$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Recent Canadian advances in nuclear-based hydrogen production and the thermochemical Cu–Cl cycle

International journal of hydrogen energy, v.34 no.7, 2009년, pp.2901 - 2917  

Naterer, G. (Canada Research Chair Professor, University of Ontario Institute of Technology (UOIT), 2000 Simcoe Street, Oshawa, Ontario L1H 7K4, Canada) ,  Suppiah, S. (Manager, Hydrogen Isotopes Technology Branch, AECL, Chalk River, Ontario K0J 1J0, Canada) ,  Lewis, M. (Chemist, Chemical Engineering Division, Argonne National Laboratory, 9700 S. Cass Avenue, Argonne, Illinois 60439, USA) ,  Gabriel, K. (Associate Provost, Research, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada) ,  Dincer, I. (Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada) ,  Rosen, M.A. (Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada) ,  Fowler, M. (Assistant Professor of Chemical Engineering, University of Waterloo, 200 University Avenue, Waterloo, Ontario N2L 3G1, Canada) ,  Rizvi, G. (Assistant Professor of Mechanical Engineering, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada) ,  Easton, E.B. (Assistant Professor of Chemistry, UOIT, 2000 Simcoe Street North, Oshawa, Ontario L1H 7K4, Canada) ,  Ikeda, B.M. (Assoc) ,  Kaye, M.H. ,  Lu, L. ,  Pioro, I. ,  Spekkens, P. ,  Tremaine, P. ,  Mostaghimi, J. ,  Avsec, J. ,  Jiang, J.

Abstract AI-Helper 아이콘AI-Helper

AbstractThis paper presents recent Canadian advances in nuclear-based production of hydrogen by electrolysis and the thermochemical copper–chlorine (Cu–Cl) cycle. This includes individual process and reactor developments within the Cu–Cl cycle, thermochemical properties, advanced m...

주제어

참고문헌 (45)

  1. Engineering Optimization Stevens 40 10 955 2008 10.1080/03052150802236061 Macro-level optimized deployment of an electrolyser-based hydrogen refuelling infrastructure with demand growth 

  2. McQuillan BW, Brown LC, Besenbruch GE, Tolman R, Cramer T, Russ BE, et al. High efficiency generation of hydrogen fuels using solar thermochemical splitting of water. Annual Report, GA-A24972, General Atomics, San Diego, CA; 2002. 

  3. Lewis M, Taylor A. High temperature thermochemical processes, DOE hydrogen program. Annual Progress Report, Washington, DC, 2006, pp. 182-185. 

  4. International Journal of Hydrogen Energy Sakurai 23 613 2000 10.1016/S0360-3199(99)00074-9 Experimental study on side-reaction occurrence condition in the iodine-sulfur thermochemical hydrogen production process 

  5. Schultz 2003 Thermochemical production of hydrogen from solar and nuclear energy, technical report for the Stanford global climate and energy project 

  6. Sadhankar RR, Li J, Li H, Ryland D, Suppiah S. Hydrogen generation using high-temperature nuclear reactors. 55th Canadian Chemical Engineering Conference, Toronto, Ontario; October 2005. 

  7. International Journal of Energy Research Sadhankar 31 12 1131 2007 10.1002/er.1324 Leveraging nuclear research to support the hydrogen economy 

  8. Carty RH, Mazumder M, Schreider JD, Panborn JB. Thermochemical hydrogen production. Gas Research Institute for the Institute of Gas Technology, GRI Report 80-0023, vol. 1, Chicago, IL 60616; 1981. 

  9. Lewis MA, Masin JG, Vilim RB, Serban M. Development of the low temperature Cu-Cl thermochemical cycle. International Congress on Advances in Nuclear Power Plants, Seoul, Korea; May 15-19, 2005. 

  10. Serban M, Lewis MA, Basco JK, Kinetic study of the hydrogen and oxygen production reactions in the copper-chloride thermochemical cycle., AIChE 2004 Spring National Meeting, New Orleans, LA; April 25-29, 2004. 

  11. Odukoya A, Naterer GF, Electrochemical mass transfer irreversibility of cupric chloride electrolysis for hydrogen production, technical report. Faculty of Engineering and Applied Science, University of Ontario Institute of Technology, Oshawa, Ontario, Canada; 2008. 

  12. Suppiah S, Naterer GF, Lewis M, Santhanam R, Easton B, Dincer I, et al. Thermo-mechanical design of nuclear-based hydrogen production. ORF Workshops on Nuclear-based Thermochemical Hydrogen Production, Oshawa, ON (December 2007) and Chalk River, ON (October 2008). 

  13. Geochimica et Cosmochimica Acta Xiao 62 2949 1998 10.1016/S0016-7037(98)00228-2 Experimental study of copper(I) chloride complexing in hydrothermal solutions at 40 to 300°C and saturated water vapor pressure 

  14. Analytical Chemistry Tsionsky 66 1747 1994 10.1021/ac00082a024 Sol-gel derived ceramic-carbon composite electrodes - introduction and scope of applications 

  15. Electroanalysis Rabinovich 13 265 2001 10.1002/1521-4109(200103)13:4<265::AID-ELAN265>3.0.CO;2-2 Sol-gel derived composite ceramic carbon electrodes 

  16. Chemistry of Materials Lev 9 2354 1997 10.1021/cm970367b Sol-gel materials in electrochemistry 

  17. Nano Letters Anderson 3 235 2002 10.1021/nl015707d Enhancing the activity of fuel-cell reactions by designing three-dimensional nanostructured architectures: catalyst-modified carbon-silica composite aerogels 

  18. International Journal of Hydrogen Energy Naterer 33 5451 2008 10.1016/j.ijhydene.2008.06.005 Thermochemical hydrogen production with a copper-chlorine cycle, II: flashing and drying of aqueous cupric chloride 

  19. Chemical Engineering Science Haseli 63 4596 2008 10.1016/j.ces.2008.07.003 Hydrodynamic gas-solid model of cupric chloride particles reacting with superheated steam for thermochemical hydrogen production 

  20. Ferrandon MS, Lewis MA, Tatterson DF, Nankanic RV, Kumarc M, Wedgewood LE, et al. The hybrid Cu-Cl thermochemical cycle. I. Conceptual process design and H2A cost analysis. II. Limiting the formation of CuCl during hydrolysis. NHA Annual Hydrogen Conference, Sacramento Convention Center, CA; March 30-April 3, 2008. 

  21. International Journal of Hydrogen Energy Naterer 33 5439 2008 10.1016/j.ijhydene.2008.05.035 Thermochemical hydrogen production with a copper-chlorine cycle, I: oxygen release from copper oxychloride decomposition 

  22. International Journal of Hydrogen Energy Wang 33 6934 2008 10.1016/j.ijhydene.2008.08.050 Multiphase reactor scale-up for Cu-Cl thermochemical hydrogen production 

  23. Chukwu C, Naterer GF, Rosen MA. Process simulation of nuclear-produced hydrogen with a Cu-Cl cycle. 29th Conference of the Canadian Nuclear Society, Toronto, Ontario; June 1-4, 2008. 

  24. Thermochimica Acta Orhan 480 1-2 22 2008 10.1016/j.tca.2008.09.014 Thermodynamic analysis of the copper production step in a copper-chlorine cycle for hydrogen production 

  25. International Journal of Hydrogen Energy Orhan 33 22 6456 2008 10.1016/j.ijhydene.2008.08.035 Energy and exergy assessments of the hydrogen production step of a copper-chlorine thermochemical water splitting cycle driven by nuclear-based heat 

  26. Thermochimica Acta Orhan 480 1-2 22 2008 10.1016/j.tca.2008.09.014 Thermodynamic analysis of the copper production step in a copper-chlorine cycle for hydrogen production 

  27. Orhan MF, Dincer I, Rosen MA. Energy and exergy analyses of the fluidized bed of a copper-chlorine cycle for nuclear-based hydrogen production via thermochemical water decomposition. Chemical Engineering Research and Design, in press. 

  28. Chemical Engineering Science Orhan 64 5 860 2009 10.1016/j.ces.2008.10.047 The oxygen production step of a copper-chlorine thermochemical water decomposition cycle for hydrogen production: energy and exergy analyses 

  29. 10.1115/ES2008-54329 Lubis LI, Dincer I, Rosen MA. Life cycle assessment of hydrogen production using nuclear energy: an application based on thermochemical water splitting. Paper no: ES2008-54329, 8 pages, Proceedings of the ASME-International Conference on Energy Sustainability 2008, Jacksonville, Florida, USA; 10-14 August 2008. 

  30. 10.2514/6.2008-4358 Avsec J, Naterer GF. Thermodynamic property evaluation of copper-chlorine fluid components at high temperatures. AIAA 40th Thermophysics Conference, Seattle, WA; June 23-26, 2008. 

  31. 10.1115/ICONE16-48265 Zhang Y, Lu L, Naterer GF. Reliability and safety assessment of a conceptual thermochemical plant for nuclear-based hydrogen generation. ASME 16th International Conference on Nuclear Engineering, Orlando, Florida; May 11-15, 2008. 

  32. Ikeda BM, Kaye MH. Thermodynamic properties in the Cu-Cl-O-H system. 7th International Conference on Nuclear and Radiochemistry, Budapest, Hungary; August 2008. 

  33. Spekkens P, Naterer GF, Gravelsins R. Ontario Power Generation, Pickering, Ontario, Canada, Personal Communication; September, 2008. 

  34. JSME Journal of Power and Energy Systems Granovskii 2 756 2008 10.1299/jpes.2.756 Thermodynamic analysis of the use of a chemical heat pump to link a supercritical water-cooled nuclear reactor and a thermochemical water-splitting cycle for hydrogen production 

  35. International Journal of Hydrogen Energy Naterer 33 6037 2008 10.1016/j.ijhydene.2008.08.010 Second law viability of upgrading industrial waste heat for thermochemical hydrogen production 

  36. Mokry S, Naidin M, Baig F, Gospodinov Y, Zirn U, Bakan K, et-al,. Conceptual thermal-design options for pressure tube SCWRs with thermochemical co-generation of hydrogen, ASME Journal of Engineering for Gas Turbines and Power, in press. 

  37. Miller AJ, Duffey RB. Sustainable and economic hydrogen co-generation from nuclear energy in competitive power markets. International Energy Workshop, Laxenburg, Austria; June 24-26, 2003. 

  38. Miller 2004 Nuclear production of hydrogen - technologies and perspectives for global deployment Electrochemical production of hydrogen by nuclear energy 

  39. International Journal of Hydrogen Energy Naterer 33 6849 2008 10.1016/j.ijhydene.2008.09.011 Synergistic roles of off-peak electrolysis and thermochemical production of hydrogen from nuclear energy in Canada 

  40. International Journal of Hydrogen Energy Orhan 33 6006 2008 10.1016/j.ijhydene.2008.05.038 Cost analysis of a thermochemical Cu-Cl pilot plant for nuclear-based hydrogen production 

  41. International Journal of Hydrogen Energy Taljan 33 4463 2008 10.1016/j.ijhydene.2008.06.040 Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy 

  42. International Journal of Hydrogen Energy Taljan 33 17 4463 2008 10.1016/j.ijhydene.2008.06.040 Hydrogen storage for mixed wind-nuclear power plants in the context of a hydrogen economy 

  43. IEEE Transactions on Power Systems Taljan 23 3 1507 2008 10.1109/TPWRS.2008.922579 The feasibility of hydrogen storage for mixed wind-nuclear power plants 

  44. 10.1109/IREP.2007.4410517 Hajimiragha A, Canizares C, Fowler M, Geidl M, Andersson G. Optimal energy flow of integrated energy systems with hydrogen economy considerations. iREP Symposium-Bulk Power System Dynamics and Control - VII, Revitalizing Operational Reliability, no. 4410517; 2007. 

  45. Energy and Fuels Chui 20 1 346 2006 10.1021/ef050196u An integrated decision support framework for the assessment and analysis of hydrogen production pathways 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로