최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Genes & genomics, v.32 no.3, 2010년, pp.247 - 257
Lee, Jeongyeo , Song, Hayoung , Han, Ching-Tack , Lim, Yong Pyo , Chung, Sang-Min , Hur, Yoonkang
초록이 없습니다.
Methods Mol. Biol. M. Babu 564 373 2009 10.1007/978-1-60761-157-8_22 Babu M, Butland G, Pogoutse O, Li J, Greenblatt JF and Emili A (2009) Sequential peptide affinity purification system for the systematic isolation and identification of protein complexes from Escherichia coli. Methods Mol. Biol. 564: 373-400.
J. Biosci. S.K. Baniwal 29 471 2004 10.1007/BF02712120 Baniwal SK, Bharti K, Chan KY, Fauth M, Ganguli A, Kotak S, Mishra SK, Nover L, Port M, and Scharf KD et al. (2004) Heat stress response in plants: a comlex game with chaperones and more than twenty heat stress transcription factors. J. Biosci. 29: 471-487.
Plant J. N. Banzet 13 519 1998 10.1046/j.1365-313X.1998.00056.x Banzet N, Richaud C, Deveaux Y, Kazmaier M, Gagnon J and Triantaphylides C (1998) Accumulation of small heat shock proteins, including mitochondrial HSP22, induced by oxidative stress and adaptive response in tomato cells. Plant J. 13: 519-527.
J. Struct. Biol. B. Bösl 156 139 2006 10.1016/j.jsb.2006.02.004 Bösl B, Grimminger V and Walter S (2006) The molecular chaperone Hsp104-a molecular machine for protein disaggregation. J. Struct. Biol. 156: 139-148.
Cell B. Bukau 92 351 1998 10.1016/S0092-8674(00)80928-9 Bukau B. and Horwich AL (1998) The Hsp70 and Hsp60 chaperone machines. Cell 92: 351-366.
Protein Sci. B.M. Burton 14 1945 2005 10.1110/ps.051417505 Burton BM and Baker TA (2005) Remodeling protein complexes: insights from the AAA+ unfoldase ClpX and Mu transposase. Protein Sci. 14: 1945-1954.
Plant J. W. Busch 41 1 2005 10.1111/j.1365-313X.2004.02272.x Busch W, Wunderlich M and Schöffl F (2005) Identification of novel heat shock factor-dependent genes and biochemical pathways in Arabidopsis thaliana. Plant J. 41: 1-14.
J. Exp. Bot. A.C. Cazalé 60 2653 2009 10.1093/jxb/erp109 Cazalé AC, Clément M, Chiarenza S, Roncato MA, Pochon N, Creff A, Marin E, Leonhardt N and Noël LD (2009) Altered expression of cytosolic/nuclear HSC70-1 molecular chaperone affects development and abiotic stress tolerance in Arabidopsis thaliana. J. Exp. Bot. 60:2653-2664.
Plant Physiol. Y. Charng 143 251 2007 10.1104/pp.106.091322 Charng Y, Liu H, Liu N, Chi W, Wang C, Chang S and Wang T (2007) A heat-inducible transcription factor, HsfA2, is required for extension of acquired thermotolerance in Arabidopsis. Plant Physiol. 143: 251-262.
Plant Physiol. Y.H. Cheong 129 661 2002 10.1104/pp.002857 Cheong YH, Chang HS, Gupta R, Wang X, Zhu T and Luan S (2002) Transcriptional profiling reveals novel interactions between wounding, pathogen, abiotic stress, and hormonal responses in Arabidopsis. Plant Physiol. 129: 661-677.
Euphytica J. Cho 146 271 2005 10.1007/s10681-005-9023-1 Cho J, Koo DH, Nam YW, Han CT, Lim HT, Bang JW and Hur Y (2005) Isolation and characterization of cDNA clones expressed under male sex expression conditions in a monoecious cucumber plant (Cucumis sativus L. cv. Winter Long). Euphytica 146: 271-281.
Plant Physiol. R. Desikan 127 159 2001 10.1104/pp.127.1.159 Desikan R, Mackerness SAH, Hancock JT and Neill SJ (2001) Regulation of the Arabidopsis transcriptome by oxidative stress. Plant Physiol. 127: 159-172.
Plant Physiol. D.P. Dixon 138 2233 2005 10.1104/pp.104.058917 Dixon DP, Skipsey M, Grundy NM and Edwards R (2005) Stress-induced protein S-glutathionylation in Arabido- psis. Plant Physiol. 138: 2233-2244.
Annu. Rev. Biochem. J. Frydman 70 603 2001 10.1146/annurev.biochem.70.1.603 Frydman J (2001) Folding of newly translated proteins in vivo: the role of molecular chaperones. Annu. Rev. Biochem. 70: 603-647.
J. Mol. Evol. X. Fu 62 257 2006 10.1007/s00239-005-0076-5 Fu X, Jiao W and Chang Z (2006) Phylogenetic and biochemical studies reveal a potential evolutionary origin of small heat shock proteins of animals from bacterial class A. J. Mol. Evol. 62: 257-266.
Plant Physiol. L. Giacomelli 141 685 2006 10.1104/pp.106.080150 Giacomelli L, Rudella A and Wijk KJ (2006) High light response of the thylakoid proteome in Arabidopsis wild type and the ascorbate-deficient mutant vtc2-2. A comparative proteomics study. Plant Physiol. 141: 685-701.
Plant Mol. Biol. J. Györgyey 16 999 1991 10.1007/BF00016072 Györgyey J, Gartner A, Nemeth K, Magyar Z, Hirt H, Heberlebors E and Dudits D (1991) Alfalfa heat shock genes are differentially expressed during somatic embryogenesis. Plant Mol. Biol. 16: 999-1007.
Nature F.U. Hartl 381 571 1996 10.1038/381571a0 Hartl FU (1996) Molecular chaperones in cellular protein folding. Nature 381: 571-580.
Plant Cell Y. Hihara 13 793 2001 10.1105/tpc.13.4.793 Hihara Y, Kamei A, Kanehisa M, Kaplan A and Ikeuchi M (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13: 793-806.
J. Mol. Neurosci. M.P. Hinault 30 249 2006 10.1385/JMN:30:3:249 Hinault MP, Ben-Zvi A and Goloubinoff P (2006) Chaperones and proteases: Cellular fold-controlling factors of proteins in neurodegenerative diseases and aging. J. Mol. Neurosci. 30: 249-265.
Plant J. S.W. Hong 27 25 2001 10.1046/j.1365-313x.2001.01066.x Hong SW and Vierling E (2001) Hsp101 is necessary for heat tolerance but dispensable for development and germination in the absence of stress. Plant J. 27: 25-35.
J. Int. Plant Biol. B. Huang 50 1230 2008 10.1111/j.1744-7909.2008.00735.x Huang B and Xu C (2008) Identification and characterization of proteins associated with plant tolerance to heat stress. J. Int. Plant Biol. 50: 1230-1237.
Genes & Genomics E.W. Hwang 30 93 2008 Hwang EW, Park SC, Byun MO, Choi M and Kwon HB (2008) Overexpression of zinc protein of Capsicum annuum (PIF1) in tobacco enhances cold tolerance. Genes & Genomics 30: 93-99.
Planta A. Jofré 217 813 2003 10.1007/s00425-003-1048-x Jofré A, Molinas M and Pla M (2003) A 10-kDa class-CI sHsp protects E. coli from oxidative and high-temperature stress. Planta 217: 813-819.
Curr. Opin. Plant Biol. S. Kotak 10 310 2007 10.1016/j.pbi.2007.04.011 Kotak S, Larkindale J, Lee U, von Koskull-Döring P, Vierling E and Scharf KD (2007) Complexity of the heat stress response in plants. Curr. Opin. Plant Biol. 10: 310-316.
Plant Physiol. J.A. Kreps 130 2129 2002 10.1104/pp.008532 Kreps JA, Wu Y, Chang HS, Zhu T, Wang Xun and Harper JF (2002) Transcriptome changes for Arabidopsis in response to salt, osmotic, and cold stress. Plant Physiol. 130: 2129-2141.
Plant Physiol. J. Larkindale 146 748 2008 10.1104/pp.107.112060 Larkindale J and Vierling E (2008) Core genome response involved in acclimation to high temperature. Plant Physiol. 146: 748-761.
Gene B.H. Lee 245 283 2000 10.1016/S0378-1119(00)00043-3 Lee BH, Won SH, Lee HS, Miyao M, Chung WI, Kim IJ and Jo J (2000) Expression of the chloroplast-localized small heat shock protein by oxidative stress in rice. Gene 245: 283-290.
Proteomics D.G. Lee 7 3369 2007 10.1002/pmic.200700266 Lee DG, Ahsan N, Lee SH, Kang KY, Bahk JD, Lee IJ and Lee BH (2007) A proteomic approach in analyzing heat-responsive proteins in rice leaves. Proteomics 7: 3369-3383.
Plant Cell U. Lee 17 559 2005 10.1105/tpc.104.027540 Lee U, Wie C, Escobar M, Williams B, Hong SW and Vierling E (2005) Genetic analysis reveals domain interactions of Arabidopsis Hsp100/ClpB and cooperation with the small heat shock protein chaperone system. Plant Cell 17: 559-571.
Plant J. U. Lee 49 115 2006 10.1111/j.1365-313X.2006.02940.x Lee U, Rioflorido I, Hong SW, Larkindale J, Waters ER and Vierling E (2006) The Arabidopsis ClpB/Hsp100 family of proteins: chaperones for stress and chloroplast development. Plant J. 49: 115-127.
J. Plant Res. C.J. Lim 119 373 2006 10.1007/s10265-006-0285-z Lim CJ, Yang KA, Hong JK, Choi JS, Yun DJ, Hong JC and Lim CO (2006) Gene expression profiles during heat acclimation in Arabidopsis thalianasuspension-culture cells. J. Plant Res. 119: 373-383.
Plant Physiol. Biochem. D. Liu 44 380 2006 10.1016/j.plaphy.2006.06.011 Liu D, Zhang X, Cheng Y, Takano T and Liu S (2006) rHsp90 gene expression in response to several environmental stresses in rice (Oryza sativa L.). Plant Physiol. Biochem. 44: 380-386.
Planta O. Lubaretz 215 220 2002 10.1007/s00425-002-0745-1 Lubaretz O and zur Nieden U (2002) Accumulation of plant small heat stress proteins in storage organs. Planta 215: 220-228.
Plant Physiol. C. Ma 141 47 2006 10.1104/pp.105.073841 Ma C, Haslbeck M, Babujee L, Jahn O and Reumann S (2006) Identification and characterization of a stress-inducible and a constitutive small heat-shock protein targeted to the matrix of plant peroxisomes. Plant Physiol. 141: 47-60.
Cell Mol. Life Sci. M.P. Mayer 62 670 2005 10.1007/s00018-004-4464-6 Mayer MP and Bukau B (2005) Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol. Life Sci. 62: 670-684.
Trends Plant Sci. J.A. Miernyk 2 80 1997 Miernyk JA (1997) The 70 kDa stress-related proteins as molecular chaperones. Trends Plant Sci. 2: 80-87.
Ann. Bot. G. Miller 98 279 2006 10.1093/aob/mcl107 Miller G and Mittler R (2006) Could heat shock transcription factors function as hydrogen peroxide sensors in plants? Ann. Bot. 98: 279-288.
Trends Plant Sci. R. Mittler 11 15 2006 10.1016/j.tplants.2005.11.002 Mittler R (2006) Abiotic stress, the field environment and stress combination. Trends Plant Sci. 11: 15-19.
Cell Mol. Life Sci. H. Nakamoto 64 294 2007 10.1007/s00018-006-6321-2 Nakamoto H and Vigh L (2007) The small heat shock proteins and their clients. Cell Mol. Life Sci. 64: 294-306.
Mol. Cell Biol. L. Nover 3 1648 1983 10.1128/MCB.3.9.1648 Nover L, Scharf KD and Neumann D (1983) Formation of cytoplasmic heat shock granules in tomato cell cultures and leaves. Mol. Cell Biol. 3: 1648-1655.
Cell. Mol. Life Sci. X.B. Qiu 63 2560 2006 10.1007/s00018-006-6192-6 Qiu XB, Shao YM, Miao S and Wang L (2006) The diversity of the DnaJ/Hsp40 family, the crucial partners for Hsp70 chaperones. Cell. Mol. Life Sci. 63: 2560-2570.
New Phytol. S. Rachmilevitch 170 479 2006 10.1111/j.1469-8137.2006.01684.x Rachmilevitch S, Huang B and Lambers H (2006) Assimilation and allocation of carbon and nitrogen of thermal and nonthermal Agrostis species in response to high soil temperature Agrostis species. New Phytol. 170: 479-490.
Physiol. Plant. J. Renaut 126 97 2006 10.1111/j.1399-3054.2006.00617.x Renaut J, Hausman JF and Wisniewski ME (2006) Proteomics and low-temperature studies: bridging the gap between gene expression and metabolism. Physiol. Plant. 126: 97-109.
Plant Physiol. L. Rizhsky 134 1683 2004 10.1104/pp.103.033431 Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S and Mittler R (2004) When defense pathways collide. The response of Arabidopsis to a combination of drought and heat stress. Plant Physiol. 134: 1683-1696.
Plant Physiol. J.B. Rossel 130 1109 2002 10.1104/pp.005595 Rossel JB, Wilson IW and Pogson BJ (2002) Global changes in gene expression in response to high light in Arabidopsis. Plant Physiol. 130: 1109-1120.
Plant Physiol. A. Sabehat 117 651 1998 10.1104/pp.117.2.651 Sabehat A, Lurie S and Weiss D (1998) Expression of small heat-shock proteins at low temperatures. Plant Physiol. 117: 651-658.
Plant Cell K. Sachin 19 182 2007 10.1105/tpc.106.048165 Sachin K, Elizabeth V, Helmut B and von Pascal KD (2007) A novel transcriptional cascade regulating expression of heat stress proteins during seed development of Arabidopsis. Plant Cell 19: 182-195.
J. Sambrook 2001 Molecular Cloning: A Laboratory Manual 3rd Ed. Sambrook J and Russell DW (2001) Molecular Cloning: A Laboratory Manual. 3rd Ed., CSHL Press, Cold Spring Harbor, New York.
Cell R.T. Sauer 119 9 2004 10.1016/j.cell.2004.09.020 Sauer RT, Bolon DN, Burton BM, burton RE, Flynn JM, Grant RA, Hersch GL, Joshi SA, Kenniston JA, Levchenko I and et. al. (2004) Sculpting the proteome with AAA(+) proteases and disassembly machines. Cell 119: 9-18.
Plant Physiol. F. Schöffl 117 1135 1998 10.1104/pp.117.4.1135 Schöffl F, Prandl R and Reindl A (1998) Regulation of the heatshock response. Plant Physiol. 117: 1135-1141.
Plant Physiol. P.H. Su 146 1231 2008 10.1104/pp.107.114496 Su PH and Li HM (2008) Arabidopsisstromal 70-kD heat shock proteins are essential for plant development and important for thermotolerance of germination seeds. Plant Physiol. 146: 1231-1241.
Biochim. Biophys. Acta W. Sun 1577 1 2002 10.1016/S0167-4781(02)00417-7 Sun W, Montagu MV and Verbruggen N (2002) Small heat shock proteins and stress tolerance in plants. Biochim. Biophys. Acta 1577: 1-9.
Cell Mol. Life Sci. Y. Sun 62 2460 2005 10.1007/s00018-005-5190-4 Sun Y and MacRae TH (2005) Small heat shock proteins: molecular structure and chaperone function. Cell Mol. Life Sci. 62: 2460-2476.
Plant Physiol. D.Y. Sung 132 979 2003 10.1104/pp.102.019398 Sung DY and Guy CL (2003) Physiological and molecular assessment of altered expression of Hsc70-1 in Arabidopsis. Evidence for pleiotropic consequences. Plant Physiol. 132: 979-987.
Trends Plant Sci. D.Y. Sung 8 179 2003 10.1016/S1360-1385(03)00047-5 Sung DY, Kaplan F, Lee KJ and Guy CL (2003) Acquired tolerance to temperature extremes. Trends Plant Sci. 8: 179-187.
Plant Physiol. D.Y. Sung 126 789 2001 10.1104/pp.126.2.789 Sung DY, Vierling E and Guy CL (2001) Comprehensive expression profile analysis of the Arabidopsis Hsp70 gene family. Plant Physiol. 126: 789-800.
BMC Plant Biol. K. Suzuki 9 1 2009 10.1186/1471-2229-9-38 Suzuki K, Nakanish H, Bower J, Yoder DW, Osteryoun KW and Miyagishima SY (2009) Plastid chaperonin proteins Cpn60 and Cpn60 are required for plastid division in Arabidopsis thaliana. BMC Plant Biol. 9: 1-12.
Annu. Rev. Plant Physiol. Plant Mol. Biol. E. Vierling 42 579 1991 10.1146/annurev.pp.42.060191.003051 Vierling E (1991) The roles of heat shock proteins in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 579-620.
Plant Mol. Biol. R.A. Volkov 61 733 2006 10.1007/s11103-006-0045-4 Volkov RA, Panchuk II, Mullineaux PM and Schöffl F (2006) Heat stress-induced H2O2 is required for effective expression of heat shock genes in Arabidopsis. Plant Mol. Biol. 61: 733-746.
Trends Plant Sci. W. Wang 9 244 2004 10.1016/j.tplants.2004.03.006 Wang W, Vinocur B, Shoseyov O and Altman A (2004) Role of plant heat-shock proteins and molecular chaperones in the abiotic stress response. Trends Plant Sci. 9: 244-252.
Environ Exp. Bot. A. Wahid 61 199 2007 10.1016/j.envexpbot.2007.05.011 Wahid A, Gelani S, Ashraf F and Foolad MR (2007). Heat tolerance in plants: an overview. Environ Exp. Bot. 61: 199-223.
Funct. Plant Biol. I.F. Wardlaw 21 255 1994 10.1071/PP9940255 Wardlaw IF and Willenbrink J (1994) Carbohydrate storage and mobilization by the culm of wheat between heading and grain maturity: the relation to sucrose synthase and sucrose-phosphate synthase. Funct. Plant Biol. 21: 255-271.
J. Exp. Bot. E.R. Waters 47 325 1996 10.1093/jxb/47.3.325 Waters ER, Lee GJ and Vierling E (1996) Evolution structure and function of the small heat shock protein in plants. J. Exp. Bot. 47: 325-338.
Cell Stress Chap. E.R. Waters 13 127 2008 10.1007/s12192-008-0023-7 Waters ER, Aevermann BD and Sanders-Reed Z (2008) Comparative analysis of the small heat shock proteins in three angiosperm genomes identifies new subfamilies and reveals diverse evolutionary patterns. Cell Stress Chap. 13: 127-142.
Plant Physiol. N. Wehmeyer 122 1099 2000 10.1104/pp.122.4.1099 Wehmeyer N and Vierling E (2000) The expression of small heat shock proteins in seeds responds to discrete developmental signals and suggests general protective role in desiccation tolerance. Plant Physiol. 122: 1099-1108.
J. Biol. Chem. K. Yamada 282 37794 2007 10.1074/jbc.M707168200 Yamada K, Fukao Y, Hayashi M, Fukazawa M, Suxuki I and Nishimura M (2007) Cytosolic HSP90 regulates the heat shock response that is responsible for heat acclimation in Arabidopsis thaliana. J. Biol. Chem. 282: 37794-37804.
Plant Signal. Behav. K. Yamada 3 660 2008 10.4161/psb.3.9.5775 Yamada K and Nishimura M (2008) Cytosolic heat shock protein 90 regulates heat shock transcription factor in Arabidopsis thaliana. Plant Signal. Behav. 3: 660-662.
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
*원문 PDF 파일 및 링크정보가 존재하지 않을 경우 KISTI DDS 시스템에서 제공하는 원문복사서비스를 사용할 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.