$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

MHC class I antigen presentation: learning from viral evasion strategies

Nature reviews. Immunology, v.9 no.7, 2009년, pp.503 - 513  

Hansen, Ted H. (Washington University School of Medicine, Department of Pathology and Immunology, 660 South Euclid, St Louis, Missouri 63110, USA.) ,  Bouvier, Marlene (College of Medicine, University of Illinois at Chicago, Department of Microbiology and Immunology, 835 S. Wolcott, Chicago, Illinois 60612, USA.)

Abstract AI-Helper 아이콘AI-Helper

The cell surface display of peptides by MHC class I molecules to lymphocytes provides the host with an important surveillance mechanism to protect against invading pathogens. However, in turn, viruses have evolved elegant strategies to inhibit various stages of the MHC class I antigen presentation p...

참고문헌 (142)

  1. Curr. Opin. Immunol. AW Purcell 20 75 2008 10.1016/j.coi.2007.12.005 Purcell, A. W. & Elliott, T. Molecular machinations of the MHC-I peptide loading complex. Curr. Opin. Immunol. 20, 75-81 (2008). 

  2. Annu. Rev. Cell Dev. Biol. DR Peaper 24 343 2008 10.1146/annurev.cellbio.24.110707.175347 Peaper, D. R. & Cresswell, P. Regulation of MHC class I assembly and peptide binding. Annu. Rev. Cell Dev. Biol. 24, 343-368 (2008). 

  3. Trends Immunol. S Sadegh-Nasseri 29 141 2008 10.1016/j.it.2008.01.001 Sadegh-Nasseri, S., Chen, M., Narayan, K. & Bouvier, M. The convergent roles of tapasin and HLA-DM in antigen presentation. Trends Immunol. 29, 141-147 (2008). 

  4. Immunol. Rev. K Fruh 168 157 1999 10.1111/j.1600-065X.1999.tb01290.x Fruh, K., Gruhler, A., Krishna, R. M. & Schoenhals, G. J. A comparison of viral immune escape strategies targeting the MHC class I assembly pathway. Immunol. Rev. 168, 157-166 (1999). 

  5. Immunol. Rev. BN Lilley 207 126 2005 10.1111/j.0105-2896.2005.00318.x Lilley, B. N. & Ploegh, H. L. Viral modulation of antigen presentation: manipulation of cellular targets in the ER and beyond. Immunol. Rev. 207, 126-144 (2005). 

  6. Cell KL Rock 78 761 1994 10.1016/S0092-8674(94)90462-6 Rock, K. L. et al. Inhibitors of the proteasome block the degradation of most cell proteins and the generation of peptides presented on MHC class I molecules. Cell 78, 761-771 (1994). 

  7. Cell W Baumeister 92 367 1998 10.1016/S0092-8674(00)80929-0 Baumeister, W., Walz, J., Zuhl, F. & Seemuller, E. The proteasome: paradigm of a self-compartmentalizing protease. Cell 92, 367-380 (1998). 

  8. Nature J Levitskaya 375 685 1995 10.1038/375685a0 Levitskaya, J. et al. Inhibition of antigen processing by the internal repeat region of the Epstein-Barr virus nuclear antigen-1. Nature 375, 685-688 (1995). 

  9. Proc. Natl Acad. Sci. USA NP Dantuma 97 8381 2000 10.1073/pnas.140217397 Dantuma, N. P., Heessen, S., Lindsten, K., Jellne, M. & Masucci, M. G. Inhibition of proteasomal degradation by the Gly-Ala repeat of Epstein-Barr virus is influenced by the length of the repeat and the strength of the degradation signal. Proc. Natl Acad. Sci. USA 97, 8381-8385 (2000). 

  10. PLoS Biol. NJ Bennett 3 e120 2005 10.1371/journal.pbio.0030120 Bennett, N. J., May, J. S. & Stevenson, P. G. Gamma-herpesvirus latency requires T cell evasion during episome maintenance. PLoS Biol. 3, e120 (2005). 

  11. Mol. Immunol. A Zaldumbide 44 1352 2007 10.1016/j.molimm.2006.05.012 Zaldumbide, A., Ossevoort, M., Wiertz, E. J. & Hoeben, R. C. In cis inhibition of antigen processing by the latency-associated nuclear antigen I of Kaposi sarcoma herpes virus. Mol. Immunol. 44, 1352-1360 (2007). 

  12. J. Virol. HJ Kwun 81 8225 2007 10.1128/JVI.00411-07 Kwun, H. J. et al. Kaposi's sarcoma-associated herpesvirus latency-associated nuclear antigen 1 mimics Epstein-Barr virus EBNA1 immune evasion through central repeat domain effects on protein processing. J. Virol. 81, 8225-8235 (2007). 

  13. J. Biol. Chem. C Daskalogianni 283 30090 2008 10.1074/jbc.M803290200 Daskalogianni, C. et al. Gly-Ala repeats induce position- and substrate-specific regulation of 26 S proteasome-dependent partial processing. J. Biol. Chem. 283, 30090-30100 (2008). 

  14. Oncogene MG Masucci 23 2107 2004 10.1038/sj.onc.1207372 Masucci, M. G. Epstein-Barr virus oncogenesis and the ubiquitin-proteasome system. Oncogene 23, 2107-2115 (2004). 

  15. Nature A Kelly 355 641 1992 10.1038/355641a0 Kelly, A. et al. Assembly and function of the two ABC transporter proteins encoded in the human major histocompatibility complex. Nature 355, 641-644 (1992). 

  16. Curr. Opin. Struct. Biol. L Schmitt 12 754 2002 10.1016/S0959-440X(02)00399-8 Schmitt, L. & Tampe, R. Structure and mechanism of ABC transporters. Curr. Opin. Struct. Biol. 12, 754-760 (2002). 

  17. Nature K Fruh 375 415 1995 10.1038/375415a0 Fruh, K. et al. A viral inhibitor of peptide transporters for antigen presentation. Nature 375, 415-418 (1995). 

  18. Nature A Hill 375 411 1995 10.1038/375411a0 Hill, A. et al. Herpes simplex virus turns off the TAP to evade host immunity. Nature 375, 411-415 (1995). This study, together with reference 17, identifies the first viral inhibitor of TAP. 

  19. Immunity K Ahn 6 613 1997 10.1016/S1074-7613(00)80349-0 Ahn, K. et al. The ER-luminal domain of the HCMV glycoprotein US6 inhibits peptide translocation by TAP. Immunity 6, 613-621 (1997). 

  20. Immunity H Hengel 6 623 1997 10.1016/S1074-7613(00)80350-7 Hengel, H. et al. A viral ER-resident glycoprotein inactivates the MHC-encoded peptide transporter. Immunity 6, 623-632 (1997). 

  21. Proc. Natl Acad. Sci. USA PJ Lehner 94 6904 1997 10.1073/pnas.94.13.6904 Lehner, P. J., Karttunen, J. T., Wilkinson, G. W. & Cresswell, P. The human cytomegalovirus US6 glycoprotein inhibits transporter associated with antigen processing-dependent peptide translocation. Proc. Natl Acad. Sci. USA 94, 6904-6909 (1997). 

  22. PLoS Pathog. D Koppers-Lalic 4 e1000080 2008 10.1371/journal.ppat.1000080 Koppers-Lalic, D. et al. Varicellovirus UL 49.5 proteins differentially affect the function of the transporter associated with antigen processing, TAP. PLoS Pathog. 4, e1000080 (2008). 

  23. Proc. Natl Acad. Sci. USA D Koppers-Lalic 102 5144 2005 10.1073/pnas.0501463102 Koppers-Lalic, D. et al. Varicelloviruses avoid T cell recognition by UL49.5-mediated inactivation of the transporter associated with antigen processing. Proc. Natl Acad. Sci. USA 102, 5144-5149 (2005). 

  24. J. Exp. Med. AD Hislop 204 1863 2007 10.1084/jem.20070256 Hislop, A. D. et al. A CD8+ T cell immune evasion protein specific to Epstein-Barr virus and its close relatives in Old World primates. J. Exp. Med. 204, 1863-1873 (2007). 

  25. J. Immunol. D Horst 182 2313 2009 10.4049/jimmunol.0803218 Horst, D. et al. Specific targeting of the EBV lytic phase protein BNLF2a to the transporter associated with antigen processing results in impairment of HLA class I-restricted antigen presentation. J. Immunol. 182, 2313-2324 (2009). 

  26. Int. Immunol. J Gatfield 10 1665 1998 10.1093/intimm/10.11.1665 Gatfield, J. et al. Cell lines transfected with the TAP inhibitor ICP47 allow testing peptide binding to a variety of HLA class I molecules. Int. Immunol. 10, 1665-1672 (1998). 

  27. Nature ML Wei 356 443 1992 10.1038/356443a0 Wei, M. L. & Cresswell, P. HLA-A2 molecules in an antigen-processing mutant cell contain signal sequence-derived peptides. Nature 356, 443-446 (1992). 

  28. EMBO J. K Ahn 15 3247 1996 10.1002/j.1460-2075.1996.tb00689.x Ahn, K. et al. Molecular mechanism and species specificity of TAP inhibition by herpes simplex virus ICP47. EMBO J. 15, 3247-3255 (1996). 

  29. EMBO J. R Tomazin 15 3256 1996 10.1002/j.1460-2075.1996.tb00690.x Tomazin, R. et al. Stable binding of the herpes simplex virus ICP47 protein to the peptide binding site of TAP. EMBO J. 15, 3256-3266 (1996). 

  30. J. Biol. Chem. VG Lacaille 273 17386 1998 10.1074/jbc.273.28.17386 Lacaille, V. G. & Androlewicz, M. J. Herpes simplex virus inhibitor ICP47 destabilizes the transporter associated with antigen processing (TAP) heterodimer. J. Biol. Chem. 273, 17386-17390 (1998). 

  31. Proc. Natl Acad. Sci. USA S Gorbulev 98 3732 2001 10.1073/pnas.061467898 Gorbulev, S., Abele, R. & Tampe, R. Allosteric crosstalk between peptide-binding, transport, and ATP hydrolysis of the ABC transporter TAP. Proc. Natl Acad. Sci. USA 98, 3732-3737 (2001). 

  32. J. Exp. Med. B Galocha 185 1565 1997 10.1084/jem.185.9.1565 Galocha, B. et al. The active site of ICP47, a herpes simplex virus-encoded inhibitor of the major histocompatibility complex (MHC)-encoded peptide transporter associated with antigen processing (TAP), maps to the NH2-terminal 35 residues. J. Exp. Med. 185, 1565-1572 (1997). 

  33. J. Mol. Biol. L Neumann 272 484 1997 10.1006/jmbi.1997.1282 Neumann, L., Kraas, W., Uebel, S., Jung, G. & Tampe, R. The active domain of the herpes simplex virus protein ICP47: a potent inhibitor of the transporter associated with antigen processing. J. Mol. Biol. 272, 484-492 (1997). 

  34. EMBO J. EW Hewitt 20 387 2001 10.1093/emboj/20.3.387 Hewitt, E. W., Gupta, S. S. & Lehner, P. J. The human cytomegalovirus gene product US6 inhibits ATP binding by TAP. EMBO J. 20, 387-396 (2001). 

  35. J. Biol. Chem. C Kyritsis 276 48031 2001 10.1074/jbc.M108528200 Kyritsis, C. et al. Molecular mechanism and structural aspects of transporter associated with antigen processing inhibition by the cytomegalovirus protein US6. J. Biol. Chem. 276, 48031-48039 (2001). 

  36. J. Virol. P Jugovic 72 5076 1998 10.1128/JVI.72.6.5076-5084.1998 Jugovic, P., Hill, A. M., Tomazin, R., Ploegh, H. & Johnson, D. C. Inhibition of major histocompatibility complex class I antigen presentation in pig and primate cells by herpes simplex virus type 1 and 2 ICP47. J. Virol. 72, 5076-5084 (1998). 

  37. J. Biol. Chem. A Halenius 281 5383 2006 10.1074/jbc.M510223200 Halenius, A. et al. Physical and functional interactions of the cytomegalovirus US6 glycoprotein with the transporter associated with antigen processing. J. Biol. Chem. 281, 5383-5390 (2006). 

  38. J. Biol. Chem. S Loch 283 13428 2008 10.1074/jbc.M800226200 Loch, S. et al. Signaling of a varicelloviral factor across the endoplasmic reticulum membrane induces destruction of the peptide-loading complex and immune evasion. J. Biol. Chem. 283, 13428-13436 (2008). 

  39. J. Immunol. MC Verweij 181 4894 2008 10.4049/jimmunol.181.7.4894 Verweij, M. C. et al. The varicellovirus UL49.5 protein blocks the transporter associated with antigen processing (TAP) by inhibiting essential conformational transitions in the 6+6 transmembrane TAP core complex. J. Immunol. 181, 4894-4907 (2008). 

  40. J. Biol. Chem. M Chen 278 29686 2003 10.1074/jbc.M302757200 Chen, M., Abele, R. & Tampe, R. Peptides induce ATP hydrolysis at both subunits of the transporter associated with antigen processing. J. Biol. Chem. 278, 29686-29692 (2003). 

  41. J. Biol. Chem. J Koch 279 10142 2004 10.1074/jbc.M312816200 Koch, J., Guntrum, R., Heintke, S., Kyritsis, C. & Tampe, R. Functional dissection of the transmembrane domains of the transporter associated with antigen processing (TAP). J. Biol. Chem. 279, 10142-10147 (2004). 

  42. FEBS Lett. J Koch 580 4091 2006 10.1016/j.febslet.2006.06.053 Koch, J., Guntrum, R. & Tampe, R. The first N-terminal transmembrane helix of each subunit of the antigenic peptide transporter TAP is essential for independent tapasin binding. FEBS Lett. 580, 4091-4096 (2006). 

  43. J. Immunol. E Rufer 179 5717 2007 10.4049/jimmunol.179.9.5717 Rufer, E., Leonhardt, R. M. & Knittler, M. R. Molecular architecture of the TAP-associated MHC class I peptide-loading complex. J. Immunol. 179, 5717-5727 (2007). 

  44. Immunity G Dong 30 21 2009 10.1016/j.immuni.2008.10.018 Dong, G., Wearsch, P. A., Peaper, D. R., Cresswell, P. & Reinisch, K. M. Insights into MHC class I peptide loading from the structure of the tapasin-ERp57 thiol oxidoreductase heterodimer. Immunity 30, 21-32 (2009). This study describes the structure of the tapasin-ERp57 interactionand also mapped a putative MHC class I interaction surface in tapasin that is crucial for peptide loading. 

  45. EMBO J. GJ Schoenhals 18 743 1999 10.1093/emboj/18.3.743 Schoenhals, G. J. et al. Retention of empty MHC class I molecules by tapasin is essential to reconstitute antigen presentation in invertebrate cells. EMBO J. 18, 743-753 (1999). 

  46. J. Immunol. CA Peh 164 292 2000 10.4049/jimmunol.164.1.292 Peh, C. A., Laham, N., Burrows, S. R., Zhu, Y. & McCluskey, J. Distinct functions of tapasin revealed by polymorphism in MHC class I peptide loading. J. Immunol. 164, 292-299 (2000). 

  47. EMBO J. M Chen 26 1681 2007 10.1038/sj.emboj.7601624 Chen, M. & Bouvier, M. Analysis of interactions in a tapasin/class I complex provides a mechanism for peptide selection. EMBO J. 26, 1681-1690 (2007). In this cell-free study, direct evidence is provided for the first time that tapasin alone has chaperone and catalytic functions that enable it to influence the peptide repertoire. 

  48. Science B Ortmann 277 1306 1997 10.1126/science.277.5330.1306 Ortmann, B. et al. A critical role for tapasin in the assembly and function of multimeric MHC class I-TAP complexes. Science 277, 1306-1309 (1997). 

  49. Proc. Natl Acad. Sci. USA M Howarth 101 11737 2004 10.1073/pnas.0306294101 Howarth, M., Williams, A., Tolstrup, A. B. & Elliott, T. Tapasin enhances MHC class I peptide presentation according to peptide half-life. Proc. Natl Acad. Sci. USA 101, 11737-11742 (2004). 

  50. Methods Enzymol. TP Dick 348 49 2002 10.1016/S0076-6879(02)48625-9 Dick, T. P. & Cresswell, P. Thiol oxidation and reduction in major histocompatibility complex class I-restricted antigen processing and presentation. Methods Enzymol. 348, 49-54 (2002). 

  51. Immunity B Sadasivan 5 103 1996 10.1016/S1074-7613(00)80487-2 Sadasivan, B., Lehner, P. J., Ortmann, B., Spies, T. & Cresswell, P. Roles for calreticulin and a novel glycoprotein, tapasin, in the interaction of MHC class I molecules with TAP. Immunity 5, 103-114 (1996). 

  52. J. Virol. S Lee 74 11262 2000 10.1128/JVI.74.23.11262-11269.2000 Lee, S. et al. Structural and functional dissection of human cytomegalovirus US3 in binding major histocompatibility complex class I molecules. J. Virol. 74, 11262-11269 (2000). 

  53. Immunity B Park 20 71 2004 10.1016/S1074-7613(03)00355-8 Park, B. et al. Human cytomegalovirus inhibits tapasin-dependent peptide loading and optimization of the MHC class I peptide cargo for immune evasion. Immunity 20, 71-85 (2004). This study identifies for the first time the interaction between US3 and tapasin and its function in retaining MHC class I molecules in the ER. 

  54. Immunity CA Peh 8 531 1998 10.1016/S1074-7613(00)80558-0 Peh, C. A. et al. HLA-B27-restricted antigen presentation in the absence of tapasin reveals polymorphism in mechanisms of HLA class I peptide loading. Immunity 8, 531-542 (1998). 

  55. J. Immunol. HR Turnquist 172 2976 2004 10.4049/jimmunol.172.5.2976 Turnquist, H. R. et al. The Ig-like domain of tapasin influences intermolecular interactions. J. Immunol. 172, 2976-2984 (2004). 

  56. J. Immunol. EM Bennett 162 5049 1999 Bennett, E. M., Bennink, J. R., Yewdell, J. W. & Brodsky, F. M. Cutting edge: adenovirus E19 has two mechanisms for affecting class I MHC expression. J. Immunol. 162, 5049-5052 (1999). 

  57. J. Immunol. P Tan 168 1950 2002 10.4049/jimmunol.168.4.1950 Tan, P. et al. Recruitment of MHC class I molecules by tapasin into the transporter associated with antigen processing-associated complex is essential for optimal peptide loading. J. Immunol. 168, 1950-1960 (2002). 

  58. J. Biol. Chem. G Raghuraman 277 41786 2002 10.1074/jbc.M207128200 Raghuraman, G., Lapinski, P. E. & Raghavan, M. Tapasin interacts with the membrane-spanning domains of both TAP subunits and enhances the structural stability of TAP1 x TAP2 complexes. J. Biol. Chem. 277, 41786-41794 (2002). 

  59. J. Biol. Chem. M Papadopoulos 282 9401 2007 10.1074/jbc.M610429200 Papadopoulos, M. & Momburg, F. Multiple residues in the transmembrane helix and connecting peptide of mouse tapasin stabilize the transporter associated with the antigen-processing TAP2 subunit. J. Biol. Chem. 282, 9401-9410 (2007). 

  60. J. Immunol. JL Petersen 174 962 2005 10.4049/jimmunol.174.2.962 Petersen, J. L. et al. A charged amino acid residue in the transmembrane/cytoplasmic region of tapasin influences MHC class I assembly and maturation. J. Immunol. 174, 962-969 (2005). 

  61. Cell M Andersson 43 215 1985 10.1016/0092-8674(85)90026-1 Andersson, M., Paabo, S., Nilsson, T. & Peterson, P. A. Impaired intracellular transport of class I MHC antigens as a possible means for adenoviruses to evade immune surveillance. Cell 43, 215-222 (1985). 

  62. J. Immunol. M Andersson 138 3960 1987 Andersson, M., McMichael, A. & Peterson, P. A. Reduced allorecognition of adenovirus-2 infected cells. J. Immunol. 138, 3960-3966 (1987). 

  63. J. Exp. Med. JH Cox 174 1629 1991 10.1084/jem.174.6.1629 Cox, J. H., Bennink, J. R. & Yewdell, J. W. Retention of adenovirus E19 glycoprotein in the endoplasmic reticulum is essential to its ability to block antigen presentation. J. Exp. Med. 174, 1629-1637 (1991). 

  64. Cell HG Burgert 41 987 1985 10.1016/S0092-8674(85)80079-9 Burgert, H. G. & Kvist, S. An adenovirus type 2 glycoprotein blocks cell surface expression of human histocompatibility class I antigens. Cell 41, 987-997 (1985). This study, together with reference 61, provides the first example of a viral immune evasion mechanism that targets the MHC class I antigen presentation pathway. 

  65. EMBO J. HG Burgert 6 2019 1987 10.1002/j.1460-2075.1987.tb02466.x Burgert, H. G. & Kvist, S. The E3/19K protein of adenovirus type 2 binds to the domains of histocompatibility antigens required for CTL recognition. EMBO J. 6, 2019-2026 (1987). 

  66. J. Immunol. DC Beier 152 3862 1994 Beier, D. C., Cox, J. H., Vining, D. R., Cresswell, P. & Engelhard, V. H. Association of human class I MHC alleles with the adenovirus E3/19K protein. J. Immunol. 152, 3862-3872 (1994). 

  67. J. Immunol. D Feuerbach 153 1626 1994 Feuerbach, D. et al. Identification of amino acids within the MHC molecule important for the interaction with the adenovirus protein E3/19K. J. Immunol. 153, 1626-1636 (1994). 

  68. Mol. Immunol. P Flomenberg 31 1277 1994 10.1016/0161-5890(94)90078-7 Flomenberg, P., Gutierrez, E. & Hogan, K. T. Identification of class I MHC regions which bind to the adenovirus E3-19k protein. Mol. Immunol. 31, 1277-1284 (1994). 

  69. Cell S Paabo 50 311 1987 10.1016/0092-8674(87)90226-1 Paabo, S., Bhat, B. M., Wold, W. S. & Peterson, P. A. A short sequence in the COOH-terminus makes an adenovirus membrane glycoprotein a resident of the endoplasmic reticulum. Cell 50, 311-317 (1987). 

  70. J. Virol. R Gabathuler 64 3679 1990 10.1128/JVI.64.8.3679-3685.1990 Gabathuler, R., Levy, F. & Kvist, S. Requirements for the association of adenovirus type 2 E3/19K wild-type and mutant proteins with HLA antigens. J. Virol. 64, 3679-3685 (1990). 

  71. J. Virol. H Liu 79 13317 2005 10.1128/JVI.79.21.13317-13325.2005 Liu, H., Stafford, W. F. & Bouvier, M. The endoplasmic reticulum lumenal domain of the adenovirus type 2 E3-19K protein binds to peptide-filled and peptide-deficient HLA-A*1101 molecules. J. Virol. 79, 13317-13325 (2005). 

  72. J. Immunol. L Severinsson 137 1003 1986 Severinsson, L., Martens, I. & Peterson, P. A. Differential association between two human MHC class I antigens and an adenoviral glycoprotein. J. Immunol. 137, 1003-1009 (1986). 

  73. J. Virol. H Korner 68 1442 1994 10.1128/JVI.68.3.1442-1448.1994 Korner, H. & Burgert, H. G. Down-regulation of HLA antigens by the adenovirus type 2 E3/19K protein in a T-lymphoma cell line. J. Virol. 68, 1442-1448 (1994). 

  74. J. Virol. F Deryckere 70 2832 1996 10.1128/JVI.70.5.2832-2841.1996 Deryckere, F. & Burgert, H. G. Early region 3 of adenovirus type 19 (subgroup D) encodes an HLA-binding protein distinct from that of subgroups B and C. J. Virol. 70, 2832-2841 (1996). 

  75. J. Immunol. H Liu 178 4567 2007 10.4049/jimmunol.178.7.4567 Liu, H., Fu, J. & Bouvier, M. Allele- and locus-specific recognition of class I MHC molecules by the immunomodulatory E3-19K protein from adenovirus. J. Immunol. 178, 4567-4575 (2007). 

  76. Curr. Biol. JW Lewis 6 873 1996 10.1016/S0960-9822(02)00611-5 Lewis, J. W., Neisig, A., Neefjes, J. & Elliott, T. Point mutations in the α2 domain of HLA-A2.1 define a functionally relevant interaction with TAP. Curr. Biol. 6, 873-883 (1996). 

  77. J. Immunol. YY Yu 163 4427 1999 Yu, Y. Y. et al. An extensive region of an MHC class I α2 domain loop influences interaction with the assembly complex. J. Immunol. 163, 4427-4433 (1999). 

  78. Proc. Natl Acad. Sci. USA BE Gewurz 98 6794 2001 10.1073/pnas.121172898 Gewurz, B. E. et al. Antigen presentation subverted: structure of the human cytomegalovirus protein US2 bound to the class I molecule HLA-A2. Proc. Natl Acad. Sci. USA 98, 6794-6799 (2001). 

  79. Cell Host Microbe M Byun 2 306 2007 10.1016/j.chom.2007.09.002 Byun, M., Wang, X., Pak, M., Hansen, T. H. & Yokoyama, W. M. Cowpox virus exploits the endoplasmic reticulum retention pathway to inhibit MHC class I transport to the cell surface. Cell Host Microbe 2, 306-315 (2007). 

  80. J. Immunol. A Dasgupta 178 1654 2007 10.4049/jimmunol.178.3.1654 Dasgupta, A., Hammarlund, E., Slifka, M. K. & Fruh, K. Cowpox virus evades CTL recognition and inhibits the intracellular transport of MHC class I molecules. J. Immunol. 178, 1654-1661 (2007). 

  81. Int. Immunol. YY Yu 11 1897 1999 10.1093/intimm/11.12.1897 Yu, Y. Y. et al. Definition and transfer of a serological epitope specific for peptide-empty forms of MHC class I. Int. Immunol. 11, 1897-1906 (1999). 

  82. Immunol. Rev. TH Hansen 207 100 2005 10.1111/j.0105-2896.2005.00315.x Hansen, T. H., Lybarger, L., Yu, L., Mitaksov, V. & Fremont, D. H. Recognition of open conformers of classical MHC by chaperones and monoclonal antibodies. Immunol. Rev. 207, 100-111 (2005). 

  83. Immunol. Rev. T Elliott 207 89 2005 10.1111/j.0105-2896.2005.00311.x Elliott, T. & Williams, A. The optimization of peptide cargo bound to MHC class I molecules by the peptide-loading complex. Immunol. Rev. 207, 89-99 (2005). 

  84. J. Biol. Chem. B Park 278 14337 2003 10.1074/jbc.M212882200 Park, B. & Ahn, K. An essential function of tapasin in quality control of HLA-G molecules. J. Biol. Chem. 278, 14337-14345 (2003). 

  85. J. Immunol. ME Paquet 172 7548 2004 10.4049/jimmunol.172.12.7548 Paquet, M. E., Cohen-Doyle, M., Shore, G. C. & Williams, D. B. Bap29/31 influences the intracellular traffic of MHC class I molecules. J. Immunol. 172, 7548-7555 (2004). 

  86. J. Immunol. JJ Ladasky 177 6172 2006 10.4049/jimmunol.177.9.6172 Ladasky, J. J. et al. Bap31 enhances the endoplasmic reticulum export and quality control of human class I MHC molecules. J. Immunol. 177, 6172-6181 (2006). 

  87. J. Immunol. JC Beck 137 916 1986 Beck, J. C., Hansen, T. H., Cullen, S. E. & Lee, D. R. Slower processing, weaker β2-M association, and lower surface expression of H-2Ld are influenced by its amino terminus. J. Immunol. 137, 916-923 (1986). 

  88. J. Cell Biol. DB Williams 101 725 1985 10.1083/jcb.101.3.725 Williams, D. B., Swiedler, S. J. & Hart, G. W. Intracellular transport of membrane glycoproteins: two closely related histocompatibility antigens differ in their rates of transit to the cell surface. J. Cell Biol. 101, 725-734 (1985). 

  89. Eur. J. Immunol. JJ Neefjes 18 801 1988 10.1002/eji.1830180522 Neefjes, J. J. & Ploegh, H. L. Allele and locus-specific differences in cell surface expression and the association of HLA class I heavy chain with beta 2-microglobulin: differential effects of inhibition of glycosylation on class I subunit association. Eur. J. Immunol. 18, 801-810 (1988). 

  90. J. Exp. Med. NM Chiu 190 423 1999 10.1084/jem.190.3.423 Chiu, N. M., Chun, T., Fay, M., Mandal, M. & Wang, C. R. The majority of H2-M3 is retained intracellularly in a peptide-receptive state and traffics to the cell surface in the presence of N-formylated peptides. J. Exp. Med. 190, 423-434 (1999). 

  91. Immunogenetics NB Myers 43 384 1996 10.1007/BF02199807 Myers, N. B., Wormstall, E. & Hansen, T. H. Differences among various class I molecules in competition for beta2m in vivo. Immunogenetics 43, 384-387 (1996). 

  92. Nature Rev. Mol. Cell Biol. SS Vembar 9 944 2008 10.1038/nrm2546 Vembar, S. S. & Brodsky, J. L. One step at a time: endoplasmic reticulum-associated degradation. Nature Rev. Mol. Cell Biol. 9, 944-957 (2008). 

  93. Proc. Natl Acad. Sci. USA EA Hughes 94 1896 1997 10.1073/pnas.94.5.1896 Hughes, E. A., Hammond, C. & Cresswell, P. Misfolded major histocompatibility complex class I heavy chains are translocated into the cytoplasm and degraded by the proteasome. Proc. Natl Acad. Sci. USA 94, 1896-1901 (1997). 

  94. Curr. Opin. Immunol. L Lybarger 17 71 2005 10.1016/j.coi.2004.11.009 Lybarger, L., Wang, X., Harris, M. & Hansen, T. H. Viral immune evasion molecules attack the ER peptide-loading complex and exploit ER-associated degradation pathways. Curr. Opin. Immunol. 17, 71-78 (2005). 

  95. Cell EJ Wiertz 84 769 1996 10.1016/S0092-8674(00)81054-5 Wiertz, E. J. et al. The human cytomegalovirus US11 gene product dislocates MHC class I heavy chains from the endoplasmic reticulum to the cytosol. Cell 84, 769-779 (1996). 

  96. Nature EJ Wiertz 384 432 1996 10.1038/384432a0 Wiertz, E. J. et al. Sec61-mediated transfer of a membrane protein from the endoplasmic reticulum to the proteasome for destruction. Nature 384, 432-438 (1996). 

  97. Nature J Loureiro 441 894 2006 10.1038/nature04830 Loureiro, J. et al. Signal peptide peptidase is required for dislocation from the endoplasmic reticulum. Nature 441, 894-897 (2006). 

  98. PLoS Pathog. CJ Powers 4 e1000150 2008 10.1371/journal.ppat.1000150 Powers, C. J. & Fruh, K. Signal peptide-dependent inhibition of MHC class I heavy chain translation by rhesus cytomegalovirus. PLoS Pathog. 4, e1000150 (2008). 

  99. Nature BN Lilley 429 834 2004 10.1038/nature02592 Lilley, B. N. & Ploegh, H. L. A membrane protein required for dislocation of misfolded proteins from the ER. Nature 429, 834-840 (2004). 

  100. Nature Y Ye 429 841 2004 10.1038/nature02656 Ye, Y., Shibata, Y., Yun, C., Ron, D. & Rapoport, T. A. A membrane protein complex mediates retro-translocation from the ER lumen into the cytosol. Nature 429, 841-847 (2004). Together with reference 99, this study identifies the evolutionarily conserved protein derlin 1 as a mammalian cellular component that is required for US11-mediated dislocation of MHC class I molecules from the ER lumen to the cytoplasm. 

  101. Proc. Natl Acad. Sci. USA B Mueller 105 12325 2008 10.1073/pnas.0805371105 Mueller, B., Klemm, E. J., Spooner, E., Claessen, J. H. & Ploegh, H. L. SEL1L nucleates a protein complex required for dislocation of misfolded glycoproteins. Proc. Natl Acad. Sci. USA 105, 12325-12330 (2008). 

  102. J. Cell Biol. B Mueller 175 261 2006 10.1083/jcb.200605196 Mueller, B., Lilley, B. N. & Ploegh, H. L. SEL1L, the homologue of yeast Hrd3p, is involved in protein dislocation from the mammalian ER. J. Cell Biol. 175, 261-270 (2006). 

  103. J. Cell Biol. Y Oda 172 383 2006 10.1083/jcb.200507057 Oda, Y. et al. Derlin-2 and derlin-3 are regulated by the mammalian unfolded protein response and are required for ER-associated degradation. J. Cell Biol. 172, 383-393 (2006). 

  104. Cell P Carvalho 126 361 2006 10.1016/j.cell.2006.05.043 Carvalho, P., Goder, V. & Rapoport, T. A. Distinct ubiquitin-ligase complexes define convergent pathways for the degradation of ER proteins. Cell 126, 361-373 (2006). 

  105. Immunity JM Boname 15 627 2001 10.1016/S1074-7613(01)00213-8 Boname, J. M. & Stevenson, P. G. MHC class I ubiquitination by a viral PHD/LAP finger protein. Immunity 15, 627-636 (2001). 

  106. Nature Immunol. PG Stevenson 3 733 2002 10.1038/ni818 Stevenson, P. G. et al. K3-mediated evasion of CD8+ T cells aids amplification of a latent gamma-herpesvirus. Nature Immunol. 3, 733-740 (2002). 

  107. Immunity L Lybarger 18 121 2003 10.1016/S1074-7613(02)00509-5 Lybarger, L., Wang, X., Harris, M. R., Virgin, H. W. & Hansen, T. H. Virus subversion of the MHC class I peptide-loading complex. Immunity 18, 121-130 (2003). 

  108. J. Cell Biol. X Wang 177 613 2007 10.1083/jcb.200611063 Wang, X. et al. Ubiquitination of serine, threonine, or lysine residues on the cytoplasmic tail can induce ERAD of MHC-I by viral E3 ligase mK3. J. Cell Biol. 177, 613-624 (2007). This report shows that MHV68 protein mK3 ubiquitylates the tail of MHC class I in a sequence-independent manner, supporting the idea that MHC class I molecules are removed from the ER through their cytoplasmic tail and that TAP confers substrate specificity. 

  109. J. Biol. Chem. X Wang 281 8636 2006 10.1074/jbc.M513920200 Wang, X., Ye, Y., Lencer, W. & Hansen, T. H. The viral E3 ubiquitin ligase mk3 uses the derlin/p97 endoplasmic reticulum-associated degradation pathway to mediate down-regulation of major histocompatibility complex class I proteins. J. Biol. Chem. 281, 8636-8644 (2006). 

  110. J. Biol. Chem. GC Hassink 281 30063 2006 10.1074/jbc.M602248200 Hassink, G. C., Barel, M. T., Van Voorden, S. B., Kikkert, M. & Wiertz, E. J. Ubiquitination of MHC class I heavy chains is essential for dislocation by human cytomegalovirus-encoded US2 but not US11. J. Biol. Chem. 281, 30063-30071 (2006). 

  111. Science K Cadwell 309 127 2005 10.1126/science.1110340 Cadwell, K. & Coscoy, L. Ubiquitination on nonlysine residues by a viral E3 ubiquitin ligase. Science 309, 127-130 (2005). 

  112. Trends Cell Biol. A Ciechanover 14 103 2004 10.1016/j.tcb.2004.01.004 Ciechanover, A. & Ben-Saadon, R. N-terminal ubiquitination: more protein substrates join in. Trends Cell Biol. 14, 103-106 (2004). 

  113. Retrovirology J Binette 4 75 2007 10.1186/1742-4690-4-75 Binette, J. et al. Requirements for the selective degradation of CD4 receptor molecules by the human immunodeficiency virus type 1 Vpu protein in the endoplasmic reticulum. Retrovirology 4, 75 (2007). 

  114. J. Cell Biol. SW Tait 179 1453 2007 10.1083/jcb.200707063 Tait, S. W. et al. Apoptosis induction by Bid requires unconventional ubiquitination and degradation of its N-terminal fragment. J. Cell Biol. 179, 1453-1466 (2007). 

  115. J. Biol. Chem. CP Grou 283 14190 2008 10.1074/jbc.M800402200 Grou, C. P. et al. Members of the E2D (UbcH5) family mediate the ubiquitination of the conserved cysteine of Pex5p, the peroxisomal import receptor. J. Biol. Chem. 283, 14190-14197 (2008). 

  116. EMBO J. KU Kalies 24 2284 2005 10.1038/sj.emboj.7600731 Kalies, K. U., Allan, S., Sergeyenko, T., Kroger, H. & Romisch, K. The protein translocation channel binds proteasomes to the endoplasmic reticulum membrane. EMBO J. 24, 2284-2293 (2005). 

  117. J. Biol. Chem. B Tirosh 278 6664 2003 10.1074/jbc.M210158200 Tirosh, B., Furman, M. H., Tortorella, D. & Ploegh, H. L. Protein unfolding is not a prerequisite for endoplasmic reticulum-to-cytosol dislocation. J. Biol. Chem. 278, 6664-6672 (2003). 

  118. FEBS J. H Yoshida 274 630 2007 10.1111/j.1742-4658.2007.05639.x Yoshida, H. ER stress and diseases. FEBS J. 274, 630-658 (2007). 

  119. Nature JS Shin 444 115 2006 10.1038/nature05261 Shin, J. S. et al. Surface expression of MHC class II in dendritic cells is controlled by regulated ubiquitination. Nature 444, 115-118 (2006). 

  120. Proc. Natl Acad. Sci. USA GA De 105 3491 2008 10.1073/pnas.0708874105 De, G. A. et al. MHC class II stabilization at the surface of human dendritic cells is the result of maturation-dependent MARCH I down-regulation. Proc. Natl Acad. Sci. USA 105, 3491-3496 (2008). 

  121. EMBO J. Y Matsuki 26 846 2007 10.1038/sj.emboj.7601556 Matsuki, Y. et al. Novel regulation of MHC class II function in B cells. EMBO J. 26, 846-854 (2007). This study describes a functional parallel between immune evasion proteins (kK3, kK5 and mK3) and their cellular homologues (MARCH proteins) by showing that MARCH1 is a key regulator of MHC class II expression in B cells (a finding extended to DCs in reference120). 

  122. Proc. Natl Acad. Sci. USA PG Stevenson 97 8455 2000 10.1073/pnas.150240097 Stevenson, P. G., Efstathiou, S., Doherty, P. C. & Lehner, P. J. Inhibition of MHC class I-restricted antigen presentation by gamma 2-herpesviruses. Proc. Natl Acad. Sci. USA 97, 8455-8460 (2000). 

  123. Proc. Natl Acad. Sci. USA L Coscoy 97 8051 2000 10.1073/pnas.140129797 Coscoy, L. & Ganem, D. Kaposi's sarcoma-associated herpesvirus encodes two proteins that block cell surface display of MHC class I chains by enhancing their endocytosis. Proc. Natl Acad. Sci. USA 97, 8051-8056 (2000). 

  124. J. Virol. S Ishido 74 5300 2000 10.1128/JVI.74.11.5300-5309.2000 Ishido, S., Wang, C., Lee, B. S., Cohen, G. B. & Jung, J. U. Downregulation of major histocompatibility complex class I molecules by Kaposi's sarcoma-associated herpesvirus K3 and K5 proteins. J. Virol. 74, 5300-5309 (2000). 

  125. Exp. Cell Res. JA Nathan 315 1593 2008 10.1016/j.yexcr.2008.10.026 Nathan, J. A. & Lehner, P. J. The trafficking and regulation of membrane receptors by the RING-CH ubiquitin E3 ligases. Exp. Cell Res. 315, 1593-1600 (2008). 

  126. Proc. Natl Acad. Sci. USA M Thomas 105 1656 2008 10.1073/pnas.0707883105 Thomas, M. et al. Down-regulation of NKG2D and NKp80 ligands by Kaposi's sarcoma-associated herpesvirus K5 protects against NK cell cytotoxicity. Proc. Natl Acad. Sci. USA 105, 1656-1661 (2008). 

  127. J. Biol. Chem. DJ Sanchez 277 6124 2002 10.1074/jbc.M110265200 Sanchez, D. J., Coscoy, L. & Ganem, D. Functional organization of MIR2, a novel viral regulator of selective endocytosis. J. Biol. Chem. 277, 6124-6130 (2002). 

  128. J. Cell Biol. L Coscoy 155 1265 2001 10.1083/jcb.200111010 Coscoy, L., Sanchez, D. J. & Ganem, D. A novel class of herpesvirus-encoded membrane-bound E3 ubiquitin ligases regulates endocytosis of proteins involved in immune recognition. J. Cell Biol. 155, 1265-1273 (2001). 

  129. EMBO J. EW Hewitt 21 2418 2002 10.1093/emboj/21.10.2418 Hewitt, E. W. et al. Ubiquitylation of MHC class I by the K3 viral protein signals internalization and TSG101-dependent degradation. EMBO J. 21, 2418-2429 (2002). 

  130. EMBO J. LM Duncan 25 1635 2006 10.1038/sj.emboj.7601056 Duncan, L. M. et al. Lysine-63-linked ubiquitination is required for endolysosomal degradation of class I molecules. EMBO J. 25, 1635-1645 (2006). This study defines the molecular pathway by which the KSHV protein kK3 ubiquitylates MHC class I molecules and thereby induces their endocytosis and lysosomal degradation. 

  131. Blood M Mansouri 108 1932 2006 10.1182/blood-2005-11-4404 Mansouri, M. et al. Kaposi sarcoma herpesvirus K5 removes CD31/PECAM from endothelial cells. Blood 108, 1932-1940 (2006). 

  132. Nature Med. O Schwartz 2 338 1996 10.1038/nm0396-338 Schwartz, O., Marechal, V., Le, G. S., Lemonnier, F. & Heard, J. M. Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nature Med. 2, 338-342 (1996). 

  133. Nature KL Collins 391 397 1998 10.1038/34929 Collins, K. L., Chen, B. K., Kalams, S. A., Walker, B. D. & Baltimore, D. HIV-1 Nef protein protects infected primary cells against killing by cytotoxic T lymphocytes. Nature 391, 397-401 (1998). 

  134. Nature JV Garcia 350 508 1991 10.1038/350508a0 Garcia, J. V. & Miller, A. D. Serine phosphorylation-independent downregulation of cell-surface CD4 by Nef. Nature 350, 508-511 (1991). 

  135. Immunity N Sol-Foulon 16 145 2002 10.1016/S1074-7613(02)00260-1 Sol-Foulon, N. et al. HIV-1 Nef-induced upregulation of DC-SIGN in dendritic cells promotes lymphocyte clustering and viral spread. Immunity 16, 145-155 (2002). 

  136. Proc. Natl Acad. Sci. USA P Stumptner-Cuvelette 98 12144 2001 10.1073/pnas.221256498 Stumptner-Cuvelette, P. et al. HIV-1 Nef impairs MHC class II antigen presentation and surface expression. Proc. Natl Acad. Sci. USA 98, 12144-12149 (2001). 

  137. EMBO J. T Swigut 20 1593 2001 10.1093/emboj/20.7.1593 Swigut, T., Shohdy, N. & Skowronski, J. Mechanism for down-regulation of CD28 by Nef. EMBO J. 20, 1593-1604 (2001). 

  138. Curr. Biol. J Lama 9 622 1999 10.1016/S0960-9822(99)80284-X Lama, J., Mangasarian, A. & Trono, D. Cell-surface expression of CD4 reduces HIV-1 infectivity by blocking Env incorporation in a Nef- and Vpu-inhibitable manner. Curr. Biol. 9, 622-631 (1999). 

  139. Curr. Biol. TM Ross 9 613 1999 10.1016/S0960-9822(99)80283-8 Ross, T. M., Oran, A. E. & Cullen, B. R. Inhibition of HIV-1 progeny virion release by cell-surface CD4 is relieved by expression of the viral Nef protein. Curr. Biol. 9, 613-621 (1999). 

  140. J. Cell Biol. JF Roeth 167 903 2004 10.1083/jcb.200407031 Roeth, J. F., Williams, M., Kasper, M. R., Filzen, T. M. & Collins, K. L. HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail. J. Cell Biol. 167, 903-913 (2004). 

  141. EMBO J. U Reusch 18 1081 1999 10.1093/emboj/18.4.1081 Reusch, U. et al. A cytomegalovirus glycoprotein re-routes MHC class I complexes to lysosomes for degradation. EMBO J. 18, 1081-1091 (1999). 

  142. PLoS Pathog. MR Schaefer 4 e1000131 2008 10.1371/journal.ppat.1000131 Schaefer, M. R., Wonderlich, E. R., Roeth, J. F., Leonard, J. A. & Collins, K. L. HIV-1 Nef targets MHC-I and CD4 for degradation via a final common β-COP-dependent pathway in T cells. PLoS Pathog. 4, e1000131 (2008). This study defines a model by which the HIV protein Nef differentially sorts MHC class I and CD4 molecules that ultimately are degraded in the lysosome. 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로