$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Velocity–pressure coupling in finite difference formulations for the Navier–Stokes equations

International journal for numerical methods in fluids, v.65 no.9, 2011년, pp.1096 - 1114  

Zogheib, B. (Division of Mathematics, Science and Technology, Nova Southeastern University, 3301 College Ave., Fort Lauderdale‐) ,  Barron, R. M. (Davie, FL 33314‐)

Abstract AI-Helper 아이콘AI-Helper

AbstractA new numerical procedure for solving the two‐dimensional, steady, incompressible, viscous flow equations on a staggered Cartesian grid is presented in this paper. The proposed methodology is finite difference based, but essentially takes advantage of the best features of two well̴...

주제어

참고문헌 (37)

  1. 1 Miller TF , Schmidt FW . Use of a pressure‐weighted interpolation method for the solution of the incompressible Navier–Stokes equations on a non‐staggered grid system . Numerical Heat Transfer 1988 ; 14 : 213 – 233 . 

  2. 2 Thiart GD . Finite difference schemes for the numerical solution of fluid flow and heat transfer problems on nonstaggered grids . Numerical Heat Transfer, Part B 1990 ; 17 : 43 – 62 . 

  3. 3 Barton IE , Kirby R . Finite difference scheme for the solution of fluid flow problems on non‐staggered grids . International Journal for Numerical Methods in Fluids 2000 ; 33 : 939 – 959 . 

  4. 4 Tian Z , Ge Y . A fourth‐order compact finite difference scheme for the steady stream function‐vorticity formulation of the Navier–Stokes/Boussinesq equations . International Journal for Numerical Methods in Fluids 2003 ; 41 : 495 – 518 . 

  5. 5 Ben‐Artzi M , Croisille J‐P , Fishelov D , Trachtenberg S . A pure‐compact scheme for the streamfunction formulation of Navier–Stokes equations . Journal of Computational Physics 2005 ; 205 : 640 – 664 . 

  6. 6 De AK , Eswaran K . A high‐order accurate method for two‐dimensional incompressible viscous flows . International Journal for Numerical Methods in Fluids 2007 ; 53 : 1613 – 1628 . 

  7. 7 Zhu B . Finite volume solution of the Navier–Stokes equations in velocity–vorticity formulation . International Journal for Numerical Methods in Fluids 2005 ; 48 : 607 – 629 . 

  8. 8 Patankar SV , Spalding DB . A calculation procedure for heat and mass transfer in three dimensional parabolic flows . International Journal of Heat and Mass Transfer 1972 ; 15 : 1787 – 1806 . 

  9. 9 Ghia KN , Sokhey JS . Laminar incompressible viscous flow in curved ducts of rectangular cross sections . Journal of Fluids Engineering 1977 ; 99 : 640 – 645 . 

  10. 10 Briley WR , McDonald H . Analysis and computation of viscous subsonic primary and secondary flows . AIAA Paper 79‐1453, 1979 . 

  11. 11 Johnston H , Liu JG . Finite difference schemes for incompressible flow based on local pressure boundary condition . Journal of Computational Physics 2002 ; 180 : 120 – 154 . 

  12. 12 Strikwerda JC . High order‐accurate schemes for incompressible viscous flow . International Journal for Numerical Methods in Fluids 1997 ; 24 : 715 – 734 . 

  13. 13 Zhang KKQ , Shotorban B , Minkowycz WJ , Mashayek F . A compact finite difference method on staggered grid for Navier–Stokes flows . International Journal for Numerical Methods in Fluids 2006 ; 52 : 867 – 881 . 

  14. 14 Chorin AJ . A numerical method for solving incompressible viscous flow problems . Journal of Computational Physics 1967 ; 2 : 12 – 26 . 

  15. 15 Kim J , Moin P . Application of a fractional‐step method to incompressible Navier–Stokes equations . Journal of Computational Physics 1985 ; 59 : 308 – 323 . 

  16. 16 Hirt CW , Nichols BD , Romero NC . SOLA—a numerical solution algorithm for transient fluid flow . Los Alamos Scientific Laboratory Report, LA 5852, 1975 . 

  17. 17 Tia CH , Zhao Y . A finite volume unstructured multigrid method for efficient computation of unsteady incompressible viscous flows . International Journal for Numerical Methods in Fluids 2004 ; 46 : 59 – 84 . 

  18. 18 Merkle CL , Athavale M . Time‐accurate unsteady incompressible flow algorithm based on artificial compressibility . AIAA Paper 87‐1137, 1987 . 

  19. 19 Patankar S . A calculation procedure for two‐dimensional elliptic situations . Numerical Heat Transfer 1981 ; 4 : 409 – 425 . 

  20. 20 Harlow FH , Welch JE . Numerical calculations of time‐dependent viscous incompressible flow of fluid with free surface . Physics of Fluids 1965 ; 8 : 2182 – 2189 . 

  21. 21 Patankar S . Numerical Heat Transfer and Fluid Flow . Hemisphere : New York , 1980 . 

  22. 22 Versteeg HK , Malalasekera W . An Introduction to Computational Fluid Dynamics: The Finite Volume Approach . Pearson : U.K. , 1995 . 

  23. 23 Leonard BP . A stable and accurate convective modelling procedure based on quadratic upstream interpolation . Computational Methods in Applied Mechanical Engineering 1979 ; 19 : 59 – 98 . 

  24. 24 Gaskell PH , Lau AKC . Curvature‐compensated convective transport: SMART, a new boundedness‐preserving transport algorithm . International Journal for Numerical Methods in Fluids 1988 ; 8 : 617 – 641 . 

  25. 25 Varonos A , Bergeles G . Development and assessment of a variable‐order non‐oscillatory scheme for convection term discretization . International Journal for Numerical Methods in Fluids 1998 ; 26 : 1 – 16 . 

  26. 26 Alves MA , Oliveira PJ , Pinho FT . A convergent and universally bounded interpolation scheme for the treatment of advection . International Journal for Numerical Methods in Fluids 2003 ; 41 : 47 – 75 . 

  27. 27 Hirt CW . Heuristic stability theory for finite‐difference equations . Journal of Computational Physics 1968 ; 2 : 339 – 355 . 

  28. 28 Chung TJ . Computational Fluid Dynamics . Cambridge University Press : U.K. , 2002 . 

  29. 29 Ferziger JH , Peric M . Computational Methods for Fluid Dynamics ( 3rd edn ). Springer : U.S.A. , 2002 . 

  30. 30 Schlichting H . Boundary Layer Theory ( 8th edn ). McGraw‐Hill : New York , 2000 . 

  31. 31 Reggio M , Camarero R . Numerical solution procedure for viscous incompressible flows . Numerical Heat Transfer 1986 ; 10 : 131 – 146 . 

  32. 32 Armaly BF , Durst F , Pereira JCF , Schonung B . Experimental and theoretical investigation of backward‐facing step flow . Journal of Fluid Mechanics 1983 ; 127 : 473 – 496 . 

  33. 33 Barton IE . A numerical study of flow over confined backward‐facing step . International Journal for Numerical Methods in Fluids 1995 ; 21 : 653 – 665 . 

  34. 34 Barber RW , Fonty A . Comparison of vortex‐element and finite‐volume simulations of low Reynolds number flow over a confined backward facing step . Proceedings of the 11th Annual Conference of the CFD Society of Canada, CFD2003, vol. 2, Vancouver, 2003 ; 780 – 787 . 

  35. 35 CFD Research Corporation . User Manual: Version 6.4. Cummings Research Park, Huntsville, Alabama, U.S.A., 2000 . 

  36. 36 Fluent Inc. FLUENT User Manual: Version 6. Lebanon, NH, U.S.A. 

  37. 37 Ghia U , Ghia KN , Shin CT . High‐Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method . Journal of Computational Physics 1982 ; 48 : 387 – 411 . 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로