells. Oncogene 27, 5288-5302 (2008). 

  85. J. Cell Biol. H Hochegger 178 257 2007 10.1083/jcb.200702034 Hochegger, H. et al. An essential role for Cdk1 in S phase control is revealed via chemical genetics in vertebrate cells. J. Cell Biol. 178, 257-268 (2007). 

  86. Nature C Greenman 446 153 2007 10.1038/nature05610 Greenman, C. et al. Patterns of somatic mutation in human cancer genomes. Nature 446, 153-158 (2007). 

  87. Nature Genet. S Hanks 36 1159 2004 10.1038/ng1449 Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nature Genet. 36, 1159-1161 (2004). 

  88. Blood C Mantel 109 4518 2007 10.1182/blood-2006-10-054247 Mantel, C. et al. Checkpoint-apoptosis uncoupling in human and mouse embryonic stem cells: a source of karyotpic instability. Blood 109, 4518-4527 (2007). 

  89. J. Cell Biol. K Jeganathan 179 255 2007 10.1083/jcb.200706015 Jeganathan, K., Malureanu, L., Baker, D. J., Abraham, S. C. & van Deursen, J. M. Bub1 mediates cell death in response to chromosome missegregation and acts to suppress spontaneous tumorigenesis. J. Cell Biol. 179, 255-267 (2007). 

  90. Nature Genet. DJ Baker 36 744 2004 10.1038/ng1382 Baker, D. J. et al. BubR1 insufficiency causes early onset of aging-associated phenotypes and infertility in mice. Nature Genet. 36, 744-749 (2004). 

  91. Dev. Cell D Perera 13 566 2007 10.1016/j.devcel.2007.08.008 Perera, D. et al. Bub1 maintains centromeric cohesion by activation of the spindle checkpoint. Dev. Cell 13, 566-579 (2007). 

  92. Cancer Res. W Dai 64 440 2004 10.1158/0008-5472.CAN-03-3119 Dai, W. et al. Slippage of mitotic arrest and enhanced tumor development in mice with BubR1 haploinsufficiency. Cancer Res. 64, 440-445 (2004). 

  93. Nature LS Michel 409 355 2001 10.1038/35053094 Michel, L. S. et al. MAD2 haplo-insufficiency causes premature anaphase and chromosome instability in mammalian cells. Nature 409, 355-359 (2001). 

  94. Cancer Cell R Sotillo 11 9 2007 10.1016/j.ccr.2006.10.019 Sotillo, R. et al. Mad2 overexpression promotes aneuploidy and tumorigenesis in mice. Cancer Cell 11, 9-23 (2007). References 93-94 show that both decreased and increased levels of the SAC regulator MAD2L1 cause CIN tumours in mice, suggesting the existence of new group of tumour-related genes with features of both oncogenes and tumour suppressor genes. 

  95. Cancer Res. BA Weaver 67 10103 2007 10.1158/0008-5472.CAN-07-2266 Weaver, B. A. & Cleveland, D. W. Aneuploidy: instigator and inhibitor of tumorigenesis. Cancer Res. 67, 10103-10105 (2007). 

  96. J. Cell Biol. KW Yuen 180 661 2008 10.1083/jcb.200801030 Yuen, K. W. & Desai, A. The wages of CIN. J. Cell Biol. 180, 661-663 (2008). 

  97. Oncogene D Engelbert 27 907 2008 10.1038/sj.onc.1210703 Engelbert, D., Schnerch, D., Baumgarten, A. & Wasch, R. The ubiquitin ligase APCCdh1 is required to maintain genome integrity in primary human cells. Oncogene 27, 907-917 (2008). 

  98. Nature Cell Biol. I Garcia-Higuera 10 802 2008 10.1038/ncb1742 Garcia-Higuera, I. et al. Genomic stability and tumour suppression by the APC/C cofactor Cdh1. Nature Cell Biol. 10, 802-811 (2008). 

  99. Nature Cell Biol. M Li 10 1083 2008 10.1038/ncb1768 Li, M. et al. The adaptor protein of the anaphase promoting complex Cdh1 is essential in maintaining replicative lifespan and in learning and memory. Nature Cell Biol. 10, 1083-1089 (2008). References 98 and 99 provide an in vivo demonstration of the relevance of the APC/C activity in maintaining the control of CDK function and cell cycle regulation for preventing GIN and tumour formation. 

  100. Nature Rev. Cancer N Keen 4 927 2004 10.1038/nrc1502 Keen, N. & Taylor, S. Aurora-kinase inhibitors as anticancer agents. Nature Rev. Cancer 4, 927-936 (2004). 

  101. Curr. Opin. Genet. Dev. M Malumbres 17 60 2007 10.1016/j.gde.2006.12.008 Malumbres, M. & Barbacid, M. Cell cycle kinases in cancer. Curr. Opin. Genet. Dev. 17, 60-65 (2007). 

  102. Curr. Opin. Pharmacol. I Perez de Castro 8 375 2008 10.1016/j.coph.2008.06.013 Perez de Castro, I., de Carcer, G., Montoya, G. & Malumbres, M. Emerging cancer therapeutic opportunities by inhibiting mitotic kinases. Curr. Opin. Pharmacol. 8, 375-383 (2008). 

  103. Dev. Cell M Petronczki 14 646 2008 10.1016/j.devcel.2008.04.014 Petronczki, M., Lenart, P. & Peters, J. M. Polo on the rise - from mitotic entry to cytokinesis with Plk1. Dev. Cell 14, 646-659 (2008). 

  104. Nature Rev. Cancer K Strebhardt 6 321 2006 10.1038/nrc1841 Strebhardt, K. & Ullrich, A. Targeting polo-like kinase 1 for cancer therapy. Nature Rev. Cancer 6, 321-330 (2006). 

  105. Curr. Opin. Cell Biol. S Taylor 20 77 2008 10.1016/j.ceb.2007.11.008 Taylor, S. & Peters, J. M. Polo and Aurora kinases: lessons derived from chemical biology. Curr. Opin. Cell Biol. 20, 77-84 (2008). 

  106. Trends Pharmacol. Sci. M Malumbres 29 16 2008 10.1016/j.tips.2007.10.012 Malumbres, M., Pevarello, P., Barbacid, M. & Bischoff, J. R. CDK inhibitors in cancer therapy: what is next? Trends Pharmacol. Sci. 29, 16-21 (2008). 

  107. J. Clin. Oncol. GI Shapiro 24 1770 2006 10.1200/JCO.2005.03.7689 Shapiro, G. I. Cyclin-dependent kinase pathways as targets for cancer treatment. J. Clin. Oncol. 24, 1770-1783 (2006). 

  108. Mol. Cell S Larochelle 25 839 2007 10.1016/j.molcel.2007.02.003 Larochelle, S. et al. Requirements for Cdk7 in the assembly of Cdk1/cyclin B and activation of Cdk2 revealed by chemical genetics in human cells. Mol. Cell 25, 839-850 (2007). 

  109. Mol. Cell. Biol. T Li 24 3188 2004 10.1128/MCB.24.8.3188-3197.2004 Li, T., Inoue, A., Lahti, J. M. & Kidd, V. J. Failure to proliferate and mitotic arrest of CDK11p110/p58-null mutant mice at the blastocyst stage of embryonic cell development. Mol. Cell. Biol. 24, 3188-3197 (2004). 

  110. Cancer Cell E Iorns 13 91 2008 10.1016/j.ccr.2008.01.001 Iorns, E. et al. Identification of CDK10 as an important determinant of resistance to endocrine therapy for breast cancer. Cancer Cell 13, 91-104 (2008). 

  111. Carcinogenesis A Chandramouli 28 2028 2007 10.1093/carcin/bgm066 Chandramouli, A. et al. Haploinsufficiency of the cdc2l gene contributes to skin cancer development in mice. Carcinogenesis 28, 2028-2035 (2007). 

  112. T Boveri 1914 Zur Frage der Entstehung Maligner Tumoren Boveri, T. Zur Frage der Entstehung Maligner Tumoren (Gustav Fisher, Jena, Germany, 1914) (in German). 

  113. Cancer Cell BA Weaver 11 25 2007 10.1016/j.ccr.2006.12.003 Weaver, B. A., Silk, A. D., Montagna, C., Verdier-Pinard, P. & Cleveland, D. W. Aneuploidy acts both oncogenically and as a tumor suppressor. Cancer Cell 11, 25-36 (2007). 

  114. Nature H Farmer 434 917 2005 10.1038/nature03445 Farmer, H. et al. Targeting the DNA repair defect in BRCA mutant cells as a therapeutic strategy. Nature 434, 917-921 (2005). An elegant proof of principle of the therapeutic value of inducing synthetic lethal alterations in tumours. 

  115. Mol. Microbiol. D Huang 66 303 2007 10.1111/j.1365-2958.2007.05914.x Huang, D., Friesen, H. & Andrews, B. Pho85, a multifunctional cyclin-dependent protein kinase in budding yeast. Mol. Microbiol. 66, 303-314 (2007). 

  116. Curr. Opin. Cell Biol. AR Nebreda 18 192 2006 10.1016/j.ceb.2006.01.001 Nebreda, A. R. CDK activation by non-cyclin proteins. Curr. Opin. Cell Biol. 18, 192-198 (2006). 

  117. Nature Rev. Mol. Cell Biol. J Bloom 8 149 2007 10.1038/nrm2105 Bloom, J. & Cross, F. R. Multiple levels of cyclin specificity in cell-cycle control. Nature Rev. Mol. Cell Biol. 8, 149-160 (2007). 

  118. Cell S Ren 117 239 2004 10.1016/S0092-8674(04)00300-9 Ren, S. & Rollins, B. J. Cyclin C/cdk3 promotes Rb-dependent G0 exit. Cell 117, 239-251 (2004). 

  119. Proc. Natl Acad. Sci. USA X Ye 98 1682 2001 10.1073/pnas.98.4.1682 Ye, X., Zhu, C. & Harper, J. W. A premature-termination mutation in the Mus. musculus cyclin-dependent kinase 3 gene. Proc. Natl Acad. Sci. USA 98, 1682-1686 (2001). 

  120. Proc. Natl Acad. Sci. USA J Zhang 105 8772 2008 10.1073/pnas.0711355105 Zhang, J. et al. Nuclear localization of Cdk5 is a key determinant in the postmitotic state of neurons. Proc. Natl Acad. Sci. USA 105, 8772-8777 (2008). 

  121. EMBO J. C Maestre 27 2736 2008 10.1038/emboj.2008.195 Maestre, C., Delgado-Esteban, M., Gomez-Sanchez, J. C., Bolanos, J. P. & Almeida, A. Cdk5 phosphorylates Cdh1 and modulates cyclin B1 stability in excitotoxicity. EMBO J. 27, 2736-2745 (2008). 

  122. J. Cell Sci. RP Fisher 118 5171 2005 10.1242/jcs.02718 Fisher, R. P. Secrets of a double agent: CDK7 in cell-cycle control and transcription. J. Cell Sci. 118, 5171-5180 (2005). 

  123. Cell Signal P Loyer 17 1033 2005 10.1016/j.cellsig.2005.02.005 Loyer, P., Trembley, J. H., Katona, R., Kidd, V. J. & Lahti, J. M. Role of CDK/cyclin complexes in transcription and RNA splicing. Cell Signal 17, 1033-1051 (2005). 

  124. Nature R Firestein 455 547 2008 10.1038/nature07179 Firestein, R. et al. CDK8 is a colorectal cancer oncogene that regulates β-catenin activity. Nature 455, 547-551 (2008). 

  125. Nature EJ Morris 455 552 2008 10.1038/nature07310 Morris, E. J. et al. E2F1 represses beta-catenin transcription and is antagonized by both pRB and CDK8. Nature 455, 552-556 (2008). References 124 and 125 illustrate the role of CDK8, a CDK not directly implicated in the cell cycle, in human tumour development. 

  126. EMBO Rep. C Petretti 7 418 2006 10.1038/sj.embor.7400639 Petretti, C. et al. The PITSLRE/CDK11p58 protein kinase promotes centrosome maturation and bipolar spindle formation. EMBO Rep. 7, 418-424 (2006). 

  127. Nature EW Wilker 446 329 2007 10.1038/nature05584 Wilker, E. W. et al. 14-3-3σ controls mitotic translation to facilitate cytokinesis. Nature 446, 329-332 (2007). 

  128. J. Cell Biol. H Yokoyama 180 867 2008 10.1083/jcb.200706189 Yokoyama, H. et al. Cdk11 is a RanGTP-dependent microtubule stabilization factor that regulates spindle assembly rate. J. Cell Biol. 180, 867-875 (2008). 

  129. J. Cell Sci. D Hu 120 2424 2007 10.1242/jcs.007963 Hu, D., Valentine, M., Kidd, V. J. & Lahti, J. M. CDK11p58 is required for the maintenance of sister chromatid cohesion. J. Cell Sci. 120, 2424-2434 (2007). 

  130. Genes Dev. M Hampsey 21 1288 2007 10.1101/gad.1564807 Hampsey, M. & Kinzy, T. G. Synchronicity: policing multiple aspects of gene expression by Ctk1. Genes Dev. 21, 1288-1291 (2007). 

  131. Mol. Cell. Biol. HH Chen 26 2736 2006 10.1128/MCB.26.7.2736-2745.2006 Chen, H. H., Wang, Y. C. & Fann, M. J. Identification and characterization of the CDK12/cyclin L1 complex involved in alternative splicing regulation. Mol. Cell. Biol. 26, 2736-2745 (2006). 

  132. Biochem. Biophys. Res. Commun. HH Chen 354 735 2007 10.1016/j.bbrc.2007.01.049 Chen, H. H., Wong, Y. H., Geneviere, A. M. & Fann, M. J. CDK13/CDC2L5 interacts with L-type cyclins and regulates alternative splicing. Biochem. Biophys. Res. Commun. 354, 735-740 (2007). 

  133. Oncogene J Martin 22 5261 2003 10.1038/sj.onc.1206506 Martin, J. et al. Genetic rescue of Cdk4 null mice restores pancreatic β-cell proliferation but not homeostatic cell number. Oncogene 22, 5261-5269 (2003). 

  134. Oncogene RV Mettus 22 8413 2003 10.1038/sj.onc.1206888 Mettus, R. V. & Rane, S. G. Characterization of the abnormal pancreatic development, reduced growth and infertility in Cdk4 mutant mice. Oncogene 22, 8413-8421 (2003). 

  135. J. Biol. Chem. S Jirawatnotai 279 51100 2004 10.1074/jbc.M409080200 Jirawatnotai, S. et al. Cdk4 is indispensable for postnatal proliferation of the anterior pituitary. J. Biol. Chem. 279, 51100-51106 (2004). 

  136. Endocrinology DS Moons 143 3001 2002 10.1210/endo.143.8.8956 Moons, D. S. et al. Pituitary hypoplasia and lactotroph dysfunction in mice deficient for cyclin-dependent kinase-4. Endocrinology 143, 3001-3008 (2002). 

  137. Cancer Res. R Sotillo 65 3846 2005 10.1158/0008-5472.CAN-04-4195 Sotillo, R. et al. Cooperation between Cdk4 and p27kip1 in tumor development: a preclinical model to evaluate cell cycle inhibitors with therapeutic activity. Cancer Res. 65, 3846-3852 (2005). 

  138. Proc. Natl Acad. Sci. USA LH Hartwell 66 352 1970 10.1073/pnas.66.2.352 Hartwell, L. H., Culotti, J. & Reid, B. Genetic control of the cell-division cycle in yeast. I. Detection of mutants. Proc. Natl Acad. Sci. USA 66, 352-359 (1970). 

  139. Nature P Nurse 256 547 1975 10.1038/256547a0 Nurse, P. Genetic control of cell size at cell division in yeast. Nature 256, 547-551 (1975). 

  140. Cell T Evans 33 389 1983 10.1016/0092-8674(83)90420-8 Evans, T., Rosenthal, E. T., Youngblom, J., Distel, D. & Hunt, T. Cyclin: a protein specified by maternal mRNA in sea urchin eggs that is destroyed at each cleavage division. Cell 33, 389-396 (1983). 

  141. Nature MG Lee 327 31 1987 10.1038/327031a0 Lee, M. G. & Nurse, P. Complementation used to clone a human homologue of the fission yeast cell cycle control gene cdc2. Nature 327, 31-35 (1987). 

  142. Cell JA DeCaprio 58 1085 1989 10.1016/0092-8674(89)90507-2 DeCaprio, J. A. et al. The product of the retinoblastoma susceptibility gene has properties of a cell cycle regulatory element. Cell 58, 1085-1095 (1989). 

  143. Cell K Buchkovich 58 1097 1989 10.1016/0092-8674(89)90508-4 Buchkovich, K., Duffy, L. A. & Harlow, E. The retinoblastoma protein is phosphorylated during specific phases of the cell cycle. Cell 58, 1097-1105 (1989). 

  144. Cell PL Chen 58 1193 1989 10.1016/0092-8674(89)90517-5 Chen, P. L., Scully, P., Shew, J. Y., Wang, J. Y. & Lee, W. H. Phosphorylation of the retinoblastoma gene product is modulated during the cell cycle and cellular differentiation. Cell 58, 1193-1198 (1989). 

  145. J. Cell Sci. Suppl T Weinert 12 145 1989 10.1242/jcs.1989.Supplement_12.12 Weinert, T. & Hartwell, L. Control of G2 delay by the rad9 gene of Saccharomyces cerevisiae. J. Cell Sci. Suppl 12, 145-148 (1989). 

  146. Cell Y Xiong 65 691 1991 10.1016/0092-8674(91)90100-D Xiong, Y., Connolly, T., Futcher, B. & Beach, D. Human D-type cyclin. Cell 65, 691-699 (1991). 

  147. Cell H Matsushime 65 701 1991 10.1016/0092-8674(91)90101-4 Matsushime, H., Roussel, M. F., Ashmun, R. A. & Sherr, C. J. Colony-stimulating factor 1 regulates novel cyclins during the G1 phase of the cell cycle. Cell 65, 701-713 (1991). 

  148. Cell DJ Lew 66 1197 1991 10.1016/0092-8674(91)90042-W Lew, D. J., Dulic, V. & Reed, S. I. Isolation of three novel human cyclins by rescue of G1 cyclin (Cln) function in yeast. Cell 66, 1197-1206 (1991). 

  149. Cell H Matsushime 71 323 1992 10.1016/0092-8674(92)90360-O Matsushime, H. et al. Identification and properties of an atypical catalytic subunit (p34PSK-J3/cdk4) for mammalian D type G1 cyclins. Cell 71, 323-34 (1992). 

  150. Nature LA Donehower 356 215 1992 10.1038/356215a0 Donehower, L. A. et al. Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356, 215-221 (1992). 

  151. Nature G Farmer 358 83 1992 10.1038/358083a0 Farmer, G. et al. Wild-type p53 activates transcription in vitro. Nature 358, 83-86 (1992). 

  152. Cell TR Hupp 71 875 1992 10.1016/0092-8674(92)90562-Q Hupp, T. R., Meek, D. W., Midgley, C. A. & Lane, D. P. Regulation of the specific DNA binding function of p53. Cell 71, 875-886 (1992). 

  153. Cell X Lu 70 153 1992 10.1016/0092-8674(92)90541-J Lu, X., Park, S. H., Thompson, T. C. & Lane, D. P. Ras-induced hyperplasia occurs with mutation of p53, but activated ras and myc together can induce carcinoma without p53 mutation. Cell 70, 153-161 (1992). 

  154. Nature DP Lane 358 15 1992 10.1038/358015a0 Lane, D. P. Cancer. p53, guardian of the genome. Nature 358, 15-16 (1992). 

  155. Proc. Natl Acad. Sci. USA SJ Kuerbitz 89 7491 1992 10.1073/pnas.89.16.7491 Kuerbitz, S. J., Plunkett, B. S., Walsh, W. V. & Kastan, M. B. Wild-type p53 is a cell cycle checkpoint determinant following irradiation. Proc. Natl Acad. Sci. USA 89, 7491-7495 (1992). 

  156. Cell MB Kastan 71 587 1992 10.1016/0092-8674(92)90593-2 Kastan, M. B. et al. A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in ataxia-telangiectasia. Cell 71, 587-597 (1992). 

  157. Genes Dev. Y Xiong 7 1572 1993 10.1101/gad.7.8.1572 Xiong, Y., Zhang, H. & Beach, D. Subunit rearrangement of the cyclin-dependent kinases is associated with cellular transformation. Genes Dev. 7, 1572-1583 (1993). 

  158. Nature M Serrano 366 704 1993 10.1038/366704a0 Serrano, M., Hannon, G. J. & Beach, D. A new regulatory motif in cell-cycle control causing specific inhibition of cyclin D/CDK4. Nature 366, 704-707 (1993). 

  159. Nature Y Xiong 366 701 1993 10.1038/366701a0 Xiong, Y. et al. p21 is a universal inhibitor of cyclin kinases. Nature 366, 701-704 (1993). 

  160. Genes Dev. K Polyak 8 29 1994 10.1101/gad.8.1.9 Polyak, K. et al. p27Kip1, a cyclin-Cdk inhibitor, links transforming growth factor-beta and contact inhibition to cell cycle arrest. Genes Dev. 8, 29-22 (1994). 

  161. Cell H Toyoshima 78 67 1994 10.1016/0092-8674(94)90573-8 Toyoshima, H. & Hunter, T. p27, a novel inhibitor of G1 cyclin-Cdk protein kinase activity, is related to p21. Cell 78, 67-74 (1994). 

  162. Cell JY Kato 79 487 1994 10.1016/0092-8674(94)90257-7 Kato, J. Y., Matsuoka, M., Polyak, K., Massague, J. & Sherr, C. J. Cyclic AMP-induced G1 phase arrest mediated by an inhibitor (p27Kip1) of cyclin-dependent kinase 4 activation. Cell 79, 487-96 (1994). 

  163. Genes Dev. KL Guan 8 2939 1994 10.1101/gad.8.24.2939 Guan, K. L. et al. Growth suppression by p18, a p16INK4/MTS1- and p14INK4B/MTS2-related CDK6 inhibitor, correlates with wild-type pRb function. Genes Dev. 8, 2939-2952 (1994). 

  164. Cell K Polyak 78 59 1994 10.1016/0092-8674(94)90572-X Polyak, K. et al. Cloning of p27Kip1, a cyclin-dependent kinase inhibitor and a potential mediator of extracellular antimitogenic signals. Cell 78, 59-66 (1994). 

  165. Genes Dev. MH Lee 9 639 1995 10.1101/gad.9.6.639 Lee, M. H., Reynisdottir, I. & Massague, J. Cloning of p57KIP2, a cyclin-dependent kinase inhibitor with unique domain structure and tissue distribution. Genes Dev. 9, 639-49 (1995). 

  166. Genes Dev. S Matsuoka 9 650 1995 10.1101/gad.9.6.650 Matsuoka, S. et al. p57KIP2, a structurally distinct member of the p21CIP1 Cdk inhibitor family, is a candidate tumor suppressor gene. Genes Dev. 9, 650-662 (1995). 

  167. Science Y Li 274 246 1996 10.1126/science.274.5285.246 Li, Y. & Benezra, R. Identification of a human mitotic checkpoint gene: hsMAD2. Science 274, 246-248 (1996). 

  168. Nature Med. M Loda 3 231 1997 10.1038/nm0297-231 Loda, M. et al. Increased proteasome-dependent degradation of the cyclin-dependent kinase inhibitor p27 in aggressive colorectal carcinomas. Nature Med. 3, 231-234 (1997). 

  169. Nature Med. C Catzavelos 3 227 1997 10.1038/nm0297-227 Catzavelos, C. et al. Decreased levels of the cell-cycle inhibitor p27Kip1 protein: prognostic implications in primary breast cancer. Nature Med. 3, 227-230 (1997). 

  170. Cell M Serrano 88 593 1997 10.1016/S0092-8674(00)81902-9 Serrano, M., Lin, A. W., McCurrach, M. E., Beach, D. & Lowe, S. W. Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602 (1997). 

  171. Nature DP Cahill 392 300 1998 10.1038/32688 Cahill, D. P. et al. Mutations of mitotic checkpoint genes in human cancers. Nature 392, 300-303 (1998). 

  172. Nature Genet. S Hanks 36 1159 2004 10.1038/ng1449 Hanks, S. et al. Constitutional aneuploidy and cancer predisposition caused by biallelic mutations in BUB1B. Nature Genet. 36, 1159-1161 (2004). 

  173. Nature C Michaloglou 436 720 2005 10.1038/nature03890 Michaloglou, C. et al. BRAFE600-associated senescence-like cell cycle arrest of human naevi. Nature 436, 720-724 (2005). 

  174. Nature M Collado 436 642 2005 10.1038/436642a Collado, M. et al. Tumour biology: senescence in premalignant tumours. Nature 436, 642 (2005). 

  175. Nature M Braig 436 660 2005 10.1038/nature03841 Braig, M. et al. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436, 660-665 (2005). 

  176. Nature Z Chen 436 725 2005 10.1038/nature03918 Chen, Z. et al. Crucial role of p53-dependent cellular senescence in suppression of Pten-deficient tumorigenesis. Nature 436, 725-730 (2005). 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로