$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

[해외논문] Appreciating the role of carbon nanotube composites in preventing biofouling and promoting biofilms on material surfaces in environmental engineering: A review

Biotechnology advances, v.28 no.6, 2010년, pp.802 - 816  

Upadhyayula, Venkata K.K. (Oak Ridge Institute of Science and Education (ORISE), MC-100-44, PO Box?117, Oak Ridge, TN, 37831, USA) ,  Gadhamshetty, Venkataramana (Rensselaer Polytechnic Institute, Department of Civil and Environmental Engineering, 4040 JEC Building, 110 8th Street, Troy, NY, 12180, USA)

Abstract AI-Helper 아이콘AI-Helper

AbstractThe ability of carbon nanotubes (CNTs) to undergo surface modification allows them to form nanocomposites (NCs) with materials such as polymers, metal nanoparticles, biomolecules, and metal oxides. The biocidal nature, protein fouling resistance, and fouling release properties of CNT-NCs ren...

Keyword

참고문헌 (154)

  1. Langmuir Agnihotri 21 3 896 2005 10.1021/la047662c Structural characterization of single walled carbon nanotube bundles by experiment and molecular simulation 

  2. Acta Biomater Akasaka 5 607 2009 10.1016/j.actbio.2008.08.014 Capture of bacteria by flexible carbon nanotubes 

  3. Environ Sci Technol Angenent 40 17 5212 2006 10.1021/es060394f The upflow microbial fuel cell with an interior cathode: assessment of the internal resistance by impedence spectroscopy 

  4. Langmuir Arias 25 5 3003 2009 10.1021/la802769m Inactivation of bacterial pathogens by carbon nanotubes in suspensions 

  5. Arikawa 225 1998 Enzymes and microbial sensors: techniques and protocols Microbial biosensors based on respiratory inhibition 

  6. Small Asuri 3 1 50 2007 10.1002/smll.200600312 Polymer-nanotube-enzyme composites as active antifouling films 

  7. Desalination Avlonitis 157 151 2003 10.1016/S0011-9164(03)00395-3 Energy consumption and membrane replacement cost for seawater RO desalination plants 

  8. Science Baughman 297 787 2002 10.1126/science.1060928 Carbon nanotubes - the route toward applications 

  9. Biofouling Beigbeder 24 4 291 2008 10.1080/08927010802162885 Preparation and characterization of silicone based coatings filled with carbon nanotubes and natural sepiolite and their application as marine fouling-release coatings 

  10. J Colloid Interface Sci Benny 317 375 2008 10.1016/j.jcis.2007.09.064 Effect of ozonolysis on the pore structure, surface chemistry, and bundling of single walled carbon nanotubes 

  11. J Power Sources Benziger 155 272 2006 10.1016/j.jpowsour.2005.05.049 The power performance curve for engineering analysis of fuel cells 

  12. Biosens Bioelectron Biffinger 23 820 2007 10.1016/j.bios.2007.08.021 Oxygen exposure promotes fuel diversity for Shewanella oneidensis microbial fuel cells 

  13. Small Brady-Estevez 4 4 481 2008 10.1002/smll.200700863 A single walled carbon nanotube filter for removal of viral and bacterial pathogens 

  14. J Vac Sci Technol A Brownikowski 19 4 1800 2001 10.1116/1.1380721 Gas phase production of carbon single-walled carbon nanotubes from carbon monoxide via HIPco process: a parametric study 

  15. Langmuir Chapman 17 4 1225 2001 10.1021/la001222d Polymeric thin films that resist the adsorption of proteins and the adhesion of bacteria 

  16. J Porous Mater Chen 13 141 2006 10.1007/s10934-006-7017-6 Pore structures of multi-walled carbon nanotubes activated by air, CO2 and KOH 

  17. Water Environ Res Chen 80 8 699 2008 10.2175/106143008X276732 Preparation of biofilm electrode with Xanthomonas sp. and carbon nanotubes and the application to rapid biochemical oxygen demand analysis in high salt condition 

  18. Biomaterials Cheng 28 4192 2007 10.1016/j.biomaterials.2007.05.041 Inhibition of bacterial adhesion and biofilm formation on zwitterionic surfaces 

  19. Chem Phys Lett Colomer 317 83 2000 10.1016/S0009-2614(99)01338-X Large-scale synthesis of single-walled carbon nanotubes by catalytic chemical vapor deposition (CCVD) method 

  20. J Phys Chem B Corry 112 5 1427 2008 10.1021/jp709845u Designing carbon nanotube membrane for efficient water desalination 

  21. IEEE Sens Deng 8 6 954 2008 10.1109/JSEN.2008.923929 Adsorption equilibrium and kinetics of microorganisms on single walled carbon nanotubes 

  22. Fullerenes Nanotubes Carbon Nanostruct Dosodia 17 567 2009 10.1080/15363830903133238 Development of catalyst free carbon nanotubes from coal and plastics 

  23. Biosens Bioelectron D'Souza 16 6 337 2001 10.1016/S0956-5663(01)00125-7 Microbial biosensors 

  24. Phys Stat Sol (A) Dumitru 205 6 1484 2008 10.1002/pssa.200778136 Biofilm growth from wastewater on MWNTs and carbon aerogels 

  25. Pure Appl Chem Endo 78 9 1703 2006 10.1351/pac200678091703 Large scale production of carbon nanotubes and their applications 

  26. ChemSusChem Endo 1 820 2008 10.1002/cssc.200800150 Simple synthesis of multiwalled carbon nanotubes from natural resources 

  27. Int Biodeterior Biodegrad Gentili 57 222 2006 10.1016/j.ibiod.2006.02.009 Bioremediation of crude oil polluted seawater by a hydrocarbon degrading bacterial strain immobilized on chitin and chitosan flakes 

  28. J Clin Pharm Ther Gorman 12 6 393 2008 10.1111/j.1365-2710.1987.tb00552.x A comparative study of the microbial anti-adherence capacities of three antimicrobial agents 

  29. J Colloid Interface Sci Gotovac 314 18 2007 10.1016/j.jcis.2007.04.080 Adsorption of poly aromatic hydrocarbons on single walled carbon nanotubes of different functionalities and diameters 

  30. Chem Commun Gu 874 2004 Single walled carbon nanotubes displaying multivalent ligands for capturing pathogens 

  31. J Clin Microbiol Haley 21 6 991 1985 10.1128/JCM.21.6.991-992.1985 Bactericidal activity of antiseptics against methicillin resistant Staphyllococcus aureus 

  32. J Ind Ecol Healy 12 3 376 2008 10.1111/j.1530-9290.2008.00058.x Environmental assessment of single-walled carbon nanotube processes 

  33. J Membr Sci Herzberg 295 11 2007 10.1016/j.memsci.2007.02.024 Biofouling of reverse osmosis membranes: role of biofilm-enhanced osmotic pressure 

  34. Angew Chem Int Ed Hirsch 48 5403 2009 10.1002/anie.200901980 Growth of single walled carbon nanotubes without a metal catalyst - A suprising discovery 

  35. Science Holt 312 5776 1034 2006 10.1126/science.1126298 Fast mass transport through sub-2-nanometer carbon nanotubes 

  36. Electrochem Commun Hu 9 128 2007 10.1016/j.elecom.2006.08.055 Hydrophobic adsorption of surfactants on water-soluble carbon nanotubes: a simple approach to improve sensitivity and antifouling capacity of carbon nanotubes-based electrochemical sensors 

  37. Adv Mater Huang 15 19 1651 2003 10.1002/adma.200305203 Ultralong well-aligned single-walled carbon nanotube architecture on surfaces 

  38. Diamond Relat Mater Huang 13 1098 2004 10.1016/j.diamond.2003.11.047 Immobilization of antibodies and bacterial binding on nanodiamond and carbon nanotubes for biosensor applications 

  39. Environ Sci Tech Hull 43 4169 2009 10.1021/es802483p Release of metal impurities from carbon nanomaterials influences aquatic toxicity 

  40. Environ Sci Technol Hyung 42 12 4416 2008 10.1021/es702916h Natural organic matter (NOM) adsorption to multi walled carbon nanotubes: effect on NOM charasteristics and water quality parameters 

  41. J Agri Food Chem Ibrahim 39 2077 1991 10.1021/jf00011a039 Antimicrobial effects of lysozyme against Gram-negative bacteria due to covalent binding of palmatic acid 

  42. J Agri Food Chem Ibrahim 44 1416 1996 10.1021/jf9507147 A structural phase of heat-denatured lysozyme with novel antimicrobial action 

  43. Jackson L. Marine biofouling and invasive species: guidelines for prevention and management: United Nations Environment Programme2008. 

  44. Johansen C, inventor Novo Nordisk A/S, assignee. Method for enzymatic treatment of biofilm. USA2000. 

  45. Appl Environ Microbiol Johansen 63 9 3724 1997 10.1128/AEM.63.9.3724-3728.1997 Enzymatic removal and disinfection of bacterial biofilms 

  46. Lett Nat Journet 388 756 1997 10.1038/41972 Large scale production of single-walled carbon nanotubes by electric arc discharge technique 

  47. Kanepalli S, Donna FE. Enhancing the remediation of trichloroethene (TCE) using double-walled carbon nanotubes (DWNT): United States Geological Survey2006. 

  48. Langmuir Kang 23 17 8670 2007 10.1021/la701067r Single walled carbon nanotubes exhibit strong antimicrobial activity 

  49. Langmuir Kang 24 6409 2008 10.1021/la800951v Antibacterial effects of carbon nanotubes: size does matter 

  50. Environ Sci Technol Kang 42 19 7528 2008 10.1021/es8010173 Physiochemical determinants of multiwalled carbon nanotube bacterial cytotoxicity 

  51. Environ Sci Technol Kang 43 7 2648 2009 10.1021/es8031506 Microbial cytotoxicity of carbon based nanomaterials: implications for river water and wastewater effluent 

  52. E-J Chem Karthikeyan 6 1 1 2009 10.1155/2009/756410 Large scale synthesis of carbon nanotubes 

  53. Biomaterials Kawashitha 21 4 393 2000 10.1016/S0142-9612(99)00201-X Antibacterial silver containing silica glass prepared by sol-gel method 

  54. Environmental Toxicology and Chemistry Kennedy 27 9 1932 2008 10.1897/07-624.1 Factors influencing the partitioning and toxicity of nanotubes in the aquatic environment 

  55. J Bateriol Kern 61 2 171 1951 10.1128/JB.61.2.171-178.1951 Characterization of the action of lysozyme on Staphylococcus aureus and on Micrococcus lysodeikticus 

  56. Environ Sci Technol Khanna 43 2078 2009 10.1021/es802101x Carbon nanofiber polymer composites: evaluation of life cycle energy use 

  57. Lasers Surg Med Kim 39 622 2007 10.1002/lsm.20534 Photothermal antimicrobial nanotherapy and nanodiagnostics with self assembling carbon nanotube clusters 

  58. Nanomed Nanotechnol Biol Med Kim 3 95 2007 10.1016/j.nano.2006.12.001 Antimicrobial effects of silver nanoparticles 

  59. Desalination Kim 238 43 2009 10.1016/j.desal.2008.01.034 Biocide application for controlling biofouling of SWRO membranes - an overview 

  60. Process Saf Environ Prot Krishna 83 B4 393 2005 10.1205/psep.04387 Photocatalytic disinfection with titanium dioxide coated multi walled carbon nanotubes 

  61. J Biomater Appl Kristinsson 5 3 173 1991 10.1177/088532829100500303 Antimicrobial activity of polymers coated with iodine complexed polyvinylpyrrolidone 

  62. J Phys Conf Ser Kumar 61 643 2007 10.1088/1742-6596/61/1/129 Carbon nanotubes from camphor: an environment friendly nanotechnology 

  63. Mater Sci Eng C Lai 16 23 2001 10.1016/S0928-4931(01)00303-4 Synthesis of carbon nanotubes using polycyclic aromatic hydrocarbons as carbon sources in an arc discharge 

  64. Critical Reviews in Toxicology Lam 36 189 2006 10.1080/10408440600570233 A review of carbon nanotube toxicity and asessment of potential occupational and environmental health risks 

  65. Lee 2004 Photocatalytic nanocomposites based on TIO2 and carbon nanotubes 

  66. Chem Phys Lett Lee 4 16 251 2005 10.1016/j.cplett.2005.09.107 Pore characterization of multi-walled carbon nanotubes modified by KOH 

  67. Anal Chem Levashov 82 2161 2010 10.1021/ac902978u Quantitative turbidimetric assay of enzymatic Gram negative bacteria lysis 

  68. Mater Res Bull Li 38 469 2003 10.1016/S0025-5408(02)01063-2 Adsorption of fluoride from water by aligned carbon nanotubes 

  69. J Environ Sci (China) Li 16 2 208 2004 Removal of heavy metals from aqueous solution by carbon nanotubes: adsorption equlibrium and kinetics 

  70. Water Res Li 42 18 4591 2008 10.1016/j.watres.2008.08.015 Antimicrobial nanomaterials for water disinfection and microbial control: potential applications and implications 

  71. Carbon Liao 46 544 2008 10.1016/j.carbon.2007.12.009 Adsorption of chlorophenols by multi walled carbon nanotubes treated with HNO3 and NH3 

  72. Nature Lijima 354 56 1991 10.1038/354056a0 Helical microtubules of graphitic carbon 

  73. J Phys Chem B Lin 107 38 10453 2003 10.1021/jp0306141 Characterization of functionalized single-walled carbon nanotubes at individual nanotube-thin bundle level 

  74. J Phys Chem B Lin 108 12 3760 2004 10.1021/jp031248o Protein-affinity of single-walled carbon nanotubes in water 

  75. Carbon Liu 43 3178 2005 10.1016/j.carbon.2005.06.020 Decoration of carbon nanotubes with chitosan 

  76. Mater Res Bull Liu 41 1503 2006 10.1016/j.materresbull.2006.01.017 Investigation of preparation and structures of activated carbon nanotubes 

  77. Nuclear Instruments and Methods in Physics Research B Liu 264 282 2007 10.1016/j.nimb.2007.08.095 A study on bactericidal properties of Ag coated carbon nanotubes 

  78. Frontiers of Material Science in China Liu 1 2 147 2007 10.1007/s11706-007-0026-9 A study on the bactericidal properties of Cu-coated carbon nanotubes 

  79. Carbon Liu 46 489 2008 10.1016/j.carbon.2007.12.018 Targeted removal of bioavailable metal as a detoxification strategy for carbon nanotubes 

  80. Environ Sci Technol Logan 40 17 5181 2006 10.1021/es0605016 Microbial fuel cells: methodology and technology 

  81. Curr OpinBiotechnol Lovely 19 564 2008 10.1016/j.copbio.2008.10.005 The microbe electric: conversion of organic matter to electricity 

  82. Water Res Lu 39 1183 2005 10.1016/j.watres.2004.12.033 Adsorption of trihalomethanes from water with carbon nanotubes 

  83. Adv Mater Lu 21 139 2009 10.1002/adma.200801491 Advances in bioapplications of carbon nanotubes 

  84. Anal Chem Luo 73 915 2001 10.1021/ac000967l Investigation of the electrochemical and electrocatalytic behavior of single walled carbon nanotube film on a glassy carbon electrode 

  85. Anal Chim Acta Malhotra 578 59 2006 10.1016/j.aca.2006.04.055 Prospects of conducting polymers in biosensors 

  86. Environ Sci Technol Mauter 42 16 5843 2008 10.1021/es8006904 Environmental applications of carbon based nanomaterials 

  87. 2007 Fuel cell engines 

  88. Environ Sci Technol Meyer 43 5 1256 2009 10.1021/es8023258 An examination of existing datafor industrial manufacture and use of nanocomponents and their role in the life cycle impact of nanoproducts 

  89. Mongiovi 2009 Nanocyl to expand global production capacity of carbon nanotubes 

  90. J Biosci Bioeng Morikawa 101 1 1 2006 10.1263/jbb.101.1 Beneficial biofilm formation by industrial bacteria Bacillus subtilis and related species 

  91. Phys Status Solidi Morozan 204 6 1797 2007 10.1002/pssa.200675344 The biocompatibility microorganisms-carbon nanostructures for applications in microbial fuel cells 

  92. Aquatic Toxicology Mouchet 87 127 2008 10.1016/j.aquatox.2008.01.011 Characterization and in vivo ecotoxicity evaluation of double wall carbon nanotubes in larvae of the amphibian Xenopus laevis 

  93. Afr J Biotechnol Nambiar 8 24 6927 2009 Application of multi-walled carbon nanotubes to enhance anodic performance of an Enterobacter cloacae based fuel cell 

  94. 2003 Sterilizing properties of carbon nanotube composites 

  95. Mater Sci Eng B Narayan 123 123 2005 10.1016/j.mseb.2005.07.007 Structural and biological properties of carbon nanotube composite films 

  96. Nano Lett Nepal 8 7 1896 2008 10.1021/nl080522t Strong antimicrobial coatings: single walled carbon nanotubes armored with biopolymers 

  97. Microporous Mesoporous Mater Niu 100 1 2007 10.1016/j.micromeso.2006.10.009 An approach to carbon nanotubes with high surface area and large pore volume 

  98. Bioelectrochemistry Odaci 75 77 2009 10.1016/j.bioelechem.2009.01.002 A microbial biosensor based on bacterial cells immobilized on chitosan matrix 

  99. Oliver J. Carbon nanotubes: Technologies and commercial prospects. Wellesley, MA: BCC Research2007 Contract No.: Nano24C. 

  100. Enzyme Microb Technol Orgaz 40 1 51 2006 10.1016/j.enzmictec.2005.10.037 Bacterial biofilm removal using fungal enzymes 

  101. Trends Microbiol Palmer 5 11 435 1997 10.1016/S0966-842X(97)01142-6 Developmental biology of biofilms: implications for treatment and control 

  102. Environ Sci Technol Pan 2008 42 15 2008 Adsorption and hysteresis of bisphenol A and 17 α-ethinyl estradiol on carbon nanomaterials 

  103. Environ Sci Technol Pang 39 7541 2005 10.1021/es050170h Biofilm formation charasteristics of bacterial isolates retrieved from a reverse osmosis membrane 

  104. Nature Nanotechnology Poland 3 423 2008 10.1038/nnano.2008.111 Carbon nanotubes introduced into the abdominal cavity of mice show asbestos-like pathogenicity in a pilot study 

  105. Langmuir Pumera 23 6453 2007 10.1021/la070088v Carbon nanotubes contain residual metal catalyst nanoparticles even after washing with nitric acid at elevated temperatures because these metal nanoparticles are sheathed by several graphene sheets 

  106. J Power Sources Qiao 170 79 2007 10.1016/j.jpowsour.2007.03.048 Carbon nanotube/polyaniline composite as anode material for microbial fuel cells 

  107. Chem Commun Qu 34 2004 10.1039/B311038A Preparation of hybrid thin film modified carbon nanotubes on a glassy carbon electrode and its electrocatalysis for oxygen reduction 

  108. Quereshi 2005 Genetic manipulation of genes for environmental bioremediation and construction of strains with multiple environmental bioremediation properties 

  109. Environ Sci Technol Rabaey 39 8077 2005 10.1021/es050986i Tubular microbial fuel cells for efficient electricity generation 

  110. Nanotechnol Russ Rakov 3 9-10 575 2008 10.1134/S1995078008090061 The current status of carbon nanotube and fiber production 

  111. Int J Nucl Desal Raval 3 4 360 2009 10.1504/IJND.2009.028863 Carbon nanotube membrane for water desalination 

  112. Appl Environ Microbiol Re 73 10 3391 2007 10.1128/AEM.02625-06 Tight modulation of Escherichia coli bacterial biofilm formation through controlled expression of adhesion factors 

  113. Dermatology Reimer 204 114 2002 10.1159/000057738 Antimicrobial effectiveness of povidone-iodine and consequences for new application areas 

  114. Riedel 199 1998 Enzyme and microbial biosensors: techniques and protocols Microbial biosensors based on oxygen electrodes 

  115. Nature Nanotechnology Ryman-Rasmussen 4 747 2009 10.1038/nnano.2009.305 Inhaled carbon nanotubes reach the superficial tissue in mice 

  116. J Biotechnol Salah 51 265 1996 10.1016/S0168-1656(96)01605-7 Microbial degradation of aromatic and polyaromatic toxic compounds adsorbed on powdered activated carbon 

  117. Nanotoxicology Saxena 1 4 291 2007 10.1080/17435390701803110 Enhanced in vitro and in vivo toxicity of poly-dispersed acid-functionalized single walled carbon nanotubes 

  118. ThyssenKrupp techforum Schwafer 66 2005 Uhde Envirox® for combined reduction of N2O and NOx emissions from nitric acid plants 

  119. Ecotoxicology and Environmental Safety Scotts-Fordsmand 71 616 2008 10.1016/j.ecoenv.2008.04.011 The toxicity of double walled carbon nanotubes contaminated food to Eisenia veneta earthworms 

  120. Int J Hydrogen Energy Sharma 33 6749 2008 10.1016/j.ijhydene.2008.05.112 Development of carbon nanotubes and nanofluids based microbial fuel cell 

  121. Plast Technol Sherman 1 2007 Carbon nanotubes lots of potential - if the price is right 

  122. Carbon Simmons 47 1561 2009 10.1016/j.carbon.2009.02.005 Antiseptic single wall carbon nanotube bandages 

  123. Food Bioprocess Simoes 84 4 338 2006 10.1205/fbp06022 Control of flow-generated biofilms with surffactants: evidence of resistance and recovery 

  124. Biochem Biophys Res Commun Singh 317 291 2004 10.1016/j.bbrc.2004.04.155 Enhancement of metal bioremediation by use of microbial surfactants 

  125. Trends Microbiol Singh 14 6 389 2006 10.1016/j.tim.2006.07.001 Biofilms: implications in bioremediation 

  126. J Nanosci Nanotechnol Sinha 6 573 2006 10.1166/jnn.2006.121 Carbon nanotube based sensors 

  127. J Colloid Interface Sci Sondi 275 175 2004 10.1016/j.jcis.2004.02.012 Silver nanoparticles as antimicrobial agent: a case study on E.coli as a model for gram negative bacteria 

  128. Eur Cells Mater Song 11 1 58 2006 Fabrication of silver nanoparticles and their antimicrobial mechanisms 

  129. Sep Purif Technol Stafiej 58 1 49 2007 10.1016/j.seppur.2007.07.008 Adsorption of heavy metal ions with carbon nanotubes 

  130. J Environ Sci Health A Su 42 1543 2007 10.1080/10934520701513381 Adsorption kinetics, thermodynamics, and desorption of natural dissolved organic matter by multi walled carbon nanotubes 

  131. Electochem Commun Timur 9 1810 2007 10.1016/j.elecom.2007.04.012 Development of microbial biosensor based on carbon nanotube (CNT) modified electrodes 

  132. Int J Pharm Touitou 103 2 199 1994 10.1016/0378-5173(94)90100-7 Iodine-polyurethane matrices: antimicrobial activity vs method of preparation 

  133. Water Sci Technol Upadhyayula 58 1 179 2008 10.2166/wst.2008.634 Adsorption kinetics of Escherichia coli and Staphyllococcus aureus on single walled carbon nanotube aggregates 

  134. Res Lett Nanotechnol Upadhyayula 2008 10.1155/2008/156358 Single walled carbon nanotubes as fluorescence biosensors for pathogen recognition in water systems 

  135. Sci Total Environ Upadhyayula 408 1 2009 10.1016/j.scitotenv.2009.09.027 Application of carbon nanotube technology for removal of contaminants in drinking water: a review 

  136. Water Res Upadhyayula 43 148 2009 10.1016/j.watres.2008.09.023 Adsorption of Bacillus subtilis on single walled carbon nanotube aggregates, activated carbon and nanoceram™ 

  137. J Am Chem Soc Wang 128 13364 2006 10.1021/ja065455o Unique aggregation of anthrax (Bacillus anthracis) spores by sugar coated single walled carbon nanotubes 

  138. Carbon Wang 45 2 285 2006 10.1016/j.carbon.2006.09.025 Dispersing multi-walled carbon nanotubes with water-soluble block copolymers and their use as supports for metal nanoparticles 

  139. Water Wanner 21 34 2006 Deciphering and using biofilms 

  140. Toxicological Sciences Warheit 112 2 273 2009 10.1093/toxsci/kfp237 Long-term inhalation toxicity studies with multiwalled carbon nanotubes: closing gaps or initiating debate 

  141. Toxicol Lett Wick 168 121 2007 10.1016/j.toxlet.2006.08.019 The degree and kind of agglomeration affect carbon nanotube cytotoxicity 

  142. Microsc Res Tech Wild 39 3 297 1998 10.1002/(SICI)1097-0029(19971101)39:3<297::AID-JEMT8>3.0.CO;2-H Reevaluation of the effect of lysozyme on Escherichia coli employing ultrarapid freezing followed by cryoelectronmicroscopy or freeze substitution 

  143. Wu 2009 CNano technology comissions world's largest carbon nanotube manufacturing plant with a capacity of 500 tons per year 

  144. Chin Sci Bull Yan 49 1694 2004 10.1007/BF03184300 Effective removal of microcystins using carbon nanotubes embedded with bacteria 

  145. Chemosphere Yan 62 142 2006 10.1016/j.chemosphere.2005.03.075 Adsorption of microcystins by carbon nanotubes 

  146. J Colloid Interface Sci Yan 321 30 2008 10.1016/j.jcis.2008.01.047 Adsorption and desorption of atrazine on carbon nanotubes 

  147. Contact Lens Anterior Eye Yanai 29 2 85 2006 10.1016/j.clae.2006.02.006 Evaluation of povidone-iodine as a disinfectant solution for contact lenses: antimicrobial activity and cytotoxicity for corneal epithelial cells 

  148. Environ Sci Technol Yang 40 1855 2006 10.1021/es052208w Adsorption of polycyclic aromatic hydrocarbons by carbon nanomaterials 

  149. Electrochim Acta Yuan 51 28 5274 2006 10.1016/j.electacta.2006.01.052 Intercalation of methylene blue in n-alkanethiolated slef assembled monolayers: versatile electrochemical platforms for characterizing surfactant adsorption on hydrophobic surfaces 

  150. J Phys Chem C Yuan 112 18754 2008 10.1021/jp807133j Deposition of silver nanoparticles on multi walled carbon nanotubes grafted with hyperbranched poly (amidoamine) and their antimicrobial effects 

  151. J Am Chem Soc Yurekli 126 32 9902 2004 10.1021/ja047451u Small-angle neutron scattering from surfactant-assisted aqueous dispersions of carbon nanotubes 

  152. Mater Chem Phys Zhang 97 2-3 415 2006 10.1016/j.matchemphys.2005.08.036 Preparation and desalination performance of multiwalled carbon nanotubes 

  153. Nanotechnology Zhu 17 4668 2006 10.1088/0957-4484/17/18/024 Dependence of cytotoxicity of multi walled carbon nanotubes on the culture medium 

  154. Int J Hydrogen Energy Zou 33 4856 2008 10.1016/j.ijhydene.2008.06.061 A mediator less microbial fuel cell using polypyrrole coated carbon nanotubes composite as anode material 

활용도 분석정보

상세보기
다운로드
내보내기

활용도 Top5 논문

해당 논문의 주제분야에서 활용도가 높은 상위 5개 콘텐츠를 보여줍니다.
더보기 버튼을 클릭하시면 더 많은 관련자료를 살펴볼 수 있습니다.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로