$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Electrical conductivity of pure carbon nanotube yarns

Carbon, v.49 no.12, 2011년, pp.3755 - 3761  

Miao, M. (CSIRO Materials Science and Engineering, P.O. Box 21, Belmont, Victoria 3216, Australia)

Abstract AI-Helper 아이콘AI-Helper

The porosity of multi-walled carbon nanotube yarns can be varied over a wide range by adjusting the yarn construction, resulting in a dramatic change in yarn electrical conductivity. When the yarn electrical conductivity is converted into specific conductivity, its value remains approxim...

참고문헌 (47)

  1. Nature Jiang 419 801 2002 10.1038/419801a Nanotechnology: spinning continuous carbon nanotube yarns 

  2. Science Zhang 306 1358 2004 10.1126/science.1104276 Multifunctional carbon nanotube yarns by downsizing an ancient technology 

  3. Biomaterials Edwards 30 1725 2009 10.1016/j.biomaterials.2008.12.031 Tubular micro-scale multiwalled carbon nanotube-based scaffolds for tissue engineering 

  4. Carbon Al-Saleh 47 1738 2009 10.1016/j.carbon.2009.02.030 Electromagnetic interference shielding mechanisms of CNT/polymer composites 

  5. Carbon Huang 45 1614 2007 10.1016/j.carbon.2007.04.016 The influence of single-walled carbon nanotube structure on the electromagnetic interference shielding efficiency of its epoxy composites 

  6. Endo 13 2008 Carbon nanotubes - advanced topics in the synthesis, structure, properties and applications Potential applications of carbon nanotubes 

  7. Appl Phys Lett Park 96 43115-1 2010 The influence of coiled nanostructure on the enhancement of dielectric constants and electromagnetic shielding efficiency in polymer composites 

  8. Carbon Tseng 47 3472 2009 10.1016/j.carbon.2009.08.031 Exploiting the effect of twisting on the electrical resistance of a single-walled carbon nanotube rope to trigger ignition using a 9-V battery 

  9. Nanotechnology Zhao 21 30 305502-1 2010 10.1088/0957-4484/21/30/305502 Carbon nanotube yarn strain sensors 

  10. Smart Mater Struct Abot 19 85007-1 2010 10.1088/0964-1726/19/8/085007 Novel distributed strain sensing in polymeric materials 

  11. Phys Rev Lett Hamada 68 1579 1992 10.1103/PhysRevLett.68.1579 New one dimensional conductors: graphite microtubules 

  12. Phys Rev Lett Mintmire 68 631 1992 10.1103/PhysRevLett.68.631 Are fullerene tubules metallic? 

  13. Appl Phys Lett Hone 77 5 666 2000 10.1063/1.127079 Electrical and thermal transport properties of magnetically aligned single wall carbon nanotube films 

  14. 10.1016/B978-0-8155-1339-1.50018-9 Pierson HO. Handbook of carbon, graphite, diamond and fullerenes: properties, processing, and applications. New Jersey: Noyes Publications; 1993. p. 61. 

  15. Nature Ebbessen 382 54 1996 10.1038/382054a0 Electrical conductivity of individual carbon nanotubes 

  16. Science Dai 272 523 1996 10.1126/science.272.5261.523 Probing electrical transport in nanomaterials: conductivity of individual carbon nanotubes 

  17. Appl Phys Lett de Pablo 74 2 323 1999 10.1063/1.123011 A simple, reliable technique for making electrical contact to multiwalled carbon nanotubes 

  18. Serway RA. Principle of physics. Forth Worth: Sauders College Publications; 1998. p. 602. 

  19. J Phys Chem B Wang 105 9422 2001 10.1021/jp011538+ Anisotropic electrical transport properties of aligned carbon nanotube films 

  20. Appl Phys Lett Agrawal 90 193104-1 2007 10.1063/1.2737127 Defect-induced electrical conductivity increase in individual multiwalled carbon nanotubes 

  21. Science Paulson 290 1742 2000 10.1126/science.290.5497.1742 Tunable resistance of a carbon nanotube-graphite interface 

  22. Phys Rev B Buldum 63 161403-1 2001 10.1103/PhysRevB.63.161403 Contact resistance between carbon nanotubes 

  23. Science Thess 273 483 1996 10.1126/science.273.5274.483 Crystalline ropes of metallic carbon nanotubes 

  24. Phys Rev B Lee 61 4526 2000 10.1103/PhysRevB.61.4526 Transport properties of a potassium-doped single-wall carbon nanotube rope 

  25. Nature Ebbesen 358 220 1992 10.1038/358220a0 Large-scale synthesis of carbon nanotubes 

  26. Phys Rev Lett Stahl 85 5186 2000 10.1103/PhysRevLett.85.5186 Intertube coupling in ropes of single-wall carbon nanotubes 

  27. J Mater Res Langer 9 927 1994 10.1557/JMR.1994.0927 Electrical resistance of a carbon nanotube bundle 

  28. Carbon Zhu 44 253 2006 10.1016/j.carbon.2005.07.037 Growth and electrical characterization of high-aspect-ratio carbon nanotube arrays 

  29. Science de Heer 268 845 1995 10.1126/science.268.5212.845 Aligned carbon nanotube films: production and optical and electronic properties 

  30. Phys Rev Lett Song 72 697 1994 10.1103/PhysRevLett.72.697 Electronic properties of graphite nanotubules from galvanomagnetic effects 

  31. Nat Mater Cao 4 540 2005 10.1038/nmat1415 Multifunctional brushes made from carbon nanotubes 

  32. Carbon Jakubinek 48 3947 2010 10.1016/j.carbon.2010.06.063 Thermal and electrical conductivity of tall, vertically aligned carbon nanotube arrays 

  33. Carbon Miao 48 2802 2010 10.1016/j.carbon.2010.04.009 Poisson’s ratio and porosity of carbon nanotube dry-spun yarns 

  34. J Appl Phys Juretschke 27 838 1956 10.1063/1.1722496 Hall effect and conductivity in porous media 

  35. Powder Metall Met Ceram Skorokhod 4 220 1965 10.1007/BF00773771 The electrical conductivity of porous sintered materials from copper fibers 

  36. J Am Ceram Soc Mizusaki 79 109 1996 10.1111/j.1151-2916.1996.tb07887.x Simple mathematical model for the electrical conductivity of highly porous ceramics 

  37. Small Zhang 3 244 2007 10.1002/smll.200600368 Strong carbon-nanotube fibers spun from long carbon-nanotube arrays 

  38. Nanotoday Behabtua 3 5-6 24 2008 10.1016/S1748-0132(08)70062-8 Carbon nanotube-based neat fibers 

  39. Adv Mater Zhong 22 692 2010 10.1002/adma.200902943 Continuous multilayered carbon nanotube yarns 

  40. J Compos Mater Bradford 42 1533 2008 10.1177/0021998308092206 Electrical conductivity study of carbon nanotube yarns, 3-d hybrid braids and their composites 

  41. J Text Inst Trans van Wyk 37 282 1946 10.1080/19447024608659279 Note on the compressibility of wool 

  42. Text Res J Komori 47 13 1977 10.1177/004051757704700104 Number of fibre-to-fibre contacts in general fibre assemblies 

  43. Text Res J Pan 63 336 1993 10.1177/004051759306300605 A modified analysis of the microstructural characteristics of general fibre assemblies 

  44. Nature Javey 424 654 2003 10.1038/nature01797 Ballistic carbon nanotube field-effect transistor 

  45. J Phys Chem B Lu 110 24371 2006 10.1021/jp063660k Determination of carbon nanotube density by gradient sedimentation 

  46. ACS Nano Kuznetsov 5 985 2011 10.1021/nn102405u Structural model for dry-drawing of sheets and yarns from carbon nanotube forests 

  47. J Text Inst Trans Martindale 36 3 35 1945 10.1080/19447024508659383 A new method of measuring the irregularity of yarns with some observations on the origin of irregularities in worsted slivers and yarns 

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로