$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Segmental Oscillators in Axial Motor Circuits of the Salamander: Distribution and Bursting Mechanisms

Journal of neurophysiology, v.104 no.5, 2010년, pp.2677 - 2692  

Ryczko, Dimitri (Pathophysiology of Spinal Networks, Neurocentre Magendie, Institut National de la Santé) ,  Charrier, Vanessa (et de la Recherche Mé) ,  Ijspeert, Auke (dicale U 862, Bordeaux University, Bordeaux Cedex, France) ,  Cabelguen, Jean-Marie (and)

Abstract AI-Helper 아이콘AI-Helper

The rhythmic and coordinated activation of axial muscles that underlie trunk movements during locomotion are generated by specialized networks in the spinal cord. The operation of these networks has been extensively investigated in limbless swimming vertebrates. But little is known about the archit...

참고문헌 (120)

  1. Alford, S., Grillner, S.. CNQX and DNQX block non-NMDA synaptic transmission but not NMDA-evoked locomotion in lamprey spinal cord. Brain research, vol.506, no.2, 297-302.

  2. Alford, S, Williams, TL. Endogenous activation of glycine and NMDA receptors in lamprey spinal cord during fictive locomotion. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.9, no.8, 2792-2800.

  3. Angstadt, JD, Calabrese, RL. A hyperpolarization-activated inward current in heart interneurons of the medicinal leech. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.9, no.8, 2846-2857.

  4. Aoki, Fumi, Wannier, Thierry, Grillner, Sten. Slow Dorsal-Ventral Rhythm Generator in the Lamprey Spinal Cord. Journal of neurophysiology, vol.85, no.1, 211-218.

  5. Ayali, A., Fuchs, E., Ben-Jacob, E., Cohen, A.. The function of intersegmental connections in determining temporal characteristics of the spinal cord rhythmic output. Neuroscience, vol.147, no.1, 236-246.

  6. Berg, Rune W., Hounsgaard, Jørn. Signaling in large-scale neural networks. Cognitive processing, vol.10, no.suppl1, 9-.

  7. Blatz, Andrew L., Magleby, Karl L.. Single apamin-blocked Ca-activated K+ channels of small conductance in cultured rat skeletal muscle. Nature, vol.323, no.6090, 718-720.

  8. Bonnot, Agnès, Morin, Didier. Hemisegmental localisation of rhythmic networks in the lumbosacral spinal cord of neonate mouse. Brain research, vol.793, no.1, 136-148.

  9. Bracci, Enrico, Ballerini, Laura, Nistri, Andrea. Localization of Rhythmogenic Networks Responsible for Spontaneous Bursts Induced by Strychnine and Bicuculline in the Rat Isolated Spinal Cord. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.16, no.21, 7063-7076.

  10. Herpetologica Brodie ED 187 25 1969 

  11. Brodin, L., Grillner, S., Rovainen, C.M.. N-methyl-d-aspartate (NMDA), kainate and quisqualate receptors and the generation of fictive locomotion in the lamprey spinal cord. Brain research, vol.325, no.1, 302-306.

  12. Buchanan, J. T.. Identification of interneurons with contralateral, caudal axons in the lamprey spinal cord: synaptic interactions and morphology. Journal of neurophysiology, vol.47, no.5, 961-975.

  13. Butt, Simon J.B, Lebret, James M, Kiehn, Ole. Organization of left–right coordination in the mammalian locomotor network. Brain research. Brain research reviews, vol.40, no.1, 107-117.

  14. Prog Brain Res Cabelguen JM 

  15. Cangiano, Lorenzo, Wallén, Peter, Grillner, Sten. Role of Apamin-Sensitive KCa Channels for Reticulospinal Synaptic Transmission to Motoneuron and for the Afterhyperpolarization. Journal of neurophysiology, vol.88, no.1, 289-299.

  16. Cangiano, Lorenzo, Grillner, Sten. Fast and Slow Locomotor Burst Generation in the Hemispinal Cord of the Lamprey. Journal of neurophysiology, vol.89, no.6, 2931-2942.

  17. Cangiano, Lorenzo, Grillner, Sten. Mechanisms of Rhythm Generation in a Spinal Locomotor Network Deprived of Crossed Connections: The Lamprey Hemicord. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.25, no.4, 923-935.

  18. Cheng, J., Jovanovic, K., Aoyagi, Y., Bennett, D. J., Han, Y., Stein, R. B.. Differential distribution of interneurons in the neural networks that control walking in the mudpuppy (Necturus maculatus) spinal cord. Experimental brain research, vol.145, no.2, 190-198.

  19. Cheng, Jianguo, Stein, Richard B., Jovanovic, Ksenija, Yoshida, Ken, Bennett, David J., Han, Yingchun. Identification, Localization, and Modulation of Neural Networks for Walking in the Mudpuppy (Necturus Maculatus) Spinal Cord. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.18, no.11, 4295-4304.

  20. Chevallier, Stéphanie, Landry, Marc, Nagy, Frédéric, Cabelguen, Jean-Marie. Recovery of bimodal locomotion in the spinal-transected salamander, Pleurodeles waltlii. The European journal of neuroscience, vol.20, no.8, 1995-2007.

  21. Chevallier, Stéphanie, Nagy, Frédéric, Cabelguen, Jean‐Marie. Cholinergic control of excitability of spinal motoneurones in the salamander. The Journal of physiology, vol.570, no.3, 525-540.

  22. Chevallier, S., Jan Ijspeert, A., Ryczko, D., Nagy, F., Cabelguen, J.M.. Organisation of the spinal central pattern generators for locomotion in the salamander: Biology and modelling. Brain research reviews, vol.57, no.1, 147-161.

  23. Cohen, A.H.. Effects of oscillator frequency on phase-locking in the lamprey central pattern generator. Journal of neuroscience methods, vol.21, no.2, 113-125.

  24. Cohen, A.H., Harris-Warrick, R.M.. Strychnine eliminates alternating motor output during fictive locomotion in the lamprey. Brain research, vol.293, no.1, 164-167.

  25. Cowley, K. C., Schmidt, B. J.. Regional Distribution of the Locomotor Pattern-Generating Network in the Neonatal Rat Spinal Cord. Journal of neurophysiology, vol.77, no.1, 247-259.

  26. Davis, B.M., Duffy, M.T., Simpson, S.B.. Bulbospinal and intraspinal connections in normal and regenerated salamander spinal cord. Experimental neurology, vol.103, no.1, 41-51.

  27. de Sèze, Mathieu, Falgairolle, Mélanie, Viel, Sébastien, Assaiante, Christine, Cazalets, Jean-René. Sequential activation of axial muscles during different forms of rhythmic behavior in man. Experimental brain research, vol.185, no.2, 237-247.

  28. Delvolvé, Isabelle, Bem, Tiaza, Cabelguen, Jean-Marie. Epaxial and Limb Muscle Activity During Swimming and Terrestrial Stepping in the Adult Newt,Pleurodeles waltl. Journal of neurophysiology, vol.78, no.2, 638-650.

  29. Delvolvé, Isabelle, Branchereau, Pascal, Dubuc, Réjean, Cabelguen, Jean-Marie. Fictive Rhythmic Motor Patterns Induced by NMDA in an In Vitro Brain Stem-Spinal Cord Preparation From an Adult Urodele. Journal of neurophysiology, vol.82, no.2, 1074-1077.

  30. el Manira, A., Tegner, J., Grillner, S.. Calcium-dependent potassium channels play a critical role for burst termination in the locomotor network in lamprey. Journal of neurophysiology, vol.72, no.4, 1852-1861.

  31. Faber, E S Louise, Delaney, Andrew J, Sah, Pankaj. SK channels regulate excitatory synaptic transmission and plasticity in the lateral amygdala. Nature neuroscience, vol.8, no.5, 635-641.

  32. Fagerstedt, Patriq, Zelenin, Pavel V., Deliagina, Tatiana G., Orlovsky, Grigori N., Grillner, Sten. Crossed reciprocal inhibition evoked by electrical stimulation of the lamprey spinal cord. Experimental brain research, vol.134, no.2, 147-154.

  33. Falgairolle, Mélanie, Cazalets, Jean‐René. Metachronal coupling between spinal neuronal networks during locomotor activity in newborn rat. The Journal of physiology, vol.580, no.1, 87-102.

  34. J Physiol Falgairolle M 304 100 2006 

  35. The Anatomy of the Salamander Francis ETB 1934 

  36. Friesen, W.Otto, Cang, Jianhua. Sensory and central mechanisms control intersegmental coordination. Current opinion in neurobiology, vol.11, no.6, 678-683.

  37. Gabbay, H., Delvolvé, I., Lev-Tov, A.. Pattern Generation in Caudal-Lumbar and Sacrococcygeal Segments of the Neonatal Rat Spinal Cord. Journal of neurophysiology, vol.88, no.2, 732-739.

  38. Gabriel, Jens Peter, Mahmood, Riyadh, Walter, Alexander M., Kyriakatos, Alexandros, Hauptmann, Giselbert, Calabrese, Ronald L., El Manira, Abdeljabbar. Locomotor Pattern in the Adult Zebrafish Spinal Cord In Vitro. Journal of neurophysiology, vol.99, no.1, 37-48.

  39. Green, C. S., Soffe, S. R.. Roles of Ascending Inhibition During Two Rhythmic Motor Patterns inXenopusTadpoles. Journal of neurophysiology, vol.79, no.5, 2316-2328.

  40. Handbook of Physiolog., The Nervous System. Motor Control Grillner S 1179 2 1981 

  41. Grillner, Sten. Biological Pattern Generation: The Cellular and Computational Logic of Networks in Motion. Neuron, vol.52, no.5, 751-766.

  42. Hagevik, A., McClellan, A. D.. Coupling of spinal locomotor networks in larval lamprey revealed by receptor blockers for inhibitory amino acids: neurophysiology and computer modeling. Journal of neurophysiology, vol.72, no.4, 1810-1829.

  43. Hägglund, Martin, Borgius, Lotta, Dougherty, Kimberly J, Kiehn, Ole. Activation of groups of excitatory neurons in the mammalian spinal cord or hindbrain evokes locomotion. Nature neuroscience, vol.13, no.2, 246-252.

  44. Harris-Warrick, Ronald M. Voltage-sensitive ion channels in rhythmic motor systems. Current opinion in neurobiology, vol.12, no.6, 646-651.

  45. Heaulme, M., Chambon, J.P., Leyris, R., Molimard, J.C., Wermuth, C.G., Biziere, K.. Biochemical characterization of the interaction of three pyridazinyl-GABA derivatives with the GABAA receptor site. Brain research, vol.384, no.2, 224-231.

  46. Heiss, Egon, Natchev, Nikolay, Rabanser, Alexander, Weisgram, Josef, Hilgers, Helge. Three types of cutaneous glands in the skin of the salamandrid Pleurodeles waltl. A histological and ultrastructural study. Journal of morphology, vol.270, no.7, 892-902.

  47. Hess, Dietmar, Nanou, Evanthia, El Manira, Abdeljabbar. Characterization of Na+-Activated K+ Currents in Larval Lamprey Spinal Cord Neurons. Journal of neurophysiology, vol.97, no.5, 3484-3493.

  48. Hill, A A, Lu, J, Masino, M A, Olsen, O H, Calabrese, R L. A model of a segmental oscillator in the leech heartbeat neuronal network.. Journal of computational neuroscience, vol.10, no.3, 281-302.

  49. Hill, Russel, Matsushima, Toshiya, Schotland, Judith, Grillner, Sten. Apamin blocks the slow AHP in lamprey and delays termination of locomotor bursts :. Neuroreport, vol.3, no.10, 943-945.

  50. Hinckley, Christopher A., Ziskind-Conhaim, Lea. Electrical Coupling between Locomotor-Related Excitatory Interneurons in the Mammalian Spinal Cord. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.26, no.33, 8477-8483.

  51. Hocker, Craig G., Yu, Xintian, Friesen, W. Otto. Functionally heterogeneous segmental oscillators generate swimming in the medicinal leech. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, vol.186, no.9, 871-883.

  52. Hoffman, N., Parker, D.. Lesioning alters functional properties in isolated spinal cord hemisegmental networks. Neuroscience, vol.168, no.3, 732-743.

  53. Hu, Guo-Yuan, Biró, Zoltán, Hill, Russell H., Grillner, Sten. Intracellular QX-314 Causes Depression of Membrane Potential Oscillations in Lamprey Spinal Neurons During Fictive Locomotion. Journal of neurophysiology, vol.87, no.6, 2676-2683.

  54. Huss, Mikael, Lansner, Anders, Wallén, Peter, El Manira, Abdeljabbar, Grillner, Sten, Kotaleski, Jeanette H.. Roles of Ionic Currents in Lamprey CPG Neurons: A Modeling Study. Journal of neurophysiology, vol.97, no.4, 2696-2711.

  55. Ijspeert, A.J.. Central pattern generators for locomotion control in animals and robots: A review. Neural networks : the official journal of the International Neural Network Society, vol.21, no.4, 642-653.

  56. Ijspeert, Auke Jan, Crespi, Alessandro, Ryczko, Dimitri, Cabelguen, Jean-Marie. From Swimming to Walking with a Salamander Robot Driven by a Spinal Cord Model. Science, vol.315, no.5817, 1416-1420.

  57. Jackson, Adam W., Horinek, Dustin F., Boyd, Malinda R., McClellan, Andrew D.. Disruption of Left-Right Reciprocal Coupling in the Spinal Cord of Larval Lamprey Abolishes Brain-Initiated Locomotor Activity. Journal of neurophysiology, vol.94, no.3, 2031-2044.

  58. Johnson, J. W., Ascher, P.. Glycine potentiates the NMDA response in cultured mouse brain neurons. Nature, vol.325, no.6104, 529-531.

  59. Jones, Stephanie R., Mulloney, Brian, Kaper, Tasso J., Kopell, Nancy. Coordination of Cellular Pattern-Generating Circuits that Control Limb Movements: The Sources of Stable Differences in Intersegmental Phases. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.23, no.8, 3457-3468.

  60. Jovanović, K.; Petrov, T. etc. "Effects of inhibitory neurotransmitters on the mudpuppy (Necturus maculatus) locomotor pattern in vitro." Experimental brain research, v.129 no.2 (1999), pp. 172-184, doi:10.1007/s002210050887.

  61. Experiments on the central pattern generator for swimming in amphibian embryos. Philosophical transactions of the Royal Society of London. Series B, Biological sciences, vol.296, no.1081, 229-243.

  62. Kalinina, N. I., Kurchavyi, G. G., Amakhin, D. V., Veselkin, N. P.. Differences in the Activation of Inhibitory Motoneuron Receptors in the Frog Rana Ridibunda by GABA and Glycine and Their Interaction. Neuroscience and behavioral physiology, vol.39, no.8, 775-783.

  63. Kiehn, Ole, Kjaerulff, Ole, Tresch, Matthew C, Harris-Warrick, Ronald M. Contributions of intrinsic motor neuron properties to the production of rhythmic motor output in the mammalian spinal cord. Brain research bulletin, vol.53, no.5, 649-659.

  64. Kiehn, Ole. LOCOMOTOR CIRCUITS IN THE MAMMALIAN SPINAL CORD. Annual review of neuroscience, vol.29, 279-306.

  65. Kiehn, Ole, Butt, Simon J.B. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord. Progress in neurobiology, vol.70, no.4, 347-361.

  66. Kiehn, O., Quinlan, K.A., Restrepo, C.E., Lundfald, L., Borgius, L., Talpalar, A.E., Endo, T.. Excitatory components of the mammalian locomotor CPG. Brain research reviews, vol.57, no.1, 56-63.

  67. Kleckner, NW, Dingledine, R. Requirement for glycine in activation of NMDA-receptors expressed in Xenopus oocytes. Science, vol.241, no.4867, 835-837.

  68. Kremer, E., Lev-Tov, A.. Localization of the Spinal Network Associated With Generation of Hindlimb Locomotion in the Neonatal Rat and Organization of Its Transverse Coupling System. Journal of neurophysiology, vol.77, no.3, 1155-1170.

  69. Kudo, N., Yamada, T.. N-Methyl-d,l-aspartate-induced locomotor activity in a spinal cord-indlimb muscles preparation of the newborn rat studied in vitro. Neuroscience letters, vol.75, no.1, 43-48.

  70. Lavrov, Igor, Cheng, Jianguo. Activation of NMDA receptors is required for the initiation and maintenance of walking-like activity in the mudpuppy (Necturus Maculatus). Canadian journal of physiology and pharmacology, vol.82, no.8, 637-644.

  71. Lavrov, I., Cheng, J.. Methodological optimization of applying neuroactive agents for the study of locomotor-like activity in the mudpuppies (Necturus maculatus). Journal of neuroscience methods, vol.174, no.1, 97-102.

  72. Li, Wen-Chang, Roberts, Alan, Soffe, Stephen R. Locomotor rhythm maintenance: electrical coupling among premotor excitatory interneurons in the brainstem and spinal cord of young Xenopus tadpoles. The Journal of physiology, vol.587, no.8, 1677-1693.

  73. Li, Wen-Chang, Sautois, Bart, Roberts, Alan, Soffe, Stephen R.. Reconfiguration of a Vertebrate Motor Network: Specific Neuron Recruitment and Context-Dependent Synaptic Plasticity. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.27, no.45, 12267-12276.

  74. Lu, J., Gramoll, S., Schmidt, J., Calabrese, R. L.. Motor pattern switching in the heartbeat pattern generator of the medicinal leech: membrane properties and lack of synaptic interaction in switch interneurons. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, vol.184, no.3, 311-324.

  75. Madriaga, M. A., McPhee, L. C., Chersa, T., Christie, K. J., Whelan, P. J.. Modulation of Locomotor Activity by Multiple 5-HT and Dopaminergic Receptor Subtypes in the Neonatal Mouse Spinal Cord. Journal of neurophysiology, vol.92, no.3, 1566-1576.

  76. 10.1016/S0079-6123(08)61137-1 

  77. McCrea, D.A., Rybak, I.A.. Organization of mammalian locomotor rhythm and pattern generation. Brain research reviews, vol.57, no.1, 134-146.

  78. Meer, D.P., Buchanan, J.T.. Apamin reduces the late afterhyperpolarization of lamprey spinal neurons, with little effect on fictive swimming. Neuroscience letters, vol.143, no.1, 1-4.

  79. Miller, William L., Sigvardt, Karen A.. Extent and Role of Multisegmental Coupling in the Lamprey Spinal Locomotor Pattern Generator. Journal of neurophysiology, vol.83, no.1, 465-476.

  80. Mortin, LI, Stein, PS. Spinal cord segments containing key elements of the central pattern generators for three forms of scratch reflex in the turtle. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.9, no.7, 2285-2296.

  81. Mulloney, Brian. A Test of the Excitability-Gradient Hypothesis in the Swimmeret System of Crayfish. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.17, no.5, 1860-1868.

  82. 10.1002/(SICI)1096-9861(19970210)378:2<205::AID-CNE5>3.0.CO;2-7 

  83. Nakayama, Kiyomi, Nishimaru, Hiroshi, Kudo, Norio. Basis of Changes in Left-Right Coordination of Rhythmic Motor Activity during Development in the Rat Spinal Cord. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.22, no.23, 10388-10398.

  84. Nishimaru, H., Kakizaki, M.. The role of inhibitory neurotransmission in locomotor circuits of the developing mammalian spinal cord. Acta physiologica, vol.197, no.2, 83-97.

  85. Nowak, Robert T., Brodie join(' ', Edmund D.. Rib Penetration and Associated Antipredator Adaptations in the Salamander Pleurodeles waltl (Salamandridae). Copeia, vol.1978, no.3, 424-.

  86. Ohta, Y., Dubuc, R., Grillner, S.. A new population of neurons with crossed axons in the lamprey spinal cord. Brain research, vol.564, no.1, 143-148.

  87. Olsen, Øystein H., Calabrese, Ronald L.. Activation of Intrinsic and Synaptic Currents in Leech Heart Interneurons by Realistic Waveforms. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.16, no.16, 4958-4970.

  88. Opdyke, C.A., Calabrese, R.L.. A persistent sodium current contributes to oscillatory activity in heart interneurons of the medicinal leech. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, vol.175, no.6,

  89. Pape, H-C. Queer Current and Pacemaker: The Hyperpolarization-Activated Cation Current in Neurons. Annual review of physiology, vol.58, 299-327.

  90. Parker, David, Bevan, Sarah. Modulation of Cellular and Synaptic Variability in the Lamprey Spinal Cord. Journal of neurophysiology, vol.97, no.1, 44-56.

  91. Paul, Dorothy H., Mulloney, Brian. Intersegmental coordination of swimmeret rhythms in isolated nerve cords of crayfish. Journal of comparative physiology. A, Sensory, neural, and behavioral physiology, vol.158, no.2, 215-224.

  92. Perrins, R, Roberts, A. Cholinergic and electrical synapses between synergistic spinal motoneurones in the Xenopus laevis embryo.. The Journal of physiology, vol.485, no.1, 135-144.

  93. Rioult-Pedotti, Mengia-Seraina. Intrinsic NMDA-Induced Oscillations in Motoneurons of an Adult Vertebrate Spinal Cord Are Masked by Inhibition. Journal of neurophysiology, vol.77, no.2, 717-730.

  94. Roberts, Alan, Alford, Simon T.. Descending projections and excitation during fictive swimming in Xenopus embryos: Neuroanatomy and lesion experiments. Journal of comparative neurology, vol.250, no.2, 253-261.

  95. Roberts, Alan, Li, Wen-Chang, Soffe, S. R.. Roles for inhibition: studies on networks controlling swimming in young frog tadpoles. Journal of comparative physiology. A, Neuroethology, sensory, neural, and behavioral physiology, vol.194, no.2, 185-193.

  96. Roberts, Alan, Tunstall, M. J.. Mutual Re‐excitation with Post‐Inhibitory Rebound: A Simulation Study on the Mechanisms for Locomotor Rhythm Generation in the Spinal Cord of Xenopus Embryos. The European journal of neuroscience, vol.2, no.1, 11-23.

  97. Methods Mol Biol Rozental R 447 154 2001 

  98. Soc Neurosci Abstr Ryczko D 6 188 2007 

  99. Samara, Ramsey F., Currie, Scott N.. Crossed Commissural Pathways in the Spinal Hindlimb Enlargement Are Not Necessary for Right-Left Hindlimb Alternation During Turtle Swimming. Journal of neurophysiology, vol.98, no.4, 2223-2231.

  100. Shin, Ki Soon, Rothberg, Brad S., Yellen, Gary. Blocker State Dependence and Trapping in Hyperpolarization-Activated Cation Channels : Evidence for an Intracellular Activation Gate. The Journal of general physiology, vol.117, no.2, 91-102.

  101. The post-embryonic development of cell properties and synaptic drive underlying locomotor rhythm generation in Xenopus larvae. Proceedings, Biological sciences, vol.249, no.1324, 65-70.

  102. Skinner, Frances K, Mulloney, Brian. Intersegmental coordination in invertebrates and vertebrates. Current opinion in neurobiology, vol.8, no.6, 725-732.

  103. Soffe, S. R.. Roles of Glycinergic Inhibition and N‐Methyl‐D‐Aspartate Receptor Mediated Excitation in the Locomotor Rhythmicity of One Half of the Xenopus Embryo Central Nervous System. The European journal of neuroscience, vol.1, no.6, 561-571.

  104. Soffe, S. R., Zhao, F.‐Y., Roberts, Alan. Functional projection distances of spinal interneurons mediating reciprocal inhibition during swimming in Xenopus tadpoles. The European journal of neuroscience, vol.13, no.3, 617-627.

  105. Sorensen, M.. Using a Hybrid Neural System to Reveal Regulation of Neuronal Network Activity by an Intrinsic Current. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.24, no.23, 5427-5438.

  106. Sun, Q.‐Q., Dale, N.. Developmental changes in expression of ion currents accompany maturation of locomotor pattern in frog tadpoles. The Journal of physiology, vol.507, no.1, 257-264.

  107. Organisation of Locomotion Szekely G 1976 

  108. Tazerart, Sabrina, Viemari, Jean-Charles, Darbon, Pascal, Vinay, Laurent, Brocard, Frédéric. Contribution of Persistent Sodium Current to Locomotor Pattern Generation in Neonatal Rats. Journal of neurophysiology, vol.98, no.2, 613-628.

  109. Tazerart, Sabrina, Vinay, Laurent, Brocard, Frédéric. The Persistent Sodium Current Generates Pacemaker Activities in the Central Pattern Generator for Locomotion and Regulates the Locomotor Rhythm. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.28, no.34, 8577-8589.

  110. Tresch, Matthew C., Kiehn, Ole. Motor coordination without action potentials in the mammalian spinal cord. Nature neuroscience, vol.3, no.6, 593-599.

  111. Tresch, Matthew C., Kiehn, Ole. Synchronization of Motor Neurons during Locomotion in the Neonatal Rat: Predictors and Mechanisms. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.22, no.22, 9997-10008.

  112. Tsvyetlynska, Nataliya A., Hill, Russell H., Grillner, Sten. Role of AMPA Receptor Desensitization and the Side Effects of a DMSO Vehicle on Reticulospinal EPSPs and Locomotor Activity. Journal of neurophysiology, vol.94, no.6, 3951-3960.

  113. Tunstall, M J, Roberts, A. A longitudinal gradient of synaptic drive in the spinal cord of Xenopus embryos and its role in co‐ordination of swimming.. The Journal of physiology, vol.474, no.3, 393-405.

  114. Tunstall, Mark J., Roberts, Alan, Soffe, S.R.. Modelling Inter-Segmental Coordination of Neuronal Oscillators: Synaptic Mechanisms for Uni-Directional Coupling During Swimming in Xenopus Tadpoles. Journal of computational neuroscience, vol.13, no.2, 143-158.

  115. Wall, M J, Dale, N. A slowly activating Ca(2+)‐dependent K+ current that plays a role in termination of swimming in Xenopus embryos.. The Journal of physiology, vol.487, no.3, 557-572.

  116. Wallén, Peter, Robertson, Brita, Cangiano, Lorenzo, Löw, Peter, Bhattacharjee, Arin, Kaczmarek, Leonard K., Grillner, Sten. Sodium‐dependent potassium channels of a Slack‐like subtype contribute to the slow afterhyperpolarization in lamprey spinal neurons. The Journal of physiology, vol.585, no.1, 75-90.

  117. Whelan, Patrick, Bonnot, Agnes, O'Donovan, Michael J.. Properties of Rhythmic Activity Generated by the Isolated Spinal Cord of the Neonatal Mouse. Journal of neurophysiology, vol.84, no.6, 2821-2833.

  118. Zhang, Hong‐Yan, Li, Wen‐Chang, Heitler, William J., Sillar, Keith T.. Electrical coupling synchronises spinal motoneuron activity during swimming in hatchling Xenopus tadpoles. The Journal of physiology, vol.587, no.18, 4455-4466.

  119. Zhong, Guisheng, Masino, Mark A., Harris-Warrick, Ronald M.. Persistent Sodium Currents Participate in Fictive Locomotion Generation in Neonatal Mouse Spinal Cord. The Journal of neuroscience : the official journal of the Society for Neuroscience, vol.27, no.17, 4507-4518.

  120. Ziskind-Conhaim, Lea, Wu, Linying, Wiesner, Eric P.. Persistent Sodium Current Contributes to Induced Voltage Oscillations in Locomotor-Related Hb9 Interneurons in the Mouse Spinal Cord. Journal of neurophysiology, vol.100, no.4, 2254-2264.

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로