최소 단어 이상 선택하여야 합니다.
최대 10 단어까지만 선택 가능합니다.
다음과 같은 기능을 한번의 로그인으로 사용 할 수 있습니다.
NTIS 바로가기Nature reviews. Microbiology, v.8 no.10, 2010년, pp.706 - 716
Rabaey, Korneel (Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia.) , Rozendal, Ren챕 A. (Advanced Water Management Centre, Gehrmann Building, The University of Queensland, Brisbane, Queensland 4072, Australia.)
Microbial electrocatalysis relies on microorganisms as catalysts for reactions occurring at electrodes. Microbial fuel cells and microbial electrolysis cells are well known in this context; both use microorganisms to oxidize organic or inorganic matter at an anode to generate electrical power or H2,...
Science JE Campbell 324 1055 2009 10.1126/science.1168885 Campbell, J. E., Lobell, D. B. & Field, C. B. Greater transportation energy and GHG offsets from bioelectricity than ethanol. Science 324, 1055-1057 (2009). A comparison between electricity and fuels in the context of transport and sustainability shows that the low energy yield of combustion makes bioelectricity more favourable.
Appl. Microbiol. RS Berk 12 10 1964 10.1128/AEM.12.1.10-12.1964 Berk, R. S. & Canfield, J. H. Bioelectrochemical energy conversion. Appl. Microbiol. 12, 10-12 (1964).
Philos. Trans. R. Soc. Lond. A HAO Hill 302 267 1981 10.1098/rsta.1981.0166 Hill, H. A. O. & Higgins, I. J. Bioelectrocatalysis. Philos. Trans. R. Soc. Lond. A 302, 267-273 (1981).
Biosens. Bioelectron. DA Lowy 21 2058 2006 10.1016/j.bios.2006.01.033 Lowy, D. A., Tender, L. M., Zeikus, J. G., Park, D. H. & Lovley, D. R. Harvesting energy from the marine sediment-water interface II: kinetic activity of anode materials. Biosens. Bioelectron. 21, 2058-2063 (2006).
ISME J. K Rabaey 2 519 2008 10.1038/ismej.2008.1 Rabaey, K. et al. Cathodic oxygen reduction catalyzed by bacteria in microbial fuel cells. ISME J. 2, 519-527 (2008).
MBio KP Nevin 1 e00103 2010 10.1128/mBio.00103-10 Nevin, K. P., Woodard, T. L., Franks, A. E., Summers, Z. M. & Lovley, D. R. Microbial electrosynthesis: feeding microbes electricity to convert carbon dioxide and water to multicarbon extracellular organic compounds. MBio 1, e00103-10 (2010).
Science JB Davis 137 615 1962 10.1126/science.137.3530.615 Davis, J. B. & Yarbrough, H. F. Preliminary experiments on a microbial fuel cell. Science 137, 615-616 (1962). Early work on microbial fuel cells, several aspects of which have particular relevance for some of the studies that have been published recently.
Environ. Sci. Technol. BE Logan 42 8630 2008 10.1021/es801553z Logan, B. E. et al. Microbial electrolysis cells for high yield hydrogen gas production from organic matter. Environ. Sci. Technol. 42, 8630-8640 (2008).
K Rabaey 2009 Bioelectrochemical systems: from extracellular electron transfer to biotechnological application Rabaey, K. et al. (eds). Bioelectrochemical systems: from extracellular electron transfer to biotechnological application (International Water Association Publishing, London, 2009). A comprehensive book containing contributions by many key research groups in the field of bioelectrochemical systems, covering methodology, process development and applications.
AJ Bard 2001 Electrochemical methods: fundamentals and applications Bard, A. J. & Faulkner, L. R. Electrochemical methods: fundamentals and applications 2nd edn (Wiley & Sons, New York, 2001). This book provides an excellent background regarding electrochemistry and electrochemical analysis and is an essential read for researchers in this field.
Environ. Sci. Technol. B Logan 40 5181 2006 10.1021/es0605016 Logan, B. et al. Microbial fuel cells: methodology and technology. Environ. Sci. Technol. 40, 5181-5192 (2006).
K Rabaey 2005 Biofuels for fuel cells: biomass fermentation towards usage in fuel cells Rabaey, K., Lissens, G. & Verstraete, W. in Biofuels for fuel cells: biomass fermentation towards usage in fuel cells (eds Lens, P. N. et al.) (International Water Association Publishing, London, 2005).
Trends Biotechnol. RA Rozendal 26 450 2008 10.1016/j.tibtech.2008.04.008 Rozendal, R. A., Hamelers, H. V. M., Rabaey, K., Keller, J. & Buisman, C. J. N. Towards practical implementation of bioelectrochemical wastewater treatment. Trends Biotechnol. 26, 450-459 (2008). A recent opinion article that details the importance of not only the microbial aspects but also the technical aspects of bringing bioelectrochemical systems to applications.
Biotechnol. Bioeng. CI Torres 100 872 2008 10.1002/bit.21821 Torres, C. I., Marcus, A. K. & Rittmann, B. E. Proton transport inside the biofilm limits electrical current generation by anode-respiring bacteria. Biotechnol. Bioeng. 100, 872-881 (2008). This work shows that proton production during electrochemical oxidation limits microbial activity in biofilms, highlighting the fact that bulk parameters are not the only factors that are important for effective current generation.
Durham Univ. Phil. Soc. MC Potter 3 245 1910 Potter, M. C. On the difference of potential due to the vital activity of microorganisms. Proc. Durham Univ. Phil. Soc. 3, 245-249 (1910).
Nature Rev. Microbiol. BE Logan 7 375 2009 10.1038/nrmicro2113 Logan, B. E. Exoelectrogenic bacteria that power microbial fuel cells. Nature Rev. Microbiol. 7, 375-381 (2009).
Nature Rev. Microbiol. DR Lovley 4 497 2006 10.1038/nrmicro1442 Lovley, D. R. Bug juice: harvesting electricity with microorganisms. Nature Rev. Microbiol. 4, 497-508 (2006).
Appl. Microbiol. Biotechnol. CE Milliken 73 1180 2007 10.1007/s00253-006-0564-6 Milliken, C. E. & May, H. D. Sustained generation of electricity by the spore-forming, Gram-positive, Desulfitobacterium hafniense strain DCB2. Appl. Microbiol. Biotechnol. 73, 1180-1189 (2007).
Environ. Sci. Technol. K Rabaey 39 3401 2005 10.1021/es048563o Rabaey, K., Boon, N., Höfte, M. & Verstraete, W. Microbial phenazine production enhances electron transfer in biofuel cells. Environ. Sci. Technol. 39, 3401-3408 (2005).
ISME J. KC Wrighton 2 1146 2008 10.1038/ismej.2008.48 Wrighton, K. C. et al. A novel ecological role of the Firmicutes identified in thermophilic microbial fuel cells. ISME J. 2, 1146-1156 (2008).
Appl. Environ. Microbiol. K Rabaey 70 5373 2004 10.1128/AEM.70.9.5373-5382.2004 Rabaey, K., Boon, N., Siciliano, S. D., Verhaege, M. & Verstraete, W. Biofuel cells select for microbial consortia that self-mediate electron transfer. Appl. Environ. Microbiol. 70, 5373-5382 (2004). A study demonstrating that an increased current generation can be achieved through enrichment and that microorganisms such as Pseudomonas spp. can self-mediate electron transfer.
Appl. Environ. Microbiol. DR Bond 69 1548 2003 10.1128/AEM.69.3.1548-1555.2003 Bond, D. R. & Lovley, D. R. Electricity production by Geobacter sulfurreducens attached to electrodes. Appl. Environ. Microbiol. 69, 1548-1555 (2003).
Appl. Environ. Microbiol. F Caccavo 60 3752 1994 10.1128/AEM.60.10.3752-3759.1994 Caccavo, F. et al. Geobacter sulfurreducens sp. nov., a hydrogen-oxidizing and acetate-oxidizing dissimilatory metal-reducing microorganism. Appl. Environ. Microbiol. 60, 3752-3759 (1994).
Int. J. Syst. Bacteriol. K Venkateswaran 49 705 1999 10.1099/00207713-49-2-705 Venkateswaran, K. et al. Polyphasic taxonomy of the genus Shewanella and description of Shewanella oneidensis sp. nov. Int. J. Syst. Bacteriol. 49, 705-724 (1999).
O Bretschger 81 2009 Bioelectrochemical systems: from extracellular electron transfer to biotechnological application Bretschger, O., Gorby, Y. & Nealson, K. H. in Bioelectrochemical systems: from extracellular electron transfer to biotechnological application (eds. Rabaey, K. et al.) 81-100 (International Water Association Publishing, London, 2009).
Curr. Opin. Biotechnol. DR Lovley 19 564 2008 10.1016/j.copbio.2008.10.005 Lovley, D. R. The microbe electric: conversion of organic matter to electricity. Curr. Opin. Biotechnol. 19, 564-571 (2008).
FEMS Microbiol. Rev. CI Torres 34 3 2010 10.1111/j.1574-6976.2009.00191.x Torres, C. I. et al. A kinetic perspective on extracellular electron transfer by anode-respiring bacteria. FEMS Microbiol. Rev. 34, 3-17 (2010).
Proc. Natl Acad. Sci. USA RS Hartshorne 106 22169 2009 10.1073/pnas.0900086106 Hartshorne, R. S. et al. Characterization of an electron conduit between bacteria and the extracellular environment. Proc. Natl Acad. Sci. USA 106, 22169-22174 (2009). This study shows that electron transfer through the Shewanella oneidensis outer membrane occurs through the MtrAB complex, the structure and working mechanism of which is described. Similar complexes seem to be ubiquitous in other species.
Environ. Microbiol. DE Holmes 8 1805 2006 10.1111/j.1462-2920.2006.01065.x Holmes, D. E. et al. Microarray and genetic analysis of electron transfer to electrodes in Geobacter sulfurreducens. Environ. Microbiol. 8, 1805-1815 (2006).
Nature G Reguera 435 1098 2005 10.1038/nature03661 Reguera, G. et al. Extracellular electron transfer via microbial nanowires. Nature 435, 1098-1101 (2005).
Appl. Environ. Microbiol. G Reguera 72 7345 2006 10.1128/AEM.01444-06 Reguera, G. et al. Biofilm and nanowire production leads to increased current in Geobacter sulfurreducens fuel cells. Appl. Environ. Microbiol. 72, 7345-7348 (2006). This work uses deletion mutants to demonstrate that nanowire production is essential for the formation of effective biofilms on electrodes.
PLoS ONE KP Nevin 4 e5628 2009 10.1371/journal.pone.0005628 Nevin, K. P. et al. Anode biofilm transcriptomics reveals outer surface components essential for high density current production in Geobacter sulfurreducens fuel cells. PLoS ONE 4, e5628 (2009).
Proc. Natl Acad. Sci. USA YA Gorby 103 11358 2006 10.1073/pnas.0604517103 Gorby, Y. A. et al. Electrically conductive bacterial nanowires produced by Shewanella oneidensis strain MR-1 and other microorganisms. Proc. Natl Acad. Sci. USA 103, 11358-11363 (2006). A key study on the role of nanowires as possible electron transport media, not only to minerals but also to electrodes and other microorganisms.
Proc. Natl Acad. Sci. USA E Marsili 105 3968 2008 10.1073/pnas.0710525105 Marsili, E. et al. Shewanella secretes flavins that mediate extracellular electron transfer. Proc. Natl Acad. Sci. USA 105, 3968-3973 (2008).
Appl. Environ. Microbiol. H von Canstein 74 615 2008 10.1128/AEM.01387-07 von Canstein, H., Ogawa, J., Shimizu, S. & Lloyd, J. R. Secretion of flavins by Shewanella species and their role in extracellular electron transfer. Appl. Environ. Microbiol. 74, 615-623 (2008). The first demonstration that Shewanella spp. may produce flavins as electron shuttles, indicating that Shewanella spp. may use different electron transfer strategies.
Appl. Environ. Microbiol. DE Holmes 70 1234 2004 10.1128/AEM.70.2.1234-1237.2004 Holmes, D. E., Bond, D. R. & Lovley, D. R. Electron transfer by Desulfobulbus propionicus to Fe(III) and graphite electrodes. Appl. Environ. Microbiol. 70, 1234-1237 (2004).
Environ. Sci. Technol. PK Dutta 43 3839 2009 10.1021/es803682k Dutta, P. K., Keller, J., Yuan, Z. G., Rozendal, R. A. & Rabaey, K. Role of sulfur during acetate oxidation in biological anodes. Environ. Sci. Technol. 43, 3839-3845 (2009).
Environ. Sci. Technol. KP Nevin 34 2472 2000 10.1021/es991181b Nevin, K. P. & Lovley, D. R. Potential for nonenzymatic reduction of Fe(III) via electron shuttling in subsurface sediments. Environ. Sci. Technol. 34, 2472-2478 (2000).
Appl. Environ. Microbiol. KL Straub 70 5744 2004 10.1128/AEM.70.10.5744-5749.2004 Straub, K. L. & Schink, B. Ferrihydrite-dependent growth of Sulfurospirillum deleyianum through electron transfer via sulfur cycling. Appl. Environ. Microbiol. 70, 5744-5749 (2004). This study finds that Sulfurospirillum deleyianum uses reduced sulphur species as electron shuttles to ferric iron minerals.
Angew. Chem. Int. Ed. Eng. U Schröder 42 2880 2003 10.1002/anie.200350918 Schröder, U., Niessen, J. & Scholz, F. A generation of microbial fuel cells with current outputs boosted by more than one order of magnitude. Angew. Chem. Int. Ed. Eng. 42, 2880-2883 (2003).
Appl. Environ. Microbiol. SA Haveman 74 4277 2008 10.1128/AEM.02901-07 Haveman, S. A. et al. Genome-wide gene expression patterns and growth requirements suggest that Pelobacter carbinolicus reduces Fe(III) indirectly via sulfide production. Appl. Environ. Microbiol. 74, 4277-4284 (2008).
Appl. Microbiol. Biotechnol. M Rosenbaum 68 753 2005 10.1007/s00253-005-1915-4 Rosenbaum, M., Schroder, U. & Scholz, F. Utilizing the green alga Chlamydomonas reinhardtii for microbial electricity generation: a living solar cell. Appl. Microbiol. Biotechnol. 68, 753-756 (2005).
Renewable Energy T Yagishita 9 958 1996 10.1016/0960-1481(96)88439-4 Yagishita, T., Sawayama, S., Tsukahara, K. & Ogi, T. Photosynthetic bio-fuel cells using cyanobacteria. Renewable Energy 9, 958-961 (1996).
Environ. Sci. Technol. DF Xing 42 4146 2008 10.1021/es800312v Xing, D. F., Zuo, Y., Cheng, S. A., Regan, J. M. & Logan, B. E. Electricity generation by Rhodopseudomonas palustris DX-1. Environ. Sci. Technol. 42, 4146-4151 (2008).
Appl. Microbiol. Biotechnol. W Habermann 35 128 1991 10.1007/BF00180650 Habermann, W. & Pommer, E.-H. Biological fuel cells with sulphide storage capacity. Appl. Microbiol. Biotechnol. 35, 128-133 (1991). An often forgotten manuscript, this is the first to describe microbial fuel cells that use wastewater. The electron transfer is achieved through sulphate reduction and subsequent re-oxidation of the sulphide at the anode.
Appl. Microbiol. Biotechnol. BH Kim 63 672 2004 10.1007/s00253-003-1412-6 Kim, B. H. et al. Enrichment of microbial community generating electricity using a fuel-cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63, 672-681 (2004).
Environ. Sci. Technol. H Liu 38 2281 2004 10.1021/es034923g Liu, H., Ramnarayanan, R. & Logan, B. E. Production of electricity during wastewater treatment using a single chamber microbial fuel cell. Environ. Sci. Technol. 38, 2281-2285 (2004).
Biotechnol. Bioeng. H Rismani-Yazdi 97 1398 2007 10.1002/bit.21366 Rismani-Yazdi, H. et al. Electricity generation from cellulose by rumen microorganisms in microbial fuel cells. Biotechnol. Bioeng. 97, 1398-1407 (2007).
Nature Biotech. LM Tender 20 821 2002 10.1038/nbt716 Tender, L. M. et al. Harnessing microbially generated power on the seafloor. Nature Biotech. 20, 821-825 (2002).
Environ. Sci. Technol. H Liu 39 4317 2005 10.1021/es050244p Liu, H., Grot, S. & Logan, B. E. Electrochemically assisted microbial production of hydrogen from acetate. Environ. Sci. Technol. 39, 4317-4320 (2005). A study showing that the formation of H 2 at the cathode of a BES allows the production of H 2 from acetate without a requirement for light.
Int. J. Hydrogen Energy RA Rozendal 31 1632 2006 10.1016/j.ijhydene.2005.12.006 Rozendal, R. A., Hamelers, H. V. M., Euverink, G. J. W., Metz, S. J. & Buisman, C. J. N. Principle and perspectives of hydrogen production through biocatalyzed electrolysis. Int. J. Hydrogen Energy 31, 1632-1640 (2006). A second study to independently develop the same system as that described in reference 50.
Biosens. Bioelectron. GC Gil 18 327 2003 10.1016/S0956-5663(02)00110-0 Gil, G. C. et al. Operational parameters affecting the performance of a mediator-less microbial fuel cell. Biosens. Bioelectron. 18, 327-334 (2003).
Environ. Sci. Technol. RA Rozendal 40 5206 2006 10.1021/es060387r Rozendal, R. A., Hamelers, H. V. M. & Buisman, C. J. N. Effects of membrane cation transport on pH and microbial fuel cell performance. Environ. Sci. Technol. 40, 5206-5211 (2006).
Environ. Sci. Technol. K Rabaey 44 4315 2010 10.1021/es9037963 Rabaey, K., Bützer, S., Brown, S., Keller, J. & Rozendal, R. A. High current generation coupled to caustic production using a lamellar bioelectrochemical system. Environ. Sci. Technol. 44, 4315-4321 (2010).
Electrochem. Commun. RA Rozendal 11 1752 2009 10.1016/j.elecom.2009.07.008 Rozendal, R. A., Leone, E., Keller, J. & Rabaey, K. Efficient hydrogen peroxide generation from organic matter in a bioelectrochemical system. Electrochem. Commun. 11, 1752-1755 (2009).
Electrochem. Commun. XP Zhu 11 274 2009 10.1016/j.elecom.2008.11.023 Zhu, X. P. & Ni, J. R. Simultaneous processes of electricity generation and p-nitrophenol degradation in a microbial fuel cell. Electrochem. Commun. 11, 274-277 (2009).
Environ. Microbiol. KB Gregory 6 596 2004 10.1111/j.1462-2920.2004.00593.x Gregory, K. B., Bond, D. R. & Lovley, D. R. Graphite electrodes as electron donors for anaerobic respiration. Environ. Microbiol. 6, 596-604 (2004). A demonstration that Geobacter spp. can use electrodes as electron donors for nitrate and fumarate reduction. Pure-culture growth was not evaluated in this study.
The ISME Journal Kelly C Wrighton 4 11 1443 2010 10.1038/ismej.2010.66 Wrighton, K. C. et al. Bacterial community structure corresponds to performance during cathodic nitrate reduction. ISME J. 3 Jun 2010 (doi:10.1038/ismej.2010.66). The first manuscript to describe an in-depth investigation of microbial populations that use electricity as an energy source; despite the challenging conditions on the cathode, highly diverse populations can thrive.
Electrochim. Acta A Cournet 55 4902 2010 10.1016/j.electacta.2010.03.085 Cournet, A., Bergel, M., Roques, C., Bergel, A. & Délia, M.-L. Electrochemical reduction of oxygen catalyzed by Pseudomonas aeruginosa. Electrochim. Acta 55, 4902-4908 (2010).
Electrochim. Acta S Freguia 55 813 2010 10.1016/j.electacta.2009.09.027 Freguia, S., Tsujimura, S. & Kano, K. Electrontransfer pathways in microbial oxygen biocathodes. Electrochim. Acta 55, 813-818 (2010).
Environ. Sci. Technol. JC Thrash 42 3921 2008 10.1021/es702668w Thrash, J. C. & Coates, J. D. Review: direct and indirect electrical stimulation of microbial metabolism. Environ. Sci. Technol. 42, 3921-3931 (2008).
Agric. Biol. Chem. M Hongo 43 2075 1979 Hongo, M. & Iwahara, M. Application of electro-energizing method to L-glutamic acid fermentation. Agric. Biol. Chem. 43, 2075-2081 (1979).
Agric. Biol. Chem. M Hongo 43 2083 1979 Hongo, M. & Iwahara, M. Determination of electro-energizing conditions for L-glutamic acid fermentation. Agric. Biol. Chem. 43, 2083-2086 (1979).
Biotechnol. Lett. TS Kim 10 123 1988 10.1007/BF01024638 Kim, T. S. & Kim, B. H. Electron flow shift in Clostridium acetobutylicum by electrochemically introduced reducing equivalent. Biotechnol. Lett. 10, 123-128 (1988).
J. Bacteriol. S Saint-Amans 183 1748 2001 10.1128/JB.183.5.1748-1754.2001 Saint-Amans, S., Girbal, L., Andrade, J., Ahrens, K. & Soucaille, P. Regulation of carbon and electron flow in Clostridium butyricum VPI 3266 grown on glucose-glycerol mixtures. J. Bacteriol. 183, 1748-1754 (2001).
Environ. Sci. Technol. JC Thrash 41 1740 2007 10.1021/es062772m Thrash, J. C. et al. Electrochemical stimulation of microbial perchlorate reduction. Environ. Sci. Technol. 41, 1740-1746 (2007).
Environ. Sci. Technol. CS Butler 44 4685 2010 10.1021/es901758z Butler, C. S., Clauwaert, P., Green, S. J., Verstraete, W. & Nerenberg, R. Bioelectrochemical perchlorate reduction in a microbial fuel cell. Environ. Sci. Technol. 44, 4685-4691 (2010).
Environ. Sci. Technol. P Clauwaert 41 3354 2007 10.1021/es062580r Clauwaert, P. et al. Biological denitrification driven by microbial fuel cells. Environ. Sci. Technol. 41, 3354-3360 (2007).
Water Res. B Virdis 42 3013 2008 10.1016/j.watres.2008.03.017 Virdis, B., Rabaey, K., Yuan, Z. & Keller, J. Microbial fuel cells for simultaneous carbon and nitrogen removal. Water Res. 42, 3013-3024 (2008).
Environ. Sci. Technol. F Aulenta 41 2554 2007 10.1021/es0624321 Aulenta, F. et al. Electron transfer from a solid-state electrode assisted by methyl viologen sustains efficient microbial reductive dechlorination of TCE. Environ. Sci. Technol. 41, 2554-2559 (2007).
Biosens. Bioelectron. F Aulenta 25 1796 2010 10.1016/j.bios.2009.12.033 Aulenta, F. et al. Characterization of an electro-active biocathode capable of dechlorinating trichloroethene and cis-dichloroethene to ethene. Biosens. Bioelectron. 25, 1796-1802 (2010).
Appl. Environ. Microbiol. SM Strycharz 74 5943 2008 10.1128/AEM.00961-08 Strycharz, S. M. et al. Graphite electrode as a sole electron donor for reductive dechlorination of tetrachlorethene by Geobacter lovleyi. Appl. Environ. Microbiol. 74, 5943-5947 (2008).
Environ. Sci. Technol. KB Gregory 39 8943 2005 10.1021/es050457e Gregory, K. B. & Lovley, D. R. Remediation and recovery of uranium from contaminated subsurface environments with electrodes. Environ. Sci. Technol. 39, 8943-8947 (2005).
Water Sci. Technol. P Clauwaert 57 575 2008 10.2166/wst.2008.084 Clauwaert, P. et al. Combining biocatalyzed electrolysis with anaerobic digestion. Water Sci. Technol. 57, 575-579 (2008).
Biotechnol. Bioeng. Y Sakakibara 42 535 1993 10.1002/bit.260420418 Sakakibara, Y. & Kuroda, M. Electric prompting and control of denitrification. Biotechnol. Bioeng. 42, 535-537 (1993).
Trends Biotechnol. LT Angenent 22 477 2004 10.1016/j.tibtech.2004.07.001 Angenent, L. T., Karim, K., Al-Dahhan, M. H. & Domiguez-Espinosa, R. Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol. 22, 477-485 (2004).
J. Chem. Res. AM Lithgow 5 178 1986 Lithgow, A. M., Romero, L., Sanchez, I. C., Souto, F. A. & Vega, C. A. Interception of the electron-transport chain in bacteria with hydrophilic redox mediators.1. Selective improvement of the performance of biofuel cells with 2,6-disulfonated thionine as mediator. J. Chem. Res. 5, 178-179 (1986).
Appl. Environ. Microbiol. DH Park 66 1292 2000 10.1128/AEM.66.4.1292-1297.2000 Park, D. H. & Zeikus, J. G. Electricity generation in microbial fuel cells using neutral red as an electronophore. Appl. Environ. Microbiol. 66, 1292-1297 (2000).
Abstr. Pap. Am. Chem. Soc. BK Ghosh 194 79 1987 Ghosh, B. K. & Zeikus, J. G. Electroenergization for control of H2 transformation in acetone butanol fermentations. Abstr. Pap. Am. Chem. Soc. 194, 79 (1987).
Biochemistry NA Stombaugh 15 2633 1976 10.1021/bi00657a024 Stombaugh, N. A., Sundquist, J. E., Burris, R. H. & Orme-Johnson, W. H. Oxidation-reduction properties of several low potential iron-sulfur proteins and of methyl viologen. Biochemistry 15, 2633-2641 (1976).
Appl. Environ. Microbiol. DH Park 65 2912 1999 10.1128/AEM.65.7.2912-2917.1999 Park, D. H., Laivenieks, M., Guettler, M. V., Jain, M. K. & Zeikus, J. G. Microbial utilization of electrically reduced neutral red as the sole electron donor for growth and metabolite production. Appl. Environ. Microbiol. 65, 2912-2917 (1999). In this pivotal study, microorganisms are shown to grow on electrical current assisted by a mediator, and both fumarate reduction and methanogenesis are achieved.
J. Bacteriol. DH Park 181 2403 1999 10.1128/JB.181.8.2403-2410.1999 Park, D. H. & Zeikus, J. G. Utilization of electrically reduced neutral red by Actinobacillus succinogenes: physiological function of neutral red in membrane-driven fumarate reduction and energy conservation. J. Bacteriol. 181, 2403-2410 (1999).
Environ. Sci. Technol. KJJ Steinbusch 44 513 2010 10.1021/es902371e Steinbusch, K. J. J., Hamelers, H. V. M., Schaap, J. D., Kampman, C. & Buisman, C. J. N. Bioelectrochemical ethanol production through mediated acetate reduction by mixed cultures. Environ. Sci. Technol. 44, 513-517 (2010). This article describes the production of alcohols by a microbial population using electrical current and the corresponding fatty acids.
Appl. Microbiol. Biotechnol. S Peguin 42 611 1994 10.1007/BF00173928 Peguin, S., Goma, G., Delorme, P. & Soucaille, P. Metabolic flexibility of Clostridium acetobutylicum in response to methyl viologen addition. Appl. Microbiol. Biotechnol. 42, 611-616 (1994).
Environ. Sci. Technol. A Ter Heijne 40 5200 2006 10.1021/es0608545 Ter Heijne, A., Hamelers, H. V. M., deWilde, V., Rozendal, R. A. & Buisman, C. J. N. A bipolar membrane combined with ferric iron reduction as an efficient cathode system in microbial fuel cells. Environ. Sci. Technol. 40, 5200-5205 (2006).
Electrochim. Acta F Aulenta 53 5300 2008 10.1016/j.electacta.2008.02.084 Aulenta, F., Reale, P., Catervi, A., Panero, S. & Majone, M. Kinetics of trichloroethene dechlorination and methane formation by a mixed anaerobic culture in a bio-electrochemical system. Electrochim. Acta 53, 5300-5305 (2008).
Environ. Microbiol. Rep. SM Strycharz 2 289 2010 10.1111/j.1758-2229.2009.00118.x Strycharz, S. M. et al. Reductive dechlorination of 2-chlorophenol by Anaeromyxobacter dehalogenans with an electrode serving as the electron donor. Environ. Microbiol. Rep. 2, 289-294 (2010).
Environ. Sci. Technol. B Virdis 43 5144 2009 10.1021/es8036302 Virdis, B., Rabaey, K., Yuan, Z. G., Rozendal, R. A. & Keller, J. Electron fluxes in a microbial fuel cell performing carbon and nitrogen removal. Environ. Sci. Technol. 43, 5144-5149 (2009).
Environ. Sci. Technol. SA Cheng 43 3953 2009 10.1021/es803531g Cheng, S. A., Xing, D. F., Call, D. F. & Logan, B. E. Direct biological conversion of electrical current into methane by electromethanogenesis. Environ. Sci. Technol. 43, 3953-3958 (2009).
Biotechnol. Prog. MC Flickinger 23 2 2007 10.1021/bp060347r Flickinger, M. C., Schottel, J. L., Bond, D. R., Aksan, A. & Scriven, L. E. Painting and printing living bacteria: engineering nanoporous biocatalytic coatings to preserve microbial viability and intensify reactivity. Biotechnol. Prog. 23, 2-17 (2007).
Curr. Opin. Biotechnol. JM Carothers 20 498 2009 10.1016/j.copbio.2009.08.001 Carothers, J. M., Goler, J. A. & Keasling, J. D. Chemical synthesis using synthetic biology. Curr. Opin. Biotechnol. 20, 498-503 (2009).
Proc. Natl Acad. Sci. USA T Reda 105 10654 2008 10.1073/pnas.0801290105 Reda, T., Plugge, C. M., Abram, N. J. & Hirst, J. Reversible interconversion of carbon dioxide and formate by an electroactive enzyme. Proc. Natl Acad. Sci. USA 105, 10654-10658 (2008). Using a single enzyme and electrical current, this study finds that formate can be produced from CO 2.
Curr. Microbiol. V Peters 38 285 1999 10.1007/PL00006803 Peters, V., Janssen, P. H. & Conrad, R. Transient production of formate during chemolithotrophic growth of anaerobic microorganisms on hydrogen. Curr. Microbiol. 38, 285-289 (1999).
Int. J. Syst. Bacteriol. G Gottschalk 31 476 1981 10.1099/00207713-31-4-476 Gottschalk, G. & Braun, M. Revival of the name Clostridium aceticum. Int. J. Syst. Bacteriol. 31, 476-476 (1981).
Environ. Sci. Technol. RA Rozendal 42 629 2008 10.1021/es071720+ Rozendal, R. A., Jeremiasse, A. W., Hamelers, H. V. M. & Buisman, C. J. N. Hydrogen production with a microbial biocathode. Environ. Sci. Technol. 42, 629-634 (2008).
Bioresour. Technol. M Villano 101 3085 2010 10.1016/j.biortech.2009.12.077 Villano, M. et al. Bioelectrochemical reduction of CO2 to CH4 via direct and indirect extracellular electron transfer by a hydrogenophilic methanogenic culture. Bioresour. Technol. 101, 3085-3090 (2010).
J. Ferment. Bioeng. A Ishizaki 71 254 1991 10.1016/0922-338X(91)90277-N Ishizaki, A. & Tanaka, K. Production of poly-β-hydroxybutyric acid from carbon-dioxide by Alcaligenes-eutrophus ATCC 17697. J. Ferment. Bioeng. 71, 254-257 (1991).
Water Res. KJJ Steinbusch 42 4059 2008 10.1016/j.watres.2008.05.032 Steinbusch, K. J. J., Hamelers, H. V. M. & Buisman, C. J. N. Alcohol production through volatile fatty acids reduction with hydrogen as electron donor by mixed cultures. Water Res. 42, 4059-4066 (2008).
Bacteriol. Rev. RK Thauer 41 100 1977 10.1128/MMBR.41.1.100-180.1977 Thauer, R. K., Jungermann, K. & Decker, K. Energy-conservation in chemotropic anaerobic bacteria. Bacteriol. Rev. 41, 100-180 (1977).
Energy Environ. Sci. XX Cao 2 498 2009 10.1039/b901069f Cao, X. X. et al. A completely anoxic microbial fuel cell using a photo-biocathode for cathodic carbon dioxide reduction. Energy Environ. Sci. 2, 498-501 (2009).
Biotechnol. Lett. S Peguin 16 269 1994 10.1007/BF00134624 Peguin, S., Delorme, P., Goma, G. & Soucaille, P. Enhanced alcohol yields in batch cultures of Clostridium acetobutylicum using a 3-electrode potentiometric system with methyl viologen as electron carrier. Biotechnol. Lett. 16, 269-274 (1994).
Appl. Microbiol. Biotechnol. Shin 57 506 2001 10.1007/s002530100809 Shin et al. Evaluation of an electrochemical bioreactor system in the biotransformation of 6-bromo-2-tetralone to 6-bromo-2-tetralol. Appl. Microbiol. Biotechnol. 57, 506-510 (2001).
Appl. Environ. Microbiol. R Emde 56 2771 1990 10.1128/AEM.56.9.2771-2776.1990 Emde, R. & Schink, B. Enhanced propionate formation by Propionibacterium freudenreichii subsp. freudenreichii in a 3-electrode amperometric culture system. Appl. Environ. Microbiol. 56, 2771-2776 (1990).
ISME J. K Rabaey 1 9 2007 10.1038/ismej.2007.4 Rabaey, K. et al. Microbial ecology meets electrochemistry: electricity-driven and driving communities. ISME J. 1, 9-18 (2007).
Bioresour. Technol. S Freguia 101 1233 2010 10.1016/j.biortech.2009.09.054 Freguia, S. et al. Microbial fuel cells operating on mixed fatty acids. Bioresour. Technol. 101, 1233-1238 (2010).
MRS Bull. D Ginley 33 355 2008 10.1557/mrs2008.71 Ginley, D., Green, M. A. & Collins, R. Solar energy conversion toward 1 terawatt. MRS Bull. 33, 355-372 (2008).
Biotechnol. Bioeng. L De Schamphelaire 103 296 2009 10.1002/bit.22257 De Schamphelaire, L. & Verstraete, W. Revival of the biological sunlight-to-biogas energy conversion system. Biotechnol. Bioeng. 103, 296-304 (2009).
Electrochem. Commun. S Cheng 9 492 2007 10.1016/j.elecom.2006.10.023 Cheng, S. & Logan, B. E. Ammonia treatment of carbon cloth anodes to enhance power generation of microbial fuel cells. Electrochem. Commun. 9, 492-496 (2007).
Electrochim. Acta S Freguia 53 598 2007 10.1016/j.electacta.2007.07.037 Freguia, S., Rabaey, K., Yuan, Z. & Keller, J. Non-catalyzed cathodic oxygen reduction at graphite granules in microbial fuel cells. Electrochim. Acta 53, 598-603 (2007).
Environ. Sci. Technol. B Logan 41 3341 2007 10.1021/es062644y Logan, B., Cheng, S., Watson, V. & Estadt, G. Graphite fiber brush anodes for increased power production in air-cathode microbial fuel cells. Environ. Sci. Technol. 41, 3341-3346 (2007).
Electrochimica Acta Deepak Pant 55 26 7710 2010 10.1016/j.electacta.2009.11.086 Pant, D., Van Bogaert, G., De Smet, M., Diels, L. & Vanbroekhoven, K. Use of novel permeable membrane and air cathodes in acetate microbial fuel cells. Electrochim. Acta 1 Dec 2009 (doi:10.1016/j.electacta.2009.11.086).
App. Microbiol. Biotechnol. BE Logan 85 1665 2010 10.1007/s00253-009-2378-9 Logan, B. E. Scaling up microbial fuel cells and other bioelectrochemical systems. App. Microbiol. Biotechnol. 85, 1665-1671 (2010).
Water Res. S Freguia 42 1387 2008 10.1016/j.watres.2007.10.007 Freguia, S., Rabaey, K., Yuan, Z. G. & Keller, J. Sequential anode-cathode configuration improves cathodic oxygen reduction and effluent quality of microbial fuel cells. Water Res. 42, 1387-1396 (2008).
Environ. Sci. Technol. CI Torres 42 8773 2008 10.1021/es8019353 Torres, C. I., Lee, H. S. & Rittmann, B. E. Carbonate species as OH− carriers for decreasing the pH gradient between cathode and anode in biological fuel cells. Environ. Sci. Technol. 42, 8773-8777 (2008).
Syst. Appl. Microbiol. GD Sprott 7 358 1986 10.1016/S0723-2020(86)80034-0 Sprott, G. D. & Patel, G. B. Ammonia toxicity in pure cultures of methanogenic bacteria. Syst. Appl. Microbiol. 7, 358-363 (1986).
Environ. Sci. Technol. JM Foley 44 3629 2010 10.1021/es100125h Foley, J. M., Rozendal, R. A., Hertle, C. K., Lant, P. A. & Rabaey, K. Life cycle assessment of high-rate anaerobic treatment, microbial fuel cells, and microbial electrolysis cells. Environ. Sci. Technol. 44, 3629-3637 (2010).
JJ Heijnen 267 1999 Bioprocess technology: fermentation, biocatalysis and bioseparation Heijnen, J. J. in Bioprocess technology: fermentation, biocatalysis and bioseparation (eds Flickinger, M. C. & Drew, S. W.) 267-291 (Wiley & Sons, New York, 1999). A seminal book chapter on the use of thermodynamics for microbial growth calculations concerning yield and energy balance.
Biocatal. Biotransformation H Gunther 12 1 1995 10.3109/10242429508998147 Gunther, H. & Simon, H. Artificial electron carriers for preparative biocatalytic redox reactions forming reversibly carbon hydrogen bonds with enzymes present in strict or facultative anaerobes. Biocatal. Biotransformation 12, 1-26 (1995).
해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.