$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

The multipass rheometer a review

Journal of non-Newtonian fluid mechanics, v.166 no.9/10, 2011년, pp.421 - 456  

Mackley, M.R. (Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, Cambridgeshire CB2 3RA, UK) ,  Hassell, D.G.

Abstract AI-Helper 아이콘AI-Helper

This review describes the development and application of the multipass rheometer; a servo hydraulically driven two piston device that enables rheology and precise processing measurements to be carried out within an enclosed volume. The apparatus development and then specific application ...

주제어

참고문헌 (120)

  1. J. Non-Newtonian Fluid Mech. Mackley 21 337 1986 10.1016/0377-0257(86)80045-3 Experimental velocity distribution measurements of high density polyethylene flowing into and within a two dimensional slit 

  2. J. Non-Newtonian Fluid Mech. Aldhouse 21 359 1986 10.1016/0377-0257(86)80046-5 Experimental and linear viscoelastic stress distribution measurements of high density polyethylene flowing into and within a two dimensional slit 

  3. Sot. Plastics Eng. Trans. Westover 1 14 1961 Effect of hydrostatic pressure on polyethylene melt rheology 

  4. Polym. Eng. Sci. Kadijk 34 1535 1994 10.1002/pen.760342004 On the pressure dependence of the viscosity of molten polymers 

  5. J. Non-Newtonian Fluid Mech. Galvin 8 11 1981 10.1016/0377-0257(81)80002-X Development of a high-pressure, high shear rate capillary viscometer 

  6. Biophys. J. Thurston 12 1205 1972 10.1016/S0006-3495(72)86156-3 Viscoelasticity of human blood 

  7. Clin. Hemorheol. Thurston 7 492 1987 A new instrument for viscoelasticity of blood 

  8. http://www.malvern.com/LabEng/products/bohlin/capiliary.htm. 

  9. J. Rheol. Mackley 39 6 1293 1995 10.1122/1.550637 The multipass rheometer 

  10. Rheol. Acta Mackley 35 202 1996 10.1007/BF00396047 Viscoelastic characterisation of polyethylene using a multipass rheometer 

  11. Lee K., The Comparison of Experimental Data with Numerical Simulation for the Melt Processing of Polyethylene Using a Multi-Pass Rheometer, Ph.D. thesis. University of Cambridge, 2001. 

  12. Rheol. Acta Laun 42 295 2003 10.1007/s00397-002-0291-6 Pressure dependent viscosity and dissipative heating in capillary rheometry of polymer melts 

  13. Rheol. Acta Laun 43 509 2004 10.1007/s00397-004-0387-2 Capillary rheometry for polymer melts revisited 

  14. Rheol. Acta Park 47 1023 2008 10.1007/s00397-008-0296-x Measurement of pressure coefficient of polymer viscosity: drag flow versus capillary flow 

  15. Polym. Eng. Sci. Hatzikiriakos 34 493 1994 10.1002/pen.760340606 Start-up pressure transients in a capillary rheometer 

  16. Rheol. Acta Dealy 34 115 1995 10.1007/BF00396060 On the significance of pressure relaxations in capillary and slit flow 

  17. Chem. Eng. Sci. Wee 53 6 1131 1998 10.1016/S0009-2509(97)00410-7 The rheology and processing of a concentrated cellulose acetate solution 

  18. M.J. Thompson, The Microstructure and Rheology of Emulsions of Water in Lithographic Printing Ink, University of Cambridge Ph.D. thesis, 2001. 

  19. J. Rheol. Thompson 45 6 1341 2001 10.1122/1.1410371 The effect of droplet extension on the rheology of emulsions of water in alkyd resin 

  20. K. Odic, The Rheology and Microstructure of Model Ice Cream Systems, Ph.D. Thesis. University of Cambridge, 2004. 

  21. Trans. IChemE McKeown 81A 649 2003 10.1205/026387603322150507 Shear-induced structural changes in a commercial surfactant-based system 

  22. AIChE J. Law 49 11 2966 2003 10.1002/aic.690491126 Multilayer vesicles in a commercial surfactant system 

  23. R.B. Cooke, The Rheology and Processing Behaviour of Polymer and Wormlike Micelle Solutions used in Oil Recovery, University of Cambridge Ph.D. Thesis, 2003. 

  24. Rheol. Acta Garcıa-Morales 43 482 2004 10.1007/s00397-004-0385-4 The rheology of recycled EVA/LDPE modified bitumen 

  25. Chem. Eng. Sci. Chen 58 2505 2003 10.1016/S0009-2509(03)00058-7 Colour change and microstructure evolution of wet flowing paint when subject to shear 

  26. J. Non-Newtonian Fluid. Mech. Lee 94 159 2000 10.1016/S0377-0257(00)00147-6 The importance of slip in matching polyethylene processing data with numerical simulation 

  27. Chem. Eng. Sci. Lee 56 5653 2001 10.1016/S0009-2509(01)00153-1 The application of the multi-pass rheometer for precise rheo-optic characterisation of polyethylene melts 

  28. Fuller 1995 Optical Rheometry of Complex Fluids 

  29. Phil. Trans. R. Soc. Lond. A 1504 Checker 308 451 1983 10.1098/rsta.1983.0015 On the flow of molten polymer into, within and out of ducts 

  30. J. Non-Newtonian Fluid Mech. Beraudo 75 1 1 1998 10.1016/S0377-0257(97)00083-9 A finite element method for computing the flow of multi-mode viscoelastic fluids: comparison with experiments 

  31. Int. Polym. Process. XVII Agassant 1 3 2002 10.3139/217.1675 The matching of experimental polymer processing flows to viscoelastic numerical simulation 

  32. J. Non-Newtonian Fluid Mech. Clemeur 117 193 2004 10.1016/j.jnnfm.2004.02.001 Numerical simulation of abrupt contraction flows using the double convected POM-POM model 

  33. J. Soulages, Flow Birefringence and Velocity Measurements for Polymer Melts in a Cross-Slot Flow Channel. Ph.D. Thesis no. 17180, ETH Zurich, 2007. 

  34. Rheol. Acta Wagner 18 33 1979 10.1007/BF01515686 Analysis of time dependent stress growth data for shear and elongational flow of a low density polyethylene 

  35. J. Rheol. McLeish 42 1 81 1998 10.1122/1.550933 Molecular constitutive equations for a class of branched polymers: the POM-POM polymer 

  36. Chem. Eng. Sci. Mackley 49 16 2551 1994 10.1016/0009-2509(94)E0082-2 The rheological characterization of polymeric and colloidal fluids 

  37. Crochet 1992 Computer Modelling for Extrusion and Other Continuous Polymer Processes 

  38. Trans. Soc. Rheol. Bernstein 7 391 1963 10.1122/1.548963 A theory of stress relaxation with finite strain 

  39. J. Rheol. Lee 45 6 1261 2001 10.1122/1.1389316 Experimental observation and numerical simulation of transient stress fangs within flowing molten polyethylene 

  40. Rheol. Acta Hassell 47 821 2008 10.1007/s00397-008-0261-8 The effect of viscoelasticity on stress fields within polyethylene melt flow for a cross-slot and contraction-expansion slit geometry 

  41. J. Non-Newtonian Fluid Mech. Collis 128 1 29 2005 10.1016/j.jnnfm.2005.02.010 The melt processing of monodisperse and polydisperse polystyrene melts within a slit entry and exit flow 

  42. J. Rheol. Collis 49 2 501 2005 10.1122/1.1849180 Constriction flows of monodisperse linear entangled polymers: multiscale modelling and flow visualization 

  43. J. Rheol. Blackwell 44 121 2000 10.1122/1.551081 Molecular drag-strain coupling in branched polymer melts 

  44. J. Non-Newtonian Fluid Mech. Harlen 60 81 1995 10.1016/0377-0257(95)01381-5 A split Lagrangian-Eulerian method for simulating transient viscoelastic flows 

  45. J. Non-Newtonian Fluid Mech. Bishko 82 255 1999 10.1016/S0377-0257(98)00165-7 Numerical simulation of the transient flow of branched polymer melts through a planar contraction using the ‘POM-POM’ model 

  46. J. Rheol. Barakos 39 1 193 1995 10.1122/1.550700 Numerical simulation of extrusion through orifice dies and prediction of Bagley correction for an IUPAC-LDPE melt 

  47. J. Non-Newtonian Fluid Mech. Mitsoulis 111 1 41 2003 10.1016/S0377-0257(03)00012-0 Entry flow of LDPE melts in a planar contraction 

  48. J. Non-Newtonian Fluid Mech. Valette 136 2-3 118 2006 10.1016/j.jnnfm.2006.03.012 Matching time dependent pressure driven flows with a Rolie Poly numerical simulation 

  49. J. Non-Newtonian Fluid Mech. Likhtman 1 1 2003 10.1016/S0377-0257(03)00114-9 Simple constitutive equation for linear polymer melts derived from molecular theory: the ROLIEPOLY equation 

  50. J. Comp. Phys. Belhamadia 194 233 2004 10.1016/j.jcp.2003.09.008 Anisotropic mesh adaptation for the solution of the Stefan problem 

  51. Durst 1981 Principles and Practice of Laser-Doppler-Anemometry 

  52. http://www.dspace.cam.ac.uk/items-by author?author=Hassell%2C+David. 

  53. Coventry K.D., Cross-Slot Rheology of Polymers. Ph.D. Thesis, Department of Chemical Engineering, University of Cambridge, 2006. 

  54. J. Rheol. Coventry 52 2008 401 2008 10.1122/1.2836671 Cross-slot extensional flow of polymer melts using a multi-pass rheometer 

  55. J. Polym. Sci. A2 Crowley 14 1111 1976 Localised flow birefringence of polyethylene oxide solutions in a four roll mill 

  56. J. Non-Newtonian Fluid Mech. Scrivener 5 475 1979 10.1016/0377-0257(79)85031-4 Dynamical behaviour of drag-reducing polymer solutions 

  57. J. Schoonen, Determination of Rheological Constitutive Equations using Complex Flows. Ph.D. Thesis. Eindhoven Univeristy of Technology, 1998. Downloadable from www.mate.tue.nl. 

  58. J. Non-Newtonian Fluid Mech. Shoonen 79 2-3 529 1998 10.1016/S0377-0257(98)00118-9 A 3D numerical/experimental study on a stagnation flow of a polyisobutylene solution 

  59. W.M.H. Verbeeten, Computational Polymer Melt Rheology, Ph.D. Thesis, Technische Universiteit Eindhoven, 2001. 

  60. J. Non-Newtonian Fluid Mech. Soulages 150 1 43 2007 10.1016/j.jnnfm.2007.10.006 Lubricated optical rheometer for the study of two-dimensional complex flows of polymer melts 

  61. Rheol. Acta Hassell 48 543 2009 10.1007/s00397-009-0350-3 An experimental evaluation of the behaviour of mono and polydisperse polystyrenes in cross-slot flow 

  62. Rheol. Acta Hassell 48 5 551 2009 10.1007/s00397-009-0353-0 Effect of branching in cross-slot flow: the formation of “W-cusps” 

  63. K.D. Coventry, M.R. Mackley, R. Valette, The matching of cross slot time dependent extensional flow experiments with numerical simulation for polydisperse and monodisperse molten polymers, XIVth International Congress of Rheology. Seoul, Korea 22-27th August 2004. 

  64. J. Non-Newtonian Fluid Mech. Clemeur 123 105 2004 10.1016/j.jnnfm.2004.07.002 Numerical evaluation of three dimensional effects in planar flow birefringence 

  65. AIChE J. Petrie 22 2 209 1976 10.1002/aic.690220202 Instabilities in polymer processing 

  66. Annu. Rev. Fluid Mech. Denn 22 13 1990 10.1146/annurev.fl.22.010190.000305 Issues in viscoelastic fluid mechanics 

  67. Annu. Rev. Fluid Mech. Denn 33 265 2001 10.1146/annurev.fluid.33.1.265 Extrusion instabilities and wall slip 

  68. Rheol. Acta Larson 31 3 213 1992 10.1007/BF00366504 Instabilities in viscoelastic flows 

  69. Adv. Polym. Sci. Wang 138 227 1999 10.1007/3-540-69711-X_6 Molecular transitions and dynamics at polymer/wall interfaces: origins of flow instabilities and wall slip 

  70. IPP Agassant 03 239 2006 10.3139/217.0084 Polymer processing extrusion instabilities and methods for their elimination or minimisation 

  71. 2004 Polymer Processing Instabilities 

  72. J. Rheol. Ranganathon 43 2 443 1999 10.1122/1.550990 The application of the multipass rheometer to time-dependent capillary flow measurements of a polyethylene melt 

  73. J. Non-Newtonian Fluid Mech. Weill 7 303 1980 10.1016/0377-0257(82)80021-9 Capillary flow of linear polyethylene melt: sudden increase of flow rate 

  74. J. Rheol. Molenaar 38-1 99 1993 Modelling polymer melt flow instabilities 

  75. L. Robert, Instabilite oscillante de polyethylenes lineaires: observations et interpretations, Ph.D. Thesis. Universite de Nice Sophia-Antipolis, France, 2001. 

  76. J. Non-Newtonian Fluid Mech. Robert 112 27 2003 10.1016/S0377-0257(03)00059-4 Flow birefringence study of the stick-spurt instability during extrusion of high density polyethylenes 

  77. J. Rheol. Hatzikiriakos 36 845 1992 10.1122/1.550320 Role of slip and fracture in the oscillating flow of molten polyethylenes in a capillary 

  78. Phys. Rev. E Hassell 77 5 050801(R) 2008 10.1103/PhysRevE.77.050801 Experimental and computational identification of a polymer melt flow instability 

  79. J. Non-Newtonian Fluid Mech. Hassell 157 1-2 1 2009 10.1016/j.jnnfm.2008.08.010 An experimental evaluation of the formation of an instability in mono and polydisperse polystyrenes 

  80. J. Non-Newtonian Fluid Mech. Combeaud 121 2-3 175 2004 10.1016/j.jnnfm.2004.06.007 Experimental study of the volume defects in polystyrene extrusion 

  81. Kolloid Z Z Polym. Pennings 205 160 1965 10.1007/BF01507982 Fractionation of polymers by crystallization from solution, III. On the morphology of fibrillar polyethylene crystals grown in solution 

  82. Int. Symp. Macromol. Chem. Iguchi 4 5 12 1966 Solution grown polymer crystals 

  83. Adv. Polym. Sci. van der Vegt 26 313 1967 Crystallization phenomena in flowing polymers 

  84. Polym. Eng. Sci. Haas 9 225 1969 10.1002/pen.760090402 Effects of shear stress on the crystallisation of linear polyethylene and polybutene - 1 

  85. Rep. Progr. Phys. Keller 31 623 1968 10.1088/0034-4885/31/2/304 Polymer crystals 

  86. Mackley M.R., Flow Induced Polymer Chain Extension and its Relationship to Fibrous Crystallization, Ph.D. Thesis, University of Bristol, 1972. 

  87. J. Rheol. Doufas 43 1 85 1999 10.1122/1.550978 A continuum model for flow-induced crystallization of polymer melts 

  88. Polym. Eng. Sci. Guo 39 10 2096 1999 10.1002/pen.11601 Crystallinity and microsctructure in injection moldings of isotactic polypropylenes. Part 1. A new approach to modelling and model parameters 

  89. J. Mater. Sci. Jay 34 2089 1999 10.1023/A:1004563827491 Shear-induced crystallisation of polypropylenes: effect of molecular weight 

  90. Polymer Nogales 42 12 5247 2001 10.1016/S0032-3861(00)00919-8 Shear-induced crystallization of isotactic polypropylene with different molecular weight distributions: in situ small- and wide-angle X-ray scattering studies 

  91. Macromol. Theory Simul. Zuidema 10 447 2001 10.1002/1521-3919(20010601)10:5<447::AID-MATS447>3.0.CO;2-C Development and validation of a recoverable strain-based model for flow-induced crystallization of polymers 

  92. Rheol. Acta Janeschitz-Kriegl 42 355 2003 10.1007/s00397-002-0247-x Flow as an effective promoter of nucleation in polymer melts: a quantitative evaluation 

  93. Rheol. Acta van Meerveld 44 119 2004 10.1007/s00397-004-0382-7 Towards a rheological classification of flow induced crystallisation experiments of polymer melts 

  94. Macromolecules Heeley 39 15 5058 2006 10.1021/ma0606307 Shear-induced crystallization in blends of model linear and long chain branched hydrogenated polybutadienes 

  95. J. Rheol. Hadinata 51 2 195 2007 10.1122/1.2426977 Elongation-induced crystallisation of a high molecular weight isotactic polybutene - 1 melt compared to shear-induced crystallisation 

  96. Science Kimata 316 1014 2007 10.1126/science.1140132 Molecular basis of the Shish-Kebab morphology in polymer crystallization 

  97. Janeschitz-Kriegl 2010 Crystallization Modalities in Polymer Melt Processing 

  98. J. Mater. Sci. Mackley 35 5247 2000 10.1023/A:1004824924912 Direct experimental evidence for flow induced fibrous polymer crystallisation occurring at a solid/melt interface 

  99. J. Rheol. Lele 46 5 1091 2002 10.1122/1.1498284 In situ rheo-Xray investigation orientation in layered silicate-syndiotactic polypropylene nanocomposite melt 

  100. Hernandez de Muller G., The Effect of Flow on the Crystallisation of Polyethylene. Ph.D. Thesis. University of Cambridge, 2008. 

  101. L. Scelsi, Flow-Induced Crystallisation of Polyethylene and Polypropropylene Melts, CPGS Thesis. Department of Chemical Engineering, University of Cambridge, 2007. 

  102. Rheol. Acta Hassell 47 9 435 2008 10.1007/s00397-008-0263-6 Localised flow-induced crystallisation of a polyethylene melt 

  103. Polymer Mackley 14 16 1973 10.1016/0032-3861(73)90073-6 Flow induced crystallisation of polyethylene melts 

  104. Polymer Kolnaar 35 18 3863 1994 10.1016/0032-3861(94)90269-0 A temperature window of reduced flow resistance in polyethylene 

  105. Rheol. Acta Scelsi 47 8 898 2008 10.1007/s00397-008-0278-z Rheo-optic flow-induced crystallization of polypropylene and polyethylene within confined entry-exit flow geometries 

  106. J. Rheol. Scelsi 53 4 859 2009 10.1122/1.3123209 Experimental observations and matching viscoelastic specific work predictions of flow-induced crystallisation for molten polyethylene within two flow geometries 

  107. Macromolecules Mykhaylyk 41 6 1901 2008 10.1021/ma702603v The specific work of flow as a criterion for orientation in polymer crystallization 

  108. Phil. Trans. Royal Soc. (Lond.) Mackley 278 29 1975 10.1098/rsta.1975.0020 Flow induced polymer chain extension and its relationship to fibrous crystallization 

  109. Chem. Eng. Sci. Tuladhar 59/24 5997 2004 10.1016/j.ces.2004.07.054 Experimental observations and modelling relating to foaming and bubble growth from pentane loaded polystyrene melts 

  110. Nowjee 239 2006 Proceedings of the 4th International Symposium on Food Rheology and Structure, ISFRS 2006 Starch melt processing and foaming 

  111. JAOCS Sonwai 83 7 583 2006 10.1007/s11746-006-1243-6 The effect of shear on the crystallization of cocoa butter 

  112. Food Bio Process. (Trans. I. Chem. E) Beckett 72C 47 1994 The cold extrusion of chocolate 

  113. Trans. IChemE, Part C. Food Bioprod. Process. Engmann 84 C2 95 2006 10.1205/fbp.05104 Semi-solid processing of chocolate and cocoa butter: 1. The experimental correlation of process rheology with microstructure 

  114. Trans. IChemE, Part C. Food Bioprod. Process. Engmann 84 C2 102 2006 10.1205/fbp.05103 Semi-solid processing of chocolate and cocoa butter: modelling rheology and microstructure changes during extrusion 

  115. K. Odic, The Rheology and Microstructure of Model Ice Cream Systems, PhD Thesis, University of Cambridge, 2004. 

  116. Bazilevsky 41 1990 Third European Rheology Conference, Liquid Filament Microrheometer and Some of its Applications 

  117. J. Non-Newtonian Fluid Mech. Liang 52 387 1994 10.1016/0377-0257(94)85031-3 Rheological characterisation of the time and strain dependence of polyisbutylene melts 

  118. Rheol. Rev. McKinley 1 2005 Visco-elastic-capillary thinning and break-up of complex fluids 

  119. J. Non-Newtonian Fluid Mech. Tuladhar 148 97 2008 10.1016/j.jnnfm.2007.04.015 Filament stretching rheometry and break-up of low viscosity polymer solutions and inkjet fluids 

  120. Rheol. Acta Ma 47 4 447 2008 10.1007/s00397-007-0247-y Filament stretching of carbon nanotube suspensions 

관련 콘텐츠

저작권 관리 안내
섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로