$\require{mediawiki-texvc}$

연합인증

연합인증 가입 기관의 연구자들은 소속기관의 인증정보(ID와 암호)를 이용해 다른 대학, 연구기관, 서비스 공급자의 다양한 온라인 자원과 연구 데이터를 이용할 수 있습니다.

이는 여행자가 자국에서 발행 받은 여권으로 세계 각국을 자유롭게 여행할 수 있는 것과 같습니다.

연합인증으로 이용이 가능한 서비스는 NTIS, DataON, Edison, Kafe, Webinar 등이 있습니다.

한번의 인증절차만으로 연합인증 가입 서비스에 추가 로그인 없이 이용이 가능합니다.

다만, 연합인증을 위해서는 최초 1회만 인증 절차가 필요합니다. (회원이 아닐 경우 회원 가입이 필요합니다.)

연합인증 절차는 다음과 같습니다.

최초이용시에는
ScienceON에 로그인 → 연합인증 서비스 접속 → 로그인 (본인 확인 또는 회원가입) → 서비스 이용

그 이후에는
ScienceON 로그인 → 연합인증 서비스 접속 → 서비스 이용

연합인증을 활용하시면 KISTI가 제공하는 다양한 서비스를 편리하게 이용하실 수 있습니다.

Overexpression of apple spermidine synthase 1 (MdSPDS1) leads to significant salt tolerance in tomato plants 원문보기

Plant biotechnology, v.28 no.1, 2011년, pp.33 - 42  

Neily, Mohamed Hichem (Graduate School of Life and Environmental Sciences, University of Tsukuba) ,  Baldet, Pierre (Institut National de la Recherche Agronomique (INRA), Université) ,  Arfaoui, Issam (s de Bordeaux) ,  Saito, Takeshi (Graduate School of Life and Environmental Sciences, University of Tsukuba) ,  Li, Qiu-li (Graduate School of Life and Environmental Sciences, University of Tsukuba) ,  Asamizu, Erika (Graduate School of Life and Environmental Sciences, University of Tsukuba) ,  Matsukura, Chiaki (Graduate School of Life and Environmental Sciences, University of Tsukuba) ,  Moriguchi, Takaya (Graduate School of Life and Environmental Sciences, University of Tsukuba) ,  Ezura, Hiroshi (National Institute of Fruit Sciences)

Abstract AI-Helper 아이콘AI-Helper

The aim of this research is to study the effects of salt stress during different stages of development in transgenic tomato plants overexpressing the apple spermidine synthase gene (MdSPDS1) compared to wild type (WT) plants. Under salt treatment (100 and 150 mM NaCl), tomato plants clearly displaye...

주제어

참고문헌 (32)

  1. Alcázar, Rubén, Altabella, Teresa, Marco, Francisco, Bortolotti, Cristina, Reymond, Matthieu, Koncz, Csaba, Carrasco, Pedro, Tiburcio, Antonio F.. Polyamines: molecules with regulatory functions in plant abiotic stress tolerance. Planta, vol.231, no.6, 1237-1249.

  2. 0960-7412 Plant J AbuQamar S, Luo H, Laluk K, Mickelb 58 347 2009 10.1111/j.1365-313X.2008.03783.x 

  3. 0022-1589 J Hort Sci Adams P, Ho LC 64 725 1989 10.1080/14620316.1989.11516015 

  4. Apse, Maris P, Blumwald, Eduardo. Engineering salt tolerance in plants. Current opinion in biotechnology, vol.13, no.2, 146-150.

  5. Ashraf, M., Foolad, M.R.. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and experimental botany, vol.59, no.2, 206-216.

  6. 0003-1062 J Am Soc Hort Sci 118 5 655 1993 10.21273/JASHS.118.5.655 

  7. Bolarin, Maria C, Estañ, Maria T, Caro, Manuel, Romero-Aranda, Remedios, Cuartero, Jesus. Relationship between tomato fruit growth and fruit osmotic potential under salinity. Plant science, vol.160, no.6, 1153-1159.

  8. Borsani, Omar, Cuartero, Jesus, Fernández, José A., Valpuesta, Victoriano, Botella, Miguel A.. Identification of Two Loci in Tomato Reveals Distinct Mechanisms for Salt Tolerance. The Plant cell, vol.13, no.4, 873-887.

  9. 0032-0889 Plant Physiol Burtin D, Martin Tangy J, Paynot M, 89 104 1989 10.1104/pp.89.1.104 

  10. 0031-9317 Physiol Plant Chattopadhayay MK, Tiwari BS, Chatt 116 192 2002 10.1034/j.1399-3054.2002.1160208.x 

  11. Demetriou, Georgia, Neonaki, Christina, Navakoudis, Eleni, Kotzabasis, Kiriakos. Salt stress impact on the molecular structure and function of the photosynthetic apparatus—The protective role of polyamines. Biochimica et biophysica acta, Bioenergetics, vol.1767, no.4, 272-280.

  12. Foolad, M. R.. Recent Advances in Genetics of Salt Tolerance in Tomato. Plant cell, tissue and organ culture, vol.76, no.2, 101-119.

  13. Hasegawa, Paul M., Bressan, Ray A., Zhu, Jian-Kang, Bohnert, Hans J.. PLANT CELLULAR AND MOLECULAR RESPONSES TO HIGH SALINITY. Annual review of plant physiology and plant molecular biology, vol.51, 463-499.

  14. Hernández, J.A., Olmos, E., Corpas, F.J., Sevilla, F., del Río, L.A.. Salt-induced oxidative stress in chloroplasts of pea plants. Plant science, vol.105, no.2, 151-167.

  15. Khavari-Nejad, R.A., Mostofi, Y.. Effects of NaCl on photosynthetic pigments, saccharides, and chloroplast ultrastructure in leaves of tomato cultivars. Photosynthetica, vol.35, no.1, 151-154.

  16. 10.1007/BF00015064 Kotzabasis K, Fotinou C, Roubelakis-Angelakis KA, Ghanotakis D (1993) Polyamines in the photosynthetic apparatus: Photosystem II highly resolved subcomplexes are enriched in spermine. Photosynth Res 38: 83-88 

  17. Liu, J.H., Inoue, H., Moriguchi, T.. Salt stress-mediated changes in free polyamine titers and expression of genes responsible for polyamine biosynthesis of apple in vitro shoots. Environmental and experimental botany, vol.62, no.1, 28-35.

  18. Mittova, Valentina, Tal, Moshe, Volokita, Micha, Guy, Micha. Salt stress induces up-regulation of an efficient chloroplast antioxidant system in the salt-tolerant wild tomato species Lycopersicon pennellii but not in the cultivated species. Physiologia plantarum, vol.115, no.3, 393-400.

  19. 0016-6731 Mol Genet Genom Najami N, Tibor J, Barriah W, Kayam 279 171 2008 10.1007/s00438-007-0305-2 

  20. Nakano Y, Asada K (1981) Hydrogen peroxide is scavenged by ascorbate-specic peroxidase in spinach chloroplasts. Plant Cell Physiol 22: 867-880 

  21. 10.1016/j.physletb.2003.10.071 Neily MH, Matsukura C, Maucourt M, Bernillon S, Deborde C, Moing A, Yin Y-G, Saito T, Mori K, Asamizu E, et al. (2010) Enhanced polyamine accumulation alters carotenoid metabolism at the transcriptional level in tomato fruit overexpressing spermidine synthase. J Plant Physiol, doi:10.1016/j.physletb.2003.10.071 ( in press ) 

  22. Porra, R.J., Thompson, W.A., Kriedemann, P.E.. Determination of accurate extinction coefficients and simultaneous equations for assaying chlorophylls a and b extracted with four different solvents: verification of the concentration of chlorophyll standards by atomic absorption spectroscopy. Biochimica et biophysica acta, Bioenergetics, vol.975, no.3, 384-394.

  23. 0137-5881 Acta Physiol Plant Qi Y-C, Wang F-F, Zhang H, Liu W-Q 32 263 2010 10.1007/s11738-009-0403-3 

  24. 10.1034/j.1399-3054.1997.1010213.x 

  25. 0176-1617 J Plant Physiol 143 4/5 500 1994 

  26. 0031-8655 Photochem Photobiol Sfichi L, Loannidis N, Kotzabasis K 80 499 2004 10.1562/2004-04-01-RA-130.1 

  27. Tiburcio AF, Besford RT, Capell T, Borrell A, Testillano PS, Risueño MC (1994) Mechanisms of polyamine action during senescence responses induced by osmotic stress. J Exp Bot 45: 1789-800 

  28. Yin YG, Kobayashi Y, Sanuki A, Kondo S, Fukuda N, Ezura H, Sygaya S Matsukura C (2010) Salinity induces carbohydrate accumulation and sugar-regulated starch biosynthetic genes in tomato ( Solanum lycopersicum L. cv. ‘Micro-Tom’) fruits in an ABA- and osmotic stress-independent manner. J Exp Bot 61: 563-574 

  29. 0962-8819 Transgenic Res Wen X-P, Pang X-M, Matsuda N, Kita 17 251 2008 10.1007/s11248-007-9098-7 

  30. 0016-6731 Mol Genet Genom Zhang Z, Honda C, Kita M, Hu C, Nak 268 799 2003 10.1007/s00438-002-0802-2 

  31. Zhao, Fugeng, Song, Chun-Peng, He, Jiaqian, Zhu, Hui. Polyamines Improve K+/Na+ Homeostasis in Barley Seedlings by Regulating Root Ion Channel Activities. Plant physiology, vol.145, no.3, 1061-1072.

  32. Zhu, Jian-Kang. Genetic Analysis of Plant Salt Tolerance Using Arabidopsis. Plant physiology, vol.124, no.3, 941-948.

관련 콘텐츠

오픈액세스(OA) 유형

BRONZE

출판사/학술단체 등이 한시적으로 특별한 프로모션 또는 일정기간 경과 후 접근을 허용하여, 출판사/학술단체 등의 사이트에서 이용 가능한 논문

섹션별 컨텐츠 바로가기

AI-Helper ※ AI-Helper는 오픈소스 모델을 사용합니다.

AI-Helper 아이콘
AI-Helper
안녕하세요, AI-Helper입니다. 좌측 "선택된 텍스트"에서 텍스트를 선택하여 요약, 번역, 용어설명을 실행하세요.
※ AI-Helper는 부적절한 답변을 할 수 있습니다.

선택된 텍스트

맨위로